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A APPENDIX

A.1 CLOSED-FORM SOLUTION FOR REWARD RATE IN FIXED CONTEXT

Determining the optimal strategy for action requires estimating P (st|xt) and thresholding on its
value. Because xt = 0 implies st = 0, it is sufficient to count cues from the last negative observation
xt�⌧�1 = 0, i.e. P (st|xt) = P (st|xt�⌧ :t = 1), where we use the slicing notation t � ⌧ : t to
mean all times t0 fulfilling t� ⌧  t0  t. The waiting time ⌧ hence forms the central component in
the actor’s policy.

For brevity, we further define
b ⌘ P (xt = 1, st = 0|st�1 = 0, ✓) = ✓ (1� �)

c ⌘ P (xt = 0, st = 0|st�1 = 0, ✓) = (1� ✓) (1� �)

Transition after ⌧ observations. In order to evaluate the reward rate in the main text, we need
to calculate P (st = 1|xt, ✓). Because an unsafe cue xt = 0 always implies the safe state, it
is sufficient to calculate Ps=1 ⌘ P (st = 1|xt�⌧ :t = 1, ✓), i.e. how likely the safe state is after
⌧ suggestive observations, where we introduced Ps=1 for brevity. To this end, we consider the
complement Ps=0 = 1� Ps=1. To evaluate this expression, we formulate a self-consistent relation,

Ps=0 = b⌧ +
⌧�1X

k=0

bkc Ps=0

) Ps=0 =
b⌧

1�
P⌧�1

k=0 bkc
.

This equation considers the probability b⌧ to have been unsafe the entire time. On top of this, the
second sum considers all worlds where k observations x = 1 where followed by a faithful negative
x = 0. By the Markov property of the world, these paths again reweight Ps=0 itself. Resubstitution
finally yields Ps=1 = 1 � Ps=0. To cross-check this relation, we simulated it via Monte Carlo
sampling of the world.

Expected action time. To arrive at the final expression for the reward rate, the average time to
reach ⌧ cues is required, as well. We here extend the calculation presented by Ginsparg (2005) for
the case of coin tosses with the latent context in our setting.

Let T̄ ⌘ E [T |xt�⌧ :t = 1, ✓] denote the expected action time, where ⌧ indicates the period of
consecutive cues xt�⌧ :t = 1 preceding any action. Then, we arrive at a self-consistent relation

T̄ (⌧ ; ✓) = b⌧ ⌧ +
⌧�1X

k=0

bk
�
� ⌧ + c

�
T̄ (⌧, ✓) + k + 1

��

) T̄ (⌧ ; ✓) =
b⌧ ⌧ +

P⌧�1
k=0 bk� ⌧ + bkc (k + 1)

1�
P⌧�1

k=0 b
kc

.

This considers all possible paths to get ⌧ consecutive xt�⌧ :t = 1: The first term is the probability
of getting ⌧ unsafe cues in st�⌧ :t = 0 rightaway. The sum then considers paths where k cues have
been unsafe. From there on, a transition to safe happens with probability a, and all subsequent cues
in this trial will be guaranteed to be faithfully safe. With probability c however, the world does not
transition to safe. Again because of the Markovian structure, the world statistically indifferent from
the initial time. Therefore, agent has to wait for T̄ (⌧ ; ✓) on expectation again, in addition to the cost
k + 1 that it lasted to get to this point, with +1 accounting for the negative cue.

From this, the reward rate becomes

E [rt|xt, ✓] (⌧) =
1

T̄ (⌧, ✓)
P (st = 1|xt, ✓) =

1

T̄ (⌧, ✓)
P (st = 1|xt�⌧ :t = 1, ✓).

The maximizer ⌧? of this expression defines the optimal policy in a context ✓.
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A.1.1 LATENT VARIABLES REQUIRE TRACKING JOINT DENSITY

In this section, we show that updating of the marginals of the joint belief cannot be done without
holding track of the full joint distribution at the previous timestep. This necessitates using the full
joint update equation in the main text.

