
A Appendix

A.1 Physics Simulation

Robots are simulated using PhysX [18] reduced coordinate articulations. Any individual rigid bodies
may be simulated using either maximal coordinate rigid bodies or single-link reduced coordinate
articulations. Articulations with a single link and rigid bodies are equivalent and interchangeable.We
use the Temporal Gauss Seidel (TGS) [14] solver to compute the future states of objects in our
physics simulation. The TGS solver uses the observation that sub-stepping a simulation with a single
gauss-seidel solver iteration yields significantly faster convergence than running larger steps with
more solver iterations. It folds this process efficiently into the iteration process, calculating the
velocity at the end of each iteration and accumulating these velocities (scaled by dt/N , where N
is the number of iterations) into a per-body accumulated delta buffer. This delta buffer is projected
onto the constraint Jacobians and added to the bias terms in the constraints. This approach adds only
a few additional operations to a more traditional Gauss-Seidel solver, producing almost identical
performance cost per-iteration. However, it achieves the same effect on convergence as having
sub-stepped the simulation without the computational expense. With positional joint constraints, an
additional rotational term is calculated for joint anchors to improve handling of non-linear motion to
avoid linearization artifacts. This term is not necessary (and in fact undesirable) to add to contacts.

A.1.1 Tendons

We simulate tendons as part of the Shadow Hand environment and describe the details of this
simulation here.

A.1.2 Fixed Tendons

Fixed tendons are an abstract mechanism that couple degrees of freedom (DOF) of an articulation.
A fixed tendon is composed of a tree of tendon joints, where each joint is associated with exactly
one axis of a link’s incoming articulation joint. In the following, when we refer to a tendon joint’s
position, we mean the position of the axis of this associated articulation joint.

In addition, each tendon joint has a coefficient that determines the contribution of the (rotational or
translational) joint position to the length of the tendon, which is evaluated recursively by traversing
the tree: The length at a given tendon joint is the length at its parent tendon joint plus its joint position
scaled by the coefficient.

Given the tendon length at each joint, the tendon applies a spring force (or torque) to the joint’s child
link that is proportional to the deviation of the tendon length from a desired (tendon-wide) rest length.
An equal and opposing force is applied to the parent link of the root tendon joint; conceptually, each
tendon joint is a virtual joint drive between the root parent link and the tendon joint’s child link. In
addition to the spring force, the tendon-joint applies a damping force that is proportional to and acting
against the velocity of the virtual root-to-child link joint.

Analogous to the length dynamics, the tendon supports length limits that apply an additional force or
torque that is proportional to the deviation from set limits.

A.2 Observations & Rewards

In this section we describe the reward and observations for each environment in detail.

A.2.1 Ant and Humanoid environments

Both the Ant and Humanoid environments use the same reward formulation, namely:

R = Rprogress + Ralive ⇥ (torso_height � termination_height) + Rupright

+ Rheading + Re↵ort + Ract + Rdof

+ Rdeath ⇥ (torso_height  termination_height)

where

13

Rprogress = potential � prev_potential
Rupright = dot(torso_up_vector, up_vector) > 0.93

Rheading = heading_weight ⇤
⇢
1.0, if norm_angle_to_target � 0.8
norm_angle_to_target

0.8 , otherwise

Ract = �
X

||actions||2

Re↵ort =
NX

i=1

actionsi ⇥ normalized_motor_strengthi ⇥ dof_velocityi

potential = � ||ptarget � ptorso||2
dt

Ant Reward described in Section A.2.1. Observations detailed in Table 2.

Observation space Degrees of freedom
Torso vertical position 1

Velocity positional 3
angular 3

Yaw, roll, angle to target 3
Up and heading vector proj. 2

DOF measurements position 8
velocity 8

Sensor forces, torques 24
Actions 8

Total number of observations 60
Table 2: Observations used for Ant training.

