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1 LINK TO VIEW CARICATURES IN VIDEO FORM

The effect of our caricatures is best experienced in video form. We provide a compilation of exam-
ples in the supplementary mp4 file caricature applied on fake vids.mp4. In the clip, we show the
impact on the Caricature generation process on deepfakes. The artifacts are amplified and the video
is generally distorted. We additionally provide an anonymized web gallery, gallery.html, that allows
for easy visualization of several additional examples. Once the gallery.html file is extracted from the
provided zip, along with its accompanying videos, double click on the html file to view it on your
browser.

2 VIDEO SELECTION FOR HUMAN ARTIFACT ANNOTATIONS

2.1 SELECTING CHALLENGING DEEPFAKES ACCORDING TO HUMANS.

Selecting target videos for our human artifact annotations poses a challenge: we would like videos to
be hard to detect as fakes by humans, to ensure that our artifacts are a) non-trivial, and b) capture the
subtleties of well-functioning face alteration techniques. To facilitate this selection, we formulated
a crowd sourced experiment to find fake videos that are relatively difficult to detect as fake, without
scrutiny.

We randomly selected 1000 video pairs (1000 real, 1000 fake) from the Deepfake Detection Chal-
lenge Dataset Dolhansky et al. (2019) and used FaceNet Schroff et al. (2015) to crop the face regions,
resulting in videos of 360×360 pixels. These 1000 were randomly divided into sets of 100, and each
set received 10 responses. Participants were instructed to maintain their fixation at a center cross
while a pair of videos were presented, one on the left and one on the right (Figure 1). One of those
videos was fake, while the other one was real. Participants were asked to select which video was
more likely to be fake by pressing a left or right keyboard key. At the start of the experiment, people
had the possibility to adjust the distance between the videos (left and right videos were always at the
same distance from the center). To help with the adjustment, the following instructions were given
“The videos should not be too close to disturb you from fixating at the center, and not too far away
to notably reduce your ability to distinguish them. Find the distance that feels more comfortable
to you.” After every 10 videos shown to users, users took a quick break and then had 3 seconds to
refocus their attention on the fixation cross before examining the next set of videos. Participants
were asked to report whenever their gaze shifted towards either side of the videos, in which case the
trial was discarded.

We computed video difficulty by averaging the responses over videos. Based on those responses,
we selected 500 fake videos that were closest to having a 50% recognition rate, which indicated that
human detection performance was close to chance. Those videos were considered ”hard to detect”.

2.2 SELECTING CHALLENGING FAKES ACCORDING TO MODELS.

We would additionally like to represent the distribution of hard fakes for models, and collect human
artifact maps on these fakes to ensure our distribution of maps covers the space of challenging
artifacts. For this, we selected 500 fake videos from our DFDCp training split that minimized the
”fake” classification confidence (output of the softmax) of an Xception network trained on FF++,
while not being a duplicate of the 500 videos selected through our human experiment.
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Figure 1: Screenshot of the interface used to collect human detection difficulty. Humans were tasked
with indicating which of the two videos was fake without shifting their gaze from the cross.

3 VIDEO ARTIFACT ANNOTATIONS

3.1 METHODS

Videos were annotated in an online task that used a paintbrush interface. Participants were instructed
to paint over the regions that were most informative about whether a video was fake. Videos were
paused during paining, and the interface contained a separate visualization of where the participant
has painted, so they could keep track of their annotations.

3.2 QUALITATIVE RESULTS

In total we collected over 11K annotations for 1000 videos. On average, each video had annotations
from 22.6 participants, resulting in 4.1K sample points per video. For each video clip, we aggregated
all annotation data and generated one 3D attention map: An anisotropic Gaussian kernel of size
(c · s, c · s, 6) in x,y and time dimensions was first applied. c is set to a constant 20px and s
corresponds to the brush size. We normalize the attention map of each time frame to sum to one.