State

P (st|xt = (xt,x<t)) / P (st, xt|x<t) (7)

=
X

✓t

P (st, xt, ✓t|x<t)

=
X

✓t

P (xt, ✓t|st,x<t)P (st|x<t)

=
X

✓t

P (xt|st, ✓t)P (✓t|st,x<t)P (st|x<t)

def. conditional =
X

✓t

P (xt|st, ✓t)
P (st, ✓t|x<t)

P (st|x<t)
P (st|x<t).

=
X

✓t

P (xt|st, ✓t)P (st, ✓t|x<t)

=
X

✓t

P (xt|st, ✓t)
X

s0t�1

T sts0t�1

X

✓0
t�1

T ✓t✓0
t�1

P t�1(s
0
t�1, ✓

0
t�1|x<t).

Importantly, in the third line, P (st|✓t,x<t) 6= P (st|x<t), in general. This can be seen from the fact
that high noise will make the safe state more unlikely.

Context This follows completely analogously

P (✓t|xt = (xt,x<t)) / P (✓t, xt|x<t) (8)

=
X

st

P (st, xt, ✓t|x<t)

=
X

st

P (st, xt|✓t,x<t)P (✓t|x<t)

=
X

st

P (xt|st, ✓t)P (st|✓t,x<t)P (✓t|x<t)

def. conditional =
X

st

P (xt|st, ✓t)
P (st, ✓t|x<t)

P (✓t|x<t)
P (✓t|x<t)

=
X

st

P (xt|st, ✓t)P (st, ✓t|x<t)

=
X

st

P (xt|st, ✓t)
X

s0t�1

T sts0t�1

X

✓0
t�1

T ✓t✓0
t�1

P t�1(s
0
t�1, ✓

0
t�1|x<t).

Note that these relations are completely equivalent to each other, up to a normalization.

In summary, this shows that the update of the marginals necessitates keeping track of the joint priors.
Intuitively, this comes about in line 3, where the belief about the joint occurrence of st, ✓t enters.
Note that we can recover these relations by marginalization of the joint update in the main text, for
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example for the st update

P (st|xt) =
X

✓t

P (st, ✓t|xt)

=
X

✓t

P (xt|st, ✓t)
X

s0t�1

T sts0t�1

X

✓0
t�1

T ✓t✓0
t�1

P t�1(s
0
t�1, ✓

0
t�1|x<t).

where we used the normalization of the transition matrix and the prior in the last two steps. This
goes likewise for P (✓t|xt).

A.1.2 INDEPENDENT OBSERVATION GENERATOR (NAIVE BAYES)

To analyze the effect of the interaction of the variables, we consider a factorized generator, i.e.
P (x|s, ✓) = P (x|✓)P (x|s). This makes s and ✓ non-concurring causes of the observations, which
means that the presence of either increases the chances of x = 1. This yields independent update
equations, as can be seen by carrying out

P
✓0
t�1

and
P

s0t�1
respectively in (8) and (7),

P (st|xt) =
X

✓t

P (xt|st)
X

s0t�1

T sts0t�1
P t�1(s

0
t�1|x<t) (9)

P (✓t|xt) =
X

st

P (xt|st)
X

✓0
t�1

T ✓t✓0
t�1

P t�1(s
0
t�1|x<t).

Because of this mismatching observation model, keeping track of the state becomes completely
decoupled from context. Similar to the main text, this technically assumes a factorized prior in the
distant past.

A.2 NETWORK TRAINING

We trained recurrent network models, in PyTorch, using the Actor-Critic framework (Sutton &
Barto, 2018) . The Actor and Critic each consisted of an LSTM cell with 48 hidden units. The
Critic LSTM was followed by a linear readout to value. The Actor LSTM was followed by a linear
readout with a softmax activation function that produced 2 action-probabilities (Action and Inac-
tion). The policy was generated by sampling from the action-space with the action-probability
produced by the Actor. At each time step both LSTMs recieved the one-hot encoded observation
from the environment, the one-hot encoded previous step action, and the binary-encoded previous
step reward. The parameters of all layers were initialized using Pytorch’s standard initialization for
linear layers: U( �1

input dimensions ,
1

input dimensions ). LSTM units were initialized to zero at the first step of
the first episode.

