Supplemental Material of
Action-guided 3D Human Motion Prediction

A More experimental evaluation

In this section, we provide more experimental evaluation on our approach. In Figure[I] we present
visualization results of the predicted 3D human mesh from Human3.6M dataset [1]. We can observe
that our approach can better handle tiny cues of motion dynamics.

Table[T] and Table 2] provide additional ablation results for our approach on the Penn Action dataset
[6]] when DTW is not applied. Detailed setting of these experiments can be found in Section 4.2 of
the main paper.
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Figure 1: Visualization of 3D human motion prediction. From left to right: the observed input
video and motion predicted at different time steps. We provide samples of walking dog and phoning.
For each sample, the top row contains the ground-truth frames. The results obtained by PHD [5] and
our approach are presented in the mid and bottom row, respectively.

B Licenses of referenced assets

We provide the links pointing to the licenses of our referenced assets, including pre-trained models
and datasets.

Human3.6M dataset [1] |http://vision.imar.ro/human3.6m/eula.php

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.


http://vision.imar.ro/human3.6m/eula.php

Table 1: Evaluation of our action context model- Table 2: Evaluation of our action-specific memory

ing on Penn Action dataset without DTW. bank on Penn Action dataset without DTW.
PCK 1 PCK T
Method 5 10 20 30 5 10 20 30
Baseline 76.8 71.5 66.8 58.6 Baseline 76.8 71.5 66.8 58.6
+ Prediction with Bank 77.9 742 69.5 62.1 Action-agnostic Bank 77.5 73.4 68.6 61.3
+ Decoding with Bank 78.6 75.9 714 64.7 Action-specific Bank 78.6 75.9 71.4 64.7

+ Action Constraint  79.1 76.7 72.8 66.5

Penn action dataset [6] http://dreamdragon.github.io/PennAction/

PHD model [5] https://github.com/jasonyzhang/phd/blob/master/LICENSE

SMPL model [3] |https://smpl.is.tue.mpg.de/modellicense

RGB-based classifier [4] https://github.com/dluvizon/deephar/blob/master/LICENSE.md

Skeleton-based classifier [2] https://github.com/kenziyuliu/MS-G3D/blob/master/LICENSE
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