Humans tend to annotate areas of the face that are near the eyes or mouth, which are more salient
facial features. Our model picks up on these features as well as other areas that are indicative of
doctoring. For example, there is attention to inflection regions of the face, such as the jawline or
near the hairline. Humans also gravitate towards inconsistencies around the seams generated by
the face swapping pipeline, as well as flickering artifacts generated by tracking errors during the
deepfake process.

4 MODEL LOSS

We utilize a dual loss to train our prediction and caricature generation network. The fake / real
output of our classification module is supervised with a typical binary cross-entropy loss LBCE :

LBCE = − 1

N

N∑
i=1

yi · log (ȳi) + (1− yi) · log (1− ȳi)

Where N is the number of elements in our dataset.

2



Under review as a conference paper at ICLR 2024

Additionally, we impose another loss on the system: a correlation loss Lhuman ensures that the
output of the artifact attention module reproduces the ground truth human maps. This loss is com-
posed of a KL-divergence component, a Pearson Correlation Coefficient component, and an L1 loss
component, all weighted by specific factors determined experimentally. The loss takes the following
form:

Lhuman = αLKL + βLCC + γL1

Let p and q be the predict and ground truth maps respectively, M the total number of pixels in the
map, and ϵ = 1e− 7 to avoid numerical issues. We have:

LKL (p, q) =
∑
i

qi log

(
ϵ+

qi
ϵ+ pi

)

LCC (p, q) =
σ (p, q)

σ(p) · σ (q)

L1(p, q) =
1

M

∑
i

|pi − qi|

These losses are computed element-by-element and averaged over a minibatch during training. We
perform a simple grid search to determine adequate loss parameters and converge to the following
values: α = 1, β = −0.5, γ = 1. Note that β is negative to ensure the correlation coefficient is
maximized.

The total loss L of our model is L = LBCE + Lhuman.

5 DETAILS OF BENCHMARKS AND BASELINES FOR MODEL EVALUATION

5.1 DATASETS

We evaluated models on four benchmarks:
FaceForensics++ (FF++) Rossler et al. (2019), which contains more than 1.8M images generated
from 5000 YouTube videos. It features four different facial manipulation methods, which are Deep-
fake D (2020), Face2Face Thies et al. (2016), FaceSwap Kowalski (2020) and NeuralTextures Thies
et al. (2019), and covers a large variation in video resolution ranging from 1080p to 480p. We use
8151 images for training, 280 images for validation, and 280 for testing. To ensure fair comparisons
with Haliassos et al. (2021) and others, we use the first 270 frames of each training video and the
first 110 frames for each validation video.

The Deepfake Detection Challenge Dataset (DFDCp) Dolhansky et al. (2019). We use the preview
version of this dataset, which contains 3754 fakes and 1460 real videos. Two facial modification
methods were used to generate the fake videos, however, no specific labels were given regarding the
generation method. In this work, we report performance on the publicly available validation set of
400 labeled videos.

Celeb-DF v2 Li et al. (2019c) dataset provides 5639 synthesized fake videos of celebrities generated
from 590 real videos. Based on a tandem auto-encoder architecture, a video synthesis method that
puts special emphasis on reducing visual artifacts was used to generate high quality fake videos. In
our experiment, we split the dataset into a training set of 6011 videos, and a validation set of 518
videos.

DeeperForensics (DFo) Li et al. (2019c), which contains 10000 fake videos obtained by taking 1000
real videos from FF++, and swapping in faces of 100 new paid actors.
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FaceShifter (FShifter) Li et al. (2019a), which also consists of 10000 fake videos generated by
doctoring the real videos from FF++.

Video Standardization Videos from the different datasets under study were preprocessed to bring
them into a standard configuration. All datasets were downloaded at full resolution, except Face-
Forensics++, which was downloaded in the provided c23 compressed format to avoid large storage
costs. We performed multi-person face extraction on all videos using a pretrained PyTorch imple-
mentation of FaceNetSchroff et al. (2015), with a minimum face size of 50 pixels and a face margin
size of 100 pixels. For frames without a detected face, bounding box coordinates were produced via
linear interpolation of the next available neighboring bounding boxes. To avoid abrupt motion arti-
facts (e.g. jittering) from face extraction, the 4 corner coordinates of the detected bounding boxes
were temporally smoothed using hanning smoothing with a window size equal to 20% the video
length. These face frames were resized to 360× 360 pixels and saved as an MP4 file.