Critic weights were learned using the Mean Squared Error between the Expected Value at each time
steps and the Discounted Future Returns, Gt:

Critic loss =
1

T

T�1X

t=0

A2
t

where At is the difference between the Expected Value and the Discounted Future Returns:

At = Vt �Gt

The sum of discounted future returns Gt was computed in reverse at the end of an episode as

Gt = �Gt+1 +Rt

where the discount factor � was set to 0.995. The final return GT was manually set to the final
predicted value, VT , to avoid a dependence between Gt and the distance to the end of the episode.
Actor weights were learned using the policy gradient algorithm (Sutton & Barto, 2018). A learning
rate of 0.0001 in combination with an RMSprop optimizer was used for training both Actor and
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Critic. The Critic loss was scaled down by 0.05 relative to the Actor, mirroring the approach in
Wang et al. (2018).

Each of the 5000 training episodes consisted of 500 trials under a single ✓. After each episode a new
✓ was sampled from the set {0.1, 0.3, 0.5, 0.7, 0.9}. Trials consisted of a variable number of time
steps. Each trial’s duration depended on the stimulus duration, agent’s behavior, and ITI duration. At
the end of an episode the gradient with respect to the weights was computed with backpropagation
through time, for approximately 15,000 steps per episode, and the gradient was detached at the end
of an episode.

Figure 6: Graphical representation of the actor’s LSTM architecture, inputs and outputs.

A.2.1 TRAINING DYNAMICS

Figure 7: Training dynamics of 5 RNNs and 5 LSTMs. Thick lines are means of networks, Error
band are standard deviations across networks.

We started out our experiments with training a recurrent neural network on the task. Due to the
sparse reward, its dynamics were highly unstable. Figure 7 contrasts the waiting time ⌧ underlying
the policy throughout training. As it underlies the optimal reward rate (A.1), this forms a proxy
for network performance throughout training. We contrast the plain RNN architecture to the LSTM
architecture that we use for the results in the main text. For both architectures we trained 5 net-
works with identical hyper-parameters except that the learning rate was 0.00001. The purpose of
this change was to improve training stability of the Vanilla RNNs. This reveals that the network be-
havior evolves as training progresses. In a first stage, waiting time increases independent of context
from a baseline due to network initialization. In a second stage, low ✓ delays action, while high ✓
paradoxically promotes shorter action times. This reflects the association of cues with rewards: The
greater frequency of go cues in the high noise contexts bring the networks to act sooner. This trend
reflects the behavior of the independent theory in the main text. At a last stage, this trend inverts to
reflect awareness of the ambiguity of cues, arriving at the final policy.

A.3 DETAILED STRUCTURE OF THE MOUSE TASK

In order to make the task suitable for rodent experiments required a suitable task design on which
we detail here. The unsafe state duration was sampled from an exponential distribution with a mean
of ��1 = 10 steps and a minimum of 4 (in training) or 1 (in testing). Acting during the stimulus
automatically transitioned the state to an interstimulus interval (ITI). The ITI duration was sampled
from a uniform duration between 5 and 25 steps. If the agent acted in the safe state, it received a
reward of 1. If the agent stayed in the safe state for 35 (in training) or 100 (in testing) steps without
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acting, the state automatically transitioned to ITI. The unsafe and ITI stimuli were independently
sampled from a Binomial distribution with the observation generator is P (x = 1|s = 0, ✓) = ✓.
After a block of trials ✓ was sampled uniformly from a list of possible values.

