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A Well known results1

2

A.1 Hoeffding’s Inequality3

Hoeffding’s inequality can tell us what the probability is that the average of m random independent4

(but not necessarily identically distributed) samples deviates more than ε from its expectation.5

Let Z(1), Z(2), · · · , Z(m) be bounded independent random variables and let Z̄ and µ be defined as:6

Z̄ ,
Z(1) + · · ·+ Z(m)

m
, (1)

µ , E[Z̄] =
E[Z(1) + · · ·+ Z(m)]

m
. (2)

Then Hoeffding’s inequality states:7

Lemma 1 (Hoeffding’s inequality [2]). If Z(1), Z(2), · · · , Z(m) are independent and 0 ≤ Z(i) ≤ 1
for i = 1, · · · ,m, then for 0 < ε < 1− µ

Pr(Z̄ − µ ≥ ε) ≤ e−2mε2

A.2 Union Bound8

Given that we have a set of events, the union bounds allows us to upper bound the probability that at9

least one of the events happens, even when these events are not independent.10

Lemma 2 (Union Bound [1]). For a countable set of events A1, A2, A3, · · · , we have11

Pr(∪iAi) ≤
∑
i

Pr(Ai). (3)

I.e., the probability that at least one of the events happens is at most the sum of the probabilities of12

the individual events.13

B Proofs14

15
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B.1 Proof of Lemma 316

Proof. The proof mostly follows the steps by Weissman et al. [4].17

To shorten notation we define PY , T̄Y (·|s̄, a) and PωX , T̄ωX (·|s̄, a).18

We will make use of the following result, shown in Levin and Peres [3] (proposition 4.2), that for any19

distribution Q on S̄20

||Q− PωX ||1 = 2 max
S̄⊆S̄

(Q(S̄)− PωX (S̄),

where S̄ is a subset of S̄ and PωX (S̄) =
∑
s̄′∈S̄ PωX (s̄′). Thus we have that21

||PY − PωX ||1 = 2 max
S̄⊆S̄

(PY (S̄)− PωX (S̄)). (4)

Using this we can write22

Pr(||PY − PωX ||1 ≥ ε) = Pr
[
2 max
S̄⊆S̄

[
PY (S̄)− PωX (S̄)

]
≥ ε
]

(5)

= Pr
[

max
S̄⊆S̄

[
PY (S̄)− PωX (S̄)

]
≥ ε

2

]
(6)

= Pr
[
∪S̄⊆S̄

[
PY (S̄)− PωX (S̄) ≥ ε

2

]]
(7)

≤
∑
S̄⊆S̄

Pr
[
PY (S̄)− PωX (S̄) ≥ ε

2

]
, (8)

where the last step follows from the union bound.23

Assuming ε > 0, we have for S̄ = S̄ and for S̄ = ∅ that Pr(PY (S̄)− PωX (S̄) ≥ ε
2 ) = 0.24

For every other subset S̄, we can define a random binary variable that is 1 when Y (i) ∈ S̄ and 025

otherwise. We have that PωX (S̄) acts as µ (2) from Lemma 1 and PY (S̄) as Z̄ (1). Thus applying26

Lemma 1 to this random variable we have:27

Pr(PY (S̄)− PωX (S̄) ≥ ε

2
) ≤ e−2m ε

2
2

= e−
1
2mε

2

. (9)

Then it follows that28

Pr(||PY − PωX ||1 ≥ ε) ≤
∑
S̄⊆S̄

Pr(PY (S̄)− PωX (S̄) ≥ ε

2
) (10)

≤
∑

S̄⊂S̄:S̄ 6=S̄,∅

Pr(PY (S̄)− PωX (S̄) ≥ ε

2
) (11)

≤ (2|S̄| − 2)e−
1
2mε

2

, (12)

where S̄ ⊂ S̄ : S̄ 6= S̄, ∅ denotes that the empty set ∅ and the full set S̄ are excluded.29

B.2 Simulator Setting, proof of Theorem 130

31

Before starting with the actual proof, we first shortly go over Algorithm 3 and give two lemmas that32

the proof uses.33

The agent will draw samples using the simulator as described in Algorithm 3. Since we assume that34

we can sample directly from the transition functions T (·|s, a), this algorithm just loops over all pairs35

(s̄, a) and samples m times1 from each transition function. More formally, for every pair (s̄, a) the36

algorithm selects one prototype state xs̄,a = s ∈ s̄. Then, it loops over every pair (s̄, a) and samples37

m transitions from T (·|xs̄,a, a). The set of collected experiences for each abstract state-action pair38