5.2 BASELINE MODELS

Clip-based ResNet: Building on features learned from ImageNet, the inflation of pretrained 2D
kernels into 3D has shown significant improvement on video-based tasks Carreira & Zisserman
(2017); Hara et al. (2018); Tran et al. (2018). As a baseline of 3D CNN, We use a 3D ResNet model
where the 3D kernels are inflated from ResNet18 pretrained on the Kinetics dataset Carreira et al.
(2019).

XceptionNet, which was trained on the FaceForensics++ dataset.

Face X-ray, which attends to the seams in face-swapping to make its predictions. We use existing
performance values from Haliassos et al. (2021) for the FF++ trained results, and evaluate an HRNet-
W48 trained on synthetic blended images in conjunction with FF++ videos for our DFDCp results.

The CNN-GRU from Sabir et al., where we train a DenseNet-161 followed by a GRU on FF++ to
evaluate on DFDCp, and report existing performance values for FF++.

The Multi-task model from Nguyen et al. (2019). We report existing numbers from Haliassos et al.
(2021) and retrain using the publicly available implementation.

DSP-FWA, a model that tries to detect face warping artifacts. We evaluate the publicly available
pretrained model for FF++, and train a ResNet50 with the pyramidal setup introduced in Li & Lyu
(2018) for DFDCp.

The Two-branch model from Masi et al. (2020). We report existing numbers for CelebDFv2 evalu-
ation, and retrain on the rest.

The Multi-attention model from Zhao et al. (2021). We report the values from the existing paper,
and retrain following the setup in the paper on FF++ for DFDCp results.

The Lip Forensics approach from Haliassos et al. (2021). We use their publicly available values for
our main tables.
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6 USER STUDY: EXTENDED METHODS

6.1 STUDY 1: HOW DO CARICATURES COMPARE TO TEXT-BASED INDICATORS

Stimuli. Stimuli consisted of 50 real and 50 fake videos selected from DFDC. The 50 fake videos
were high-quality deepfakes, which were difficult for human participants to detect. These were
selected by running a separate pilot deepfake detection task on a larger subset of the DFDC, and
selecting 50 videos with detection rates between 30% and 10%, to have a range of difficulty. We
focused on difficult deepfakes because this provides the best test-case of how convincing a visual
indicator is; users would not need to rely on a visual indicator if they can see the artifacts for
themselves.

Behavioral Task. The behavioral task was a simple 2-alternative forced choice task. Users were
shown one video at a time, and were asked to assess whether the video was real or fake. There
were three condition, presented in a between-subjects manner. In the unaided detection condition,
real and fake videos were presented as-is, with no further modifications. In the text-based indicator
condition, a badge was added to the top-left corner of all fake videos which said ”video modified by
AI” in bold white letters on a semi-opaque bright turquoise background. In the caricature condition,
the Deepfake Caricature transformation was applied to all fake videos prior to presentation.

Participants. Participants consisted of 90 workers on Prolific.com. Participation was restricted to
individuals over the age of eighteen, located in the US, with approval ratings over 90%. Participants
were recruited and compensated according to procedure approved by the [University’s] Committee
on the Use of Humans as Experimental Subjects. Participants were paid according to an hourly rate
of $11.25 per hour.

Analysis. Hit rates were calculated for each subject, and averaged across subjects for each condition.
Hit rates were compared across conditions using planned t-tests.

6.2 STUDY 2: WHAT RANGE OF CONDITIONS ARE CARICATURES EFFECTIVE IN

Stimuli. Stimuli consisted of 400 videos selected from DFDCp Dolhansky et al. (2019). Half of
the videos contained real, unaltered faces, while the other half contained deepfake faces. Videos
were randomly selected, then deepfakes with obvious artifacts were discarded. All videos were
subjected to the standardization procedure described above, and were presented at a resolution of
300x300 pixels. These 200 fake videos made up the stimuli for the ”standard deepfake” condition.
These videos were then passed through CariNet to receive modulation from the Caricature Creation
Module, yielding stimuli for the “Caricature” condition.