Observation space Degrees of freedom
Torso vertical position 1

Velocity positional 3
angular 3

Yaw, roll, angle to target 3
Up and heading vector proj. 2

DOF measurements position 21
velocity 21
force 21

Sensor forces/torques 12
Actions 21

Total number of observations 108
Table 3: Observations used for Humanoid training.

Humanoid Reward described in Section A.2.1. Observations detailed in Table 3.

A.2.2 Locomotion environments

Ingenuity Observations detailed in Table 4. The reward function is as follows:

R = Rpos ⇥ (1 + Rupright + Rspin)

reaching cost
Rpos =

1

1 + ||dist_to_target||2

spinning cost
Rspin =

1

1 + ||spin_rate||2

upright cost
Rupright =

1

1 + local_up_vector2z

ANYmal Locomotion For the included flat-terrain environment, observations are detailed in
Table 5 and the reward function is as follows:

R = c1Rvel,xy + c2Rvel,yaw + c3Rtorque

Reward terms are defined in Table 7 and symbols in Table 6.

14

Observation space Degrees of freedom
Offset from target 3
Rotation 4

Velocity positional 3
angular 3

Total number of observations 13
Table 4: Observations used for ingenuity training.

Observation space Degrees of freedom

Base velocity positional 3
angular 3

Body-relative gravity 3
Target X, Y, yaw velocities 3

DOF states position 12
velocity 12

Actions 12
Total number of observations 48

Table 5: Observations used for ANYmal training.

For rough terrain locomotion with sim-to-real, we extend the observations with 140 terrain heights
around the robot’s base and use the more complex reward function:

R =c1Rvel,xy + c2Rvel,yaw + c3Rvel,z + c4Rvel,pitch/roll + c5Rjoint vel/acc+

c6Rtorque + c7Rrate + c8Rcollision + c9Rairtime

Joint positions qj

Joint velocities q̇j

Joint accelerations q̈j

Target joint positions q̈⇤
j

Joint torques ⌧ j

Base linear velocity vb

Base angular velocity !b

Commanded base linear velocity v⇤
b

Commanded base angular velocity !⇤
b

Number of collisions nc

Feet air time tair
Environment time step dt

Table 6: Definition of symbols.

definition weight
Linear velocity tracking Rvel,xy �(v⇤

b,xy � vb,xy) 1dt
Angular velocity tracking Rvel,yaw �(!⇤

b,z � !b,z) 0.5dt
Linear velocity penalty Rvel,z �v2

b,z 4dt
Angular velocity penalty Rvel,pitch/roll �||!b,xy||2 0.05dt

Joint motion Rjoint vel/acc �||q̈j ||2 � ||q̇j ||2 0.001dt
Joint torques Rtorque �||⌧ j ||2 0.00002dt

Action rate Rrate �||q̇⇤
j ||2 0.25dt

Collisions Rcoll. �ncollision 0.001dt
Feet air time Rairtime

P4
f=0(tair,f � 0.5) 2dt

Table 7: Definition of reward terms, with �(x) := exp(� ||x||2
0.25).

The z axis is aligned with gravity.

Adversarial Imitation Learning AMP learns an imitation objective using an adversarial discrimi-
nator D, trained to differentiate between motion from the dataset M and motions produced by the
policy ⇡,

arg min
D

�Es,s0⇠pM(s,s0) [logD(s, s0)] � Es,s0⇠p⇡(s,s0) [log (1 � D(s, s0))] ,

where pM(s, s0) denotes the likelihood of observing a state transition from s to s0 in the motion data,
and p⇡(s, s0) is likelihood of a state transition under the policy. The discriminator can then be used to
specify rewards rt for training a policy to imitate behaviors shown in the motion data

rt = �log (1 � D(st, st+1)) .

This objective, in effect encourages the policy to produce behaviors that fool the discriminator into
classifying them as behaviors from the reference motion data.