A.3.1 BAYESIAN AGENT

Action selection. In order to produce behavior from the probabilistic update equations (5) and
(A.1.2), a procedure to convert a probability into action is needed.

At each time step, we calculate the belief state as the marginal of the distribution updated via (A.1)
on the most recent cue xt

ŝ = P (st = 1|xt)

=
X

✓t

P (st = 1, ✓t|xt)

=
X

✓t

P (st = 1|✓t,xt)P (✓t|xt),

where we evolve the agent under the full or naive update prescribed by the Bayesian equations
above.

We then choose to act as soon as the belief suggests maximum expected reward rate under the
current context distribution P (✓t|xt) =

P
✓t
P (st, ✓t|xt) of the agent. Explicitly, we calculate

this threshold by first getting the optimal action time ⌧? under the current belief as

⌧? = argmax⌧ E✓t [r(⌧ ; ✓t)]

via r from (A.1). Then, we get the average probability to be safe after this waiting time ⌧? from
(A.1) to get

ŝ?t = E✓t [P (st = 1|xt�⌧ :t = 1, ✓t)] .

Note that while this policy is technically is deterministic for any given complete trial history xt,
the variance in waiting time ⌧ visible in Figure 2 resulted from the within-trial fluctuations in the
cues that precede the string of consecutive goes xt�⌧ :t = 1.

The state and context estimators of the Bayesian agent were computed as averages with respect to
the updated joint distribution from (5).

Handling post-action task structure. Whenever the Bayesian agent acted, we reflect this in-
tervention to the world in the probabilistic estimate, which is inherent to the task design in Ap-
pendix A.3. Upon action, we transition the agent to a new auxiliary state s = 2 that reflects the ITI.
This state had a variable duration in the mouse task, which we account for by a simple model of
leaving probability

P (s|s0 = 2, ⌧a:) =

8
<

:

0, if s = 1
f(⌧a:), if s = 0
1� f(⌧a:), if s = 2

,

where ⌧a: denotes the time elapsed after action and

f(⌧a:) =

8
><

>:

0, if ⌧a: < 5
1, if ⌧a: � 25

1
25�⌧a:

, otherwise.

The function f is in direct correspondence to the mouse task, where the ITI had uniform length
between 5 and 25 with uniform distribution.

16



Under review as a conference paper at ICLR 2024

Differing train- and test-time statistics. Finally, because the network was trained on a world of
a different timescale then it was tested on, we allow for parameters that reflect the inference of the
network of the changed timescale ✏ of the world. We modelled this by choosing the timescale of
the context transition matrix to be T ✓ 6=✓0 = ✏ = 0.004, but keep all other aspects of the world
fixed. Note that this change by choice does not reflect the true statistics of the world, which are
inaccessible to the agent because they weren’t seen during training. To visualize updates that do not
lead to a complete reset after a nogo, we augment the original task by a 10�3 probability to observe
a nogo even in the safe state. This allows for finite updates in Figure 4.

A.3.2 DATA COLLECTION AND ANALYSIS

In total, we collected three sets of data were collected to produce the results in the main text, con-
tained in three Jupyter notebooks that produce the figures.

For Figure 3, we generated a specific ✓ trajectory with each ✓ lasting, on average, 200 steps. To
average over many repetitions of a specific ✓ trajectory, we fixed the realization of the ✓t trajectory
and averaged many realizations of cue trajectories xt. We generated this function by creating sam-
pling the durations d✓ of each context according to an exponential distribution d✓ ⇠ exp(✏), with
a rate parameter ✏ = �

100 much slower than the timescale of st. For each of these durations, we
sampled a single ✓ from a range of 50 equidistant values between 0.1 and 0.9 (without repetition).
The resulting trajectory was repeated until 200,000 trials of behavior were completed.

For Figure 2, we generated 5000 blocks of 50 trials. At the onset of each block ✓ was sampled from
a list of 6 equidistant values between 0.1 and 0.9 (allowing for repetition).

