An Analysis of Abstracted Model-Based Reinforcement Learning, Appendix

Anonymous Author(s) Affiliation Address email

1 A Well known results

2

3 A.1 Hoeffding's Inequality

⁴ Hoeffding's inequality can tell us what the probability is that the average of m random independent ⁵ (but not necessarily identically distributed) samples deviates more than ϵ from its expectation.

6 Let $Z^{(1)}, Z^{(2)}, \dots, Z^{(m)}$ be bounded independent random variables and let \overline{Z} and μ be defined as:

$$\bar{Z} \triangleq \frac{Z^{(1)} + \dots + Z^{(m)}}{m},\tag{1}$$

$$\mu \triangleq E[\bar{Z}] = \frac{E[Z^{(1)} + \dots + Z^{(m)}]}{m}.$$
(2)

7 Then Hoeffding's inequality states:

Lemma 1 (Hoeffding's inequality [2]). If $Z^{(1)}, Z^{(2)}, \dots, Z^{(m)}$ are independent and $0 \le Z^{(i)} \le 1$ for $i = 1, \dots, m$, then for $0 < \epsilon < 1 - \mu$

$$\Pr(\bar{Z} - \mu \ge \epsilon) \le e^{-2m\epsilon^2}$$

8 A.2 Union Bound

- Given that we have a set of events, the union bounds allows us to upper bound the probability that at
 least one of the events happens, even when these events are not independent.
- 11 **Lemma 2** (Union Bound [1]). For a countable set of events A_1, A_2, A_3, \dots , we have

$$\Pr(\cup_i A_i) \le \sum_i \Pr(A_i).$$
(3)

I.e., the probability that at least one of the events happens is at most the sum of the probabilities ofthe individual events.

14 **B** Proofs

15

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

B.1 Proof of Lemma 3 16

- Proof. The proof mostly follows the steps by Weissman et al. [4]. 17
- To shorten notation we define $P_Y \triangleq \overline{T}_Y(\cdot|\bar{s}, a)$ and $P_{\omega_X} \triangleq \overline{T}_{\omega_X}(\cdot|\bar{s}, a)$. 18
- We will make use of the following result, shown in Levin and Peres [3] (proposition 4.2), that for any 19
- distribution Q on \bar{S} 20

$$||Q - P_{\omega_X}||_1 = 2 \max_{\bar{\mathcal{S}} \subseteq \bar{\mathcal{S}}} (Q(\bar{\mathcal{S}}) - P_{\omega_X}(\bar{\mathcal{S}})),$$

where \bar{S} is a subset of \bar{S} and $P_{\omega_X}(\bar{S}) = \sum_{\bar{s}' \in \bar{S}} P_{\omega_X}(\bar{s}')$. Thus we have that 21

$$||P_Y - P_{\omega_X}||_1 = 2 \max_{\bar{\mathcal{S}} \subseteq \bar{\mathcal{S}}} (P_Y(\bar{\mathcal{S}}) - P_{\omega_X}(\bar{\mathcal{S}})).$$
(4)

Using this we can write 22

$$\Pr(||P_Y - P_{\omega_X}||_1 \ge \epsilon) = \Pr\left[2\max_{\bar{\mathcal{S}}\subseteq\bar{\mathcal{S}}}\left[P_Y(\bar{\mathcal{S}}) - P_{\omega_X}(\bar{\mathcal{S}})\right] \ge \epsilon\right]$$
(5)

$$= \Pr\left[\max_{\bar{\mathcal{S}}\subseteq\bar{\mathcal{S}}} \left[P_Y(\bar{\mathcal{S}}) - P_{\omega_X}(\bar{\mathcal{S}})\right] \ge \frac{\epsilon}{2}\right] \tag{6}$$

$$= \Pr\left[\cup_{\bar{\mathcal{S}}\subseteq\bar{\mathcal{S}}} \left[P_Y(\bar{\mathcal{S}}) - P_{\omega_X}(\bar{\mathcal{S}}) \ge \frac{\epsilon}{2} \right] \right]$$
(7)

$$\leq \sum_{\bar{\mathcal{S}} \subseteq \bar{\mathcal{S}}} \Pr\left[P_Y(\bar{\mathcal{S}}) - P_{\omega_X}(\bar{\mathcal{S}}) \geq \frac{\epsilon}{2} \right],\tag{8}$$