Observation space Degrees of freedom
Pelvis vertical height 1
Pelvis rotation 6

Pelvis Velocity positional 3
angular 3

DOF measurements position 52
velocity 28

Key point position 15
Total number of observations 108

Table 8: Observations used for AMP training with
a humanoid character. 3D rotations are represented
using a 6D tangent-normal encoding.

Observation space Degrees of freedom

Joint DOFs arm position 7 (Joint Torque only)
eef position 2

EEF pose 7
Cube A pose 7
Cube A to Cube B position 3
Total number of observations 19 / 26

Table 9: Franka Cube Stack observations. Note
that pose observations include the global 3-dim
cartesian position and 4-dim quaternion orienta-
tion, and the arm joint position observations are
only provided if using joint torque control.

15

Franka Cube Stack Observations are detailed in Table 9. The reward function used is as follows:

R = max (Rstack,Ralign + Rlift + Rreach)

where:

Rstack = wstack ⇥ ((heightcubeA > heightcubeB)&(cubeA_aligned_cubeB)&(gripper_away_from_cubeA)),
Ralign = walign ⇥ (1 � tanh(10 ⇥ cubeA_to_B_xy_dist)) ⇥ (cubeA_is_lifted),
Rlift = wlift ⇥ (cubeA_is_lifted),

Rreach = wreach ⇥
✓
1 � tanh

�10
3

⇥ (dist(cubeA, gripper) + dist(cubeA, lfinger) + dist(cubeA, rfinger))
�◆

We set wstack = 16.0, walign = 2.0, wlift = 1.5, and wreach = 0.1

A.2.3 Robotic Hands

Shadow Hand The reward function for Shadow Hand is as follows:

R = wdistRdist + Rrot + wactRact

distance cost
Rdist = ||pobj � ptarget||2

orientation cost
rot_dist = 2 ⇥ arcsin(max(1, ||qobj ⇤ qtarget||2))

Rrot =
1

|rot_dist| + 0.1

action smoothness cost
Ract =

X
||actions||2

where wdist = �10 and wact = �2e � 4.
@torch.jit.script

def compute_hand_reward(

object_pos , object_rot , target_pos , target_rot , actions ,

dist_reward_scale: float , rot_reward_scale: float , rot_eps: float ,

action_penalty_scale: float , success_tolerance: float , reach_goal_bonus: float ,

fall_dist: float ,fall_penalty: float):

#dist_reward_scale: -10.0

#rot_reward_scale: 1.0

#rot_eps: 0.1

#action_penalty_scale: -0.0002

#reach_goal_bonus: 250

#fall_distance: 0.24

#fall_penalty: 0.0

Distance from the hand to the object

goal_dist = torch.norm(object_pos - target_pos , p=2, dim=-1)

Orientation alignment for the cube in hand and goal cube

quat_diff = quat_mul(object_rot , quat_conjugate(target_rot))

rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1),

max =1.0))

Orientation reward

rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps)

action smoothness reward

action_penalty = torch.sum(actions ** 2, dim=-1)

16

Total reward is: position distance + orientation alignment + action regularization

+ success bonus + fall penalty

reward = goal_dist * dist_reward_scale + rot_rew * rot_reward_scale

+ action_penalty * action_penalty_scale

Find out which envs hit the goal and update successes count

goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance ,

torch.ones_like(reset_goal_buf), reset_goal_buf)

Success bonus: orientation is inside the �success_tolerance � of goal orientation

reward = torch.where(goal_resets == 1, reward + reach_goal_bonus , reward)

Fall penalty: distance to the goal is larger than a threashold

reward = torch.where(goal_dist >= fall_dist , reward + fall_penalty , reward)

return reward

Reward function for cube orientation for Shadow Hand experiments.