Behavioral Task. Participants performed a two-alternative forced choice detection task. They were
shown one video at a time and were asked to indicate if the video was real or fake by using the
mouse to click on buttons labeled “Real” and “Fake”. Prior to the tasks, participants were shown
instructions which included 3 example deepfakes, to inform them about what a fake video looks
like.

Each task session contained 100 videos, divided into 5 blocks of 20 videos with breaks in between.
Videos could be presented at 6 different presentation durations: 300ms, 500ms, 1000ms, 3000ms
and 5000ms. Each trial started with a 3 second countdown. In addition, each block contained
one compliance check, and one engagement probe. Compliance checks consisted of real or fake
videos (not included in the experimental set) with the text “THIS IS AN ATTENTION CHECK,
PLEASE CLICK REAL“ written across the video in light grey font. These trials were included
to provide an objective basis by which to exclude low-performing participants (see Analysis section
below). Engagement probes consisted of deepfakes (not included in the experimental set) containing
extremely obvious artifacts, such as large patches of noise covering the face. These trials were
included to provide an on-line measure of participants attentiveness. We reasoned that while highly-
engaged participants would succeed on all of these trials, medium to low-engagement participants
would miss some proportion of them.

Trials were divided into experimental sessions (or “HITs”) of 100 trials. Trials were assigned to
HITs pseudo randomly, with the exception that no fake or caricature could be shown twice in the
same HIT. Data were collected for 19 HITs of randomly selected videos, leading to and average of
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72 videos per presentation time for both standard fakes and caricatures. We collected 10 participants
per each HIT.

Participants. Participants consisted of 170 workers on Amazon Mechanical Turk. Participation was
restricted to individuals over the age of eighteen, located in the US, with approval ratings over 99%.
Participants were recruited and compensated according to procedure approved by the [University’s]
Committee on the Use of Humans as Experimental Subjects. Participants were paid according to an
hourly rate of $11.25 per hour.

Analysis. We collected 10 judgments per video per condition. This number was selected after
a power analysis (performed on a pilot set of 100 HITs), which suggested that 6 responses was
sufficient to obtain stable estimates of the mean detectability of a given video.

Our primary analysis was to examine the difference in correct detection rates between the standard
deepfake condition and the caricature condition, both pooling over presentation times and for each
presentation time individually. As such, we pre-registered an ANOVA analysis to test for a main
effect of condition on accuracy, with the hypothesis that correct detection would be higher in the
caricature than standard deepfake condition. We additionally hypothesized that overall detection
(pooling across conditions) would be higher for longer presentation times (main effect of presenta-
tion time), and that the difference between standard and caricature deepfakes would increase with
higher presentation time (significant interaction), although these analyses were orthogonal to the
main question of this experiment. We also planned further comparisons between the standard and
caricature conditions for each time point individually. We pre-registered individual unpaired t-tests
at a conservative alpha level of p = 0.0083 (Bonferroni correction for performing 6 individual t-tests,
one per time point). To ensure quality data for this analysis, we excluded any sessions where partic-
ipants used only one key, or failed three or more compliance checks. These trimming and analysis
procedures were developed in an initial pilot dataset of 100 HITs, then applied in the experimental
dataset (i.e. they were pre-registered). We elected to use the conservative Bonferroni correction
even though these were a-priori analyses because this experiment had high enough power to detect
effects even at conservative thresholds, and applying this threshold would reduce the chance of Type
I error.