(s̄, a) is represented by Ȳs̄,a, as defined by (9).39

1The value of m in Algorithm 3 is chosen based on the results further along in this section.
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Algorithm 3 COLLECTSAMPLES with Simulator
Input: M,φ, δ, ε
κ = δ

|S̄||A|

m = d 2[ln(2|S̄|−2)−ln(κ)]
ε2 e

for all (s̄, a) ∈ S̄ ×A do
Ȳs̄,a = [ ]
xs̄,a = select a prototype state s ∈ s̄
for i = 1 : m do
s′ = Sample(T (·|xs̄,a, a))
Ȳs̄,a.append(φ(s′))

end for
end for
Return: all Ȳs̄,a

Given Ȳs̄,a, the learned model T̄Y (·|s̄, a) is defined according to (10) and T̄ωx is defined according40

to (8), with ωx defined according to (18). It follows from Lemma 1 that we can derive a number of41

samples that we require to guarantee that, for inputs κ and ε, Pr(||T̄Y (·|s̄, a)−T̄ωx(·|s̄, a)||1 ≥ ε) ≤ κ42

is true:43

Lemma 4. For inputs κ and ε (0 < κ < 1, 0 < ε < 2), we have that for m ≥ 2[ln(2|S̄|−2)−ln(κ)]
ε2 the44

following holds:45

Pr(||T̄Y (·|s̄, a)− T̄ωx(·|s̄, a)||1 ≥ ε) ≤ κ. (13)

Proof. To shorten notation we again use the definitions PY , T̄Y (·|s̄, a) and Pωx , T̄ωx(·|s̄, a). We46

have from Lemma 1 that47

Pr(||PY − Pωx ||1 ≥ ε) ≤ (2|S̄| − 2)e−
1
2mε

2

. (14)

We need to select m such that κ ≥ (2|S̄| − 2)e−
1
2mε

2

:48

κ ≥ (2|S̄| − 2)e−
1
2mε

2

(15)
κ

2|S̄| − 2
≥ e− 1

2mε
2

(16)

ln(κ)− ln(2|S̄| − 2) ≥ −mε
2

2
(17)

mε2

2
≥ ln(2|S̄| − 2)− ln(κ) (18)

m ≥ 2[ln(2|S̄| − 2)− ln(κ)]

ε2
(19)

Thus if m ≥ 2[ln(2|S̄|−2)−ln(κ)]
ε2 we have49

Pr(||PY − Pωx ||1 ≥ ε) ≤ κ.

Using the Union bound, we can give a lower bound on the probability that, for every (s̄, a), T̄Y (·|s̄, a)50

and T̄ωx(·|s̄, a) are ε close:51

Lemma 5. If52

∀(s̄,a)

[
Pr(||T̄Y (·|s̄, a)− T̄ωx(·|s̄, a)||1 ≥ ε)

]
≤ δ

|S̄||A|
(20)

then with probability at least 1− δ the following holds:53

max
(s̄,a)

[
||T̄Y (·|s̄, a)− T̄ωx(·|s̄, a)||1

]
≤ ε. (21)
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Proof. We define54

∆s̄,a , ||T̄Y (·|s̄, a)− T̄ωx(·|s̄, a)||1. (22)

Then Pr(max(s̄,a){∆s̄,a ≥ ε}) is the probability that for at least one abstract state-action pair55

∆s̄,a ≥ ε. From the union bound it follows that Pr(max(s̄,a){∆s̄,a ≥ ε}) ≤ δ:56

Pr(max
(s̄,a)
{∆s̄,a ≥ ε}) ≤

∑
s̄,a

Pr(∆s̄,a ≥ ε) (23)

≤
∑
s̄,a

δ

|S̄||A|
(24)

= δ. (25)

Since Pr(max(s̄,a){∆s̄,a ≤ ε}) = 1−Pr(max(s̄,a){∆s̄,a ≥ ε}) it follows that Pr(max(s̄,a){∆s̄,a ≤57

ε}) ≥ 1− δ. Thus the probability that (21) holds is at least 1− δ.58

Now we are ready to proof Theorem 1:59

Proof of Theorem 1. By Assumption 1, and the earlier assumption that |S| and |A| are finite, we60

have that for every abstract state-action pair we can obtain m samples, for any m > 0, in finite time.61

Given the inputs |S̄|, A, ε and δ, Algorithm 3 sets m = d 2[ln(2|S̄|−2)−ln(κ)]
ε2 e, where κ = δ

|S̄||A| . Then62

for every (s̄, a) a prototype state xs̄,a = s ∈ s̄ is selected. We use (18) to define ωx and (8) to define63

T̄ωx .64

For all (s̄, a) Algorithm 3 obtains a sequence Ȳs̄,a by sampling from the transition function from the65

prototype state xs̄,a and Algorithm 1 constructs the empirical transition functions as in (10).66

Given our choice of m it follows from Lemma 4, with inputs κ = δ
|S̄||A| and ε, it holds that67

∀(s̄,a) Pr(||T̄Y (·|s̄, a)− T̄ωx(·|s̄, a)||1 ≥ ε) ≤
δ

|S̄||A|
. (26)

Then by Lemma 5 we have that, with probability at least 1− δ, (19) holds.68
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