There are two different variants of observations used. In the Shadow Hand Standard environment,
the observations are as shown in Table 10. In The ShadowHand OpenAI environment, in order to
compare to compare to [21], we use observations as shown in Table 11. Further details of the Shadow
Hand environments are available in Section A.4

Observation space Degrees of freedom

Finger joints
position 24
velocity 24
force 24

Cube pose

translation 3
quaternion 4
linear velocity 3
angular velocity 3

Cube rotation relative to goal quaternion 4

Goal pose translation 3
quaternion 4

5 ⇥ Finger tips

position 3
quaternion 4
linear velocity 3
angular velocity 3
force 3
torque 3

Previous action output from policy 20
Total number of observations 211

Table 10: Observations for the Shadow Hand Stan-
dard environment.

Observation space Degrees of freedom
5 ⇥ Finger joints position 3
Cube pose translation 3
Cube rotation relative to goal quaternion 4

Previous action output from policy 20
Total number of observations 42

Table 11: Observations for the Shadow Hand Ope-
nAI environment. The observations of the critic
are the same as for Shadow Hand Standard (see
Table 10).

Observation space Degrees of freedom

Finger joints position 9
velocity 9

Cube pose translation 3
quaternion 4

Goal pose translation 3
quaternion 4

Previous action output from policy 9
Total number of observations 41

Table 12: Trifinger Actor Observations.

Observation space Degrees of freedom
Actor Observations (see Table 12) 41

Cube pose linear velocity 3
angular velocity 3

3 ⇥ Finger tips

position 3
quaternion 4
linear velocity 3
angular velocity 3
force 3
torque 3

Finger joints terque 9
Total number of observations 113

Table 13: Trifinger Critic Observations

Trifinger Our total reward is defined as:

R = wogRobject_goal + wfoRfingertip_object ⇥ (timesteps  5e7) + wfvRfingertip_velocity

reposing cost
Robject_goal = K(||tcurr � ttarget||2) +

1

3 ⇥ |rot_dist| + 0.01

fingertips interaction cost
Rfingertip_object =

X

i2fingertips

�t
i

17

fingertips smoothness cost

Rfingertip_velocity =
X

i2fingertips

||fingertip_speedi||2

�t
i denotes the change across the timestep of the fingertip distance to the centroid of the object and

was found to be helpful in [1]. Formally, �t
i = ||fti,t � tcurr,t||2 � ||fti,t�1 � tcurr,t�1||2, where tcurr,t

is position of the cube centroid and fti denotes the position of the i-th fingertip at time t.

rot_dist is the angluar difference between the current and target cube pose, rot_dist = 2 ⇥
arcsin(min(1.0, ||qdi↵ ||2)), qdi↵ = qcurrq⇤target. Following [10], a logistic kernel is used to convert
tracking error in euclidean space into a bounded reward function, with K(x) = (eax + b + e�ax)

�1,
where a is a scaling factor; we use a = 50. See [4] for a more thorough motivation and description of
these reward terms.

Allegro The reward formulation is identical to that used in Shadow Hand - see Section A.2.3. The
observations are also identical, save for the change in number of fingers.

A.3 Hyperparamters for Training PPO

Environment # Environments KL Threshold Mini-batch Size Horizon Length # PPO Epochs Hidden Units Training Steps
Ant 4096 8e-3 32768 16 4 256, 128, 64 32M

Humanoid 4096 8e-3 32768 32 5 400, 200, 100 327M
Ingenuity 4096 1.6 e-2 32768 16 8 256, 256, 128 32M
ANYmal 8192 1e-2 32768 16 5 256, 128, 64 65M

ANYmal Terrain 4096 1e-2 24576 24 10 512, 256, 128 150M
AMP 4096 2e-1 16384 32 8 1024, 512 39M

Franka 16384 1.6 e-2 131072 32 4 256, 128, 64 786M
SH Standard 16384 1.6 e-2 32768 8 5 512, 512, 256, 128 655M
SH OpenAI 16384 1.6 e-2 32768 8 5 400, 400, 200, 100 1310M

Table 14: Hyperparameters used for training in each environment. Allegro shares the parameters for Shadow
Hand OpenAI. The hidden units are ELU for every environment except AMP, where ReLU units are used.
Additionally, every environment uses an adaptive learning rate with a KL divergence target specified in the KL
Threshold column, except for AMP which uses a fixed learning rate of 2e-5 and fixed KL theshold of 2e-1.