We also performed a second analysis to examine the effects of condition across levels of participant
attentiveness. We divided HITs into participant engagement bins based on the number of engage-
ment probes that were successfully detected throughout the HIT. As the dependent measure, we
subtracted the correct detection rate in the standard condition from the caricature condition, to get
a measure of the relative benefit of the caricature condition, and tested whether this difference was
greater than 0 using a one-sided one-sample t-test at an alpha level of p = 0.05. We used a traditional
rather than conservative p values because some conditions were likely to contain a low number of
trials, and thus have lower power. Statistics were only carried out for conditions containing 10 or
more datapoints. This analysis used all experimental sessions.

6.3 COMPLETE STATISTICAL REPORTING

Analysis 1: ANOVA testing for an effect of condition

SS df F p
Condition 2.17 4.0 16.46 3.13-13
Presentation time 2.43 5.0 14.75 3.50e-14
Interaction 6.15 20.0 9.32 3.98e-20
Residual 54.79 1661.0 - -

Analysis 2: planned comparisons of detectability difference between standard fake and caricatures
for each timepoint.

300ms 500ms 1000ms 3000ms 5000ms
df 155 160 159 129 172
t 4.58 7.97 9.11 11.23 12.86
p 9.2e-6 2.9e-13 3.1e-17 7.7e-21 5.9e-27
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0 0.2 0.4 0.6 0.8 1
df - 9 18 20 58 76
t - 2.63 1.73 6.27 9.82 15.64
p - 0.015 0.051 2.5e-06 3.6e-14 1.3e-25

Analysis 3: Significance of the difference between standard fake and caricatures for each level of
participant engagement.

7 RESULTS INCLUDING THE DFDCP-TRAINED ARTIFACT ATTENTION
MODULE

In the paper, we reported the results from a model with a FF++-trained Artifact Attention Module to
ensure fair comparisons with prior work. Our DFDCp-trained model had similar performance, but
did not perform with the same consistency as the FF++ trained model. We report the values here for
completeness.

Model CelebDFv2 DFDCp FShifter DFo Overall
Xception Rossler et al. (2019) 73.7 65.7 72.0 84.5 75.3
Face X-ray Li et al. (2019b) 79.5 62.1 92.8 86.8 81.2
CNN-GRU Sabir et al. 69.8 63.7 80.8 74.1 73.4
Multi-task Nguyen et al. (2019) 75.7 63.9 66.0 77.7 71.9
DSP-FWA Li & Lyu (2018) 69.5 64.5 65.5 50.2 63.1
Two-branch Masi et al. (2020) 73.4 64.0 - - -
Multi-attention Zhao et al. (2021) 67.4 67.1 - - -
LipForensics Zhao et al. (2021) 82.4 70.0 97.1 97.6 86.8
FTCN Zheng et al. (2021) 86.9 74.0 98.8 98.8 -
DCL Sun et al. (2022) 82.3 76.7 92.4 97.1 -
RF Haliassos et al. (2022) 86.9 75.9 99.7 99.3 -
S-B Shiohara & Yamasaki (2022) 93.2 72.4 - - -
X+PCC Hua et al. (2023) 54.9 62.7 - - -
CariNet DFDCp (ours) 87.6 77.1 98.9 99.3 -

Table 1: Detection performance results on unseen datasets.

Method Train on remaining
DF FS F2F NT Avg

Xception Rossler et al. (2019) 93.9 51.2 86.8 79.7 77.9
CNN-GRU Sabir et al. 97.6 47.6 85.8 86.6 79.4
Face X-ray Li et al. (2019b) 99.5 93.2 94.5 92.5 94.9
LipForensics Haliassos et al. (2021) 99.7 90.1 99.7 99.1 99.5
CariNet DFDCp (ours) 99.9 99.9 99.8 99.4 99.8

Table 2: Generalization to unseen manipulations.
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Method Clean Cont. Noise Blur Pixel
Xception 99.8 98.6 53.8 60.2 74.2
CNN-GRU 99.9 98.8 47.9 71.5 86.5
Face X-ray 99.8 88.5 49.8 63.8 88.6
LipForensics 99.9 99.6 73.8 96.1 95.6
CariNet DFDCp (ours) 99.9 99.9 78.3 93.3 97.5

Table 3: Generalization performance over unseen perturbations.
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