For Figures 4a and 4b we generated 5000 blocks of 50 trials. At the onset of each block ✓ was
sampled from a list of 100 equidistant values between 0.1 and 0.9 (allowing for repetition). With
2% probability, we planted a special trial of x0:5 = (0, 1, 1, 1, 1, 0) into an unsafe period in order to
systematically visualize and average the effect of a nogo after consecutive gos. Figures 4a and 4b
were produced by visualizing this planted-trial data prior to action time to avoid interference with
data that originates from the post-action ITI.

All analysis presented in the main text was performed on the same trained network parameters. The
behavioral data collected from the networks included whether reward was obtained in a trial, the first
action time relative to trial onset, and the waiting time. This formed the basis for further analysis.
Trial waiting time was calculated as the time elapsed from the last nogo before the first action. If no
nogos occurred prior to action, waiting time was calculated as the time from trial onset. In order to
validate this calculation all trials in the testing phase, all trials ended with a nogo. Empirical reward
rates were computed as the average reward per trial divided by the average action time per trial plus
the expected ITI duration.

The stimulus-specific vector fields of Figure 4c were computed using numpy.diff with
prepend=0, and the preceding step data was used as the starting location. As a result, the vector
fields shown reveal only the effect of the stimulus in the time step in which they were a direct input.
Trial data after action was removed from this analysis to avoid the ITI state from confounding. To
elucidate the response at each location of the state space, we binned and averaged the data at each
presented pair of (ŝ, ✓̂).

State estimates and behavior comparisons had different requirements and were performed on dif-
ferent trials. For comparing the latent variable estimates, we showed the Bayesian agent the exact
inputs seen by the network. This allowed for the precise time-step averaging in Figure 4. In this
analysis the Bayesian agent experienced action when the network acted enabled us to filter out ex-
perience prior to action.

For comparing behavioral policies, identical inputs were impossible due to the effect of behavior on
the state. As a result the Bayesian agent experienced new trials generated from the same ✓ statistics
as the network. This allowed for the trial average behavioral analyses in Figures 3 and2.

For both network and Bayesian agent, the state estimate ŝt was computed via � log(1�P (st|x  t)
for numerical stability. For the Bayesian agent, P (st|xt) was clipped to the interval [10�8, 1 �
10�8].
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A.3.3 REGRESSION

We asked whether the estimates of state and context decoded from network activity would resemble
the dynamics of the Bayesian estimates. To address this question it was important not to regress
directly on the Bayesian estimates. Instead regression was performed on the ground truth state and
context.

Regression was performed on all activity in the Actor LSTM, consisting of an Input Gate, Output
Gate, Cell Gate, Forget Gate, Short Term Memory Stream and Long Term Memory Stream. Cross-
validation was performed by reserving half of the testing episodes for training the decoders, while
analysis was performed on the other half of the data that was not regressed on. Additionally, catch
trials in which specific stimuli were planted were not seen by the decoder. To train the state decoder
we used scikit-learn’s LogisticRegression and to train the context decoder we used scikit-learn’s
LinearRegression. No hyper-parameter tuning was performed on the regressors.

Correlations presented in Figures 2 and 5 were Pearson correlations.

A.4 ANIMAL TRAINING

11 water-deprived C57BL/6 male head-fixed mice were trained in a novel auditory change detection
task. Licking in the unsafe state was considered premature, leading to an omission of the reward and
a 7 second ‘time-out’ penalty. In each session there were 2-3 different ✓ values introduced in blocks
of 30-50 trials. Sessions were terminated when the mice were satiated and stopped licking. We found
that the behavior of the mice was consistent throughout the session. We consider for analysis only
the first 300 trials in each session. Performance was monitored, and delivery of sounds and water
reinforcement were controlled using computer data acquisition hardware (National Instruments) and
custom software written in Matlab (Mathworks). The mice licking was tracked on-line using Bonsai,
a visual programming framework.

All experimental procedures were conducted in accordance with our university’s animal care and
use committee.
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