A.4 Shadow Hand Details

As mentioned previously, we implemented two variants of the Shadow Hand environment. The
Standard variant uses privileged policy observations and no Domain Randomization, in order to
provide a quick training example to test Reinforcement Learning algorithms on. The OpenAI variant
uses asymmetric observations, such that it would be possible to transfer the policy to the real world,
mimicing the setup in [21].

A.4.1 Randomizations

Isaac Gym implements a high-level API that simplifies setting up physics domain randomization
parameters and schedule in yaml configuration files and is very extensible. Here we detail the
randomization parameters that we used.

Random forces on the object. Following [21] unmodeled dynamics is represented by applying
random forces on the object. The probability p that a random force is applied is sampled at the
beginning of the randomization episode from the loguniform distribution between 0.1% and 10%.
Then, at every timestep, with probability p we apply a random force from the 3-dimensional Gaussian
distribution with the standard deviation equal to 1 m/s2 times the mass of the object on each
coordinate and decay the force with the coefficient of 0.99 per 50ms.

Runtime physics randomizations. Physical parameters like friction, joint and tendon properties,
as well as correlated noise parameters are randomized after resets once a minimum of 720 steps have
passed and held fixed otherwise. Table 15 lists all physics parameters that are randomized.

18

Parameter Scaling factor range Additive term range

object dimensions uniform([0.95, 1.05])

object and robot link masses uniform([0.5, 1.5])

surface friction coefficients uniform([0.7, 1.3])

robot joint damping coefficients loguniform([0.3, 3.0])

actuator force gains (P term) loguniform([0.75, 1.5])

joint limits N (0, 0.15) rad

gravity vector (each coordinate) N (0, 0.4) m/s2

Table 15: Ranges of physics parameter randomizations.

Startup physics randomizations. Object dimensions, and object and robot link masses are ran-
domized once on simulation startup across all simulation environments.

A.4.2 OpenAI Observations

We conduct experiments with Shadow Hand OpenAI observations with a tighter success tolerance
of 0.1 radians and show the reward curves as well as the consecutive successes achieved with this
training in Figure 14 and 15.

(a) Reward (b) Consecutive Successes

Figure 14: Training curves for ShadowHand environments with OpenAI observations and Feed Forward policy
and value functions with a tighter success tolerance of 0.1 rad.

Feed Forward Networks We achieve 20 consecutive successful cube rotations after training in just
under 1 hour. This is similar to the performance2 achieved by OpenAI et al. [21] but with a cluster of
384 16-core CPUs and 8 V100 GPUs with training for 30 hours while we only need a single A100.

LSTMs Using sequence networks like LSTMs improve the performance and we find that we are
able to achieve 37 consecutive successful cube rotations after training in just under 6 hours. OpenAI
et al. [21] achieve similar performance in about 17 hours again on a cluster of 384 16-core CPUs and
8 V100 GPUs. We use a sequence length of 4 to train the LSTM. Various other parameters for this
set up are in Table 14.

We also note that training with a tolerance of 0.1 rad and testing with a tolerance of 0.4 rad, we are
able to even go up to 44 consecutive cube rotations.

2pp 13, Section 6.5 titled Sample Complexity & Scale

19

0 10000 20000
Time (sec)

0

2500

5000

7500

10000

R
ew

ar
d

Steps (millions)0 1054

(a) Reward

0 10000 20000
Time (sec)

0

10

20

30

40
C

on
se

cu
tiv

e
Su

cc
es

s

Steps (millions)0 1054

(b) Consecutive Successes

Figure 15: Training curves for ShadowHand environments with OpenAI observations and an LSTM based
policy and value function with a tighter success tolerance of 0.1 rad.

20