- where the last step follows from the union bound. 23
- Assuming $\epsilon > 0$, we have for $\overline{S} = \overline{S}$ and for $\overline{S} = \emptyset$ that $\Pr(P_Y(\overline{S}) P_{\omega_X}(\overline{S}) \ge \frac{\epsilon}{2}) = 0$. 24
- For every other subset \bar{S} , we can define a random binary variable that is 1 when $Y^{(i)} \in \bar{S}$ and 0 25
- otherwise. We have that $P_{\omega_X}(\bar{S})$ acts as μ (2) from Lemma 1 and $P_Y(\bar{S})$ as \bar{Z} (1). Thus applying 26
- Lemma 1 to this random variable we have: 27

$$\Pr(P_Y(\bar{\mathcal{S}}) - P_{\omega_X}(\bar{\mathcal{S}}) \ge \frac{\epsilon}{2}) \le e^{-2m\frac{\epsilon^2}{2}} = e^{-\frac{1}{2}m\epsilon^2}.$$
(9)

Then it follows that 28

$$\Pr(||P_Y - P_{\omega_X}||_1 \ge \epsilon) \le \sum_{\bar{\mathcal{S}} \subseteq \bar{\mathcal{S}}} \Pr(P_Y(\bar{\mathcal{S}}) - P_{\omega_X}(\bar{\mathcal{S}}) \ge \frac{\epsilon}{2})$$
(10)

$$\leq \sum_{\bar{\mathcal{S}}\subset\bar{S}:\bar{\mathcal{S}}\neq\bar{\mathcal{S}},\emptyset} \Pr(P_Y(\bar{\mathcal{S}}) - P_{\omega_X}(\bar{\mathcal{S}}) \geq \frac{\epsilon}{2})$$
(11)

$$\leq (2^{|\bar{S}|} - 2)e^{-\frac{1}{2}m\epsilon^2},\tag{12}$$

where $\bar{S} \subset \bar{S} : \bar{S} \neq \bar{S}, \emptyset$ denotes that the empty set \emptyset and the full set \bar{S} are excluded. 29

B.2 Simulator Setting, proof of Theorem 1 30

31

Before starting with the actual proof, we first shortly go over Algorithm 3 and give two lemmas that 32 33 the proof uses.

- The agent will draw samples using the simulator as described in Algorithm 3. Since we assume that 34
- we can sample directly from the transition functions $T(\cdot|s, a)$, this algorithm just loops over all pairs 35
- (\bar{s}, a) and samples m times¹ from each transition function. More formally, for every pair (\bar{s}, a) the 36
- algorithm selects one prototype state $x_{\bar{s},a} = s \in \bar{s}$. Then, it loops over every pair (\bar{s}, a) and samples m transitions from $T(\cdot | x_{\bar{s},a}, a)$. The set of collected experiences for each abstract state-action pair 37
- 38
- (\bar{s}, a) is represented by $\bar{Y}_{\bar{s},a}$, as defined by (9). 39

¹The value of m in Algorithm 3 is chosen based on the results further along in this section.

Algorithm 3 COLLECTSAMPLES with Simulator

Input: $M, \phi, \delta, \epsilon$ $\kappa = \frac{\delta}{|\overline{S}||A|}$ $m = \lceil \frac{2[\ln(2^{|S|}-2)-\ln(\kappa)]}{\epsilon^2} \rceil$ for all $(\overline{s}, a) \in \overline{S} \times A$ do $\overline{Y}_{\overline{s},a} = \lceil \rceil$ $x_{\overline{s},a} = \text{select a prototype state } s \in \overline{s}$ for i = 1 : m do $s' = \text{Sample}(T(\cdot|x_{\overline{s},a}, a))$ $\overline{Y}_{\overline{s},a}.\text{append}(\phi(s'))$ end for end for Return: all $\overline{Y}_{\overline{s},a}$

Given $\bar{Y}_{\bar{s},a}$, the learned model $\bar{T}_Y(\cdot|\bar{s},a)$ is defined according to (10) and \bar{T}_{ω_x} is defined according to (8), with ω_x defined according to (18). It follows from Lemma 1 that we can derive a number of samples that we require to guarantee that, for inputs κ and ϵ , $\Pr(||\bar{T}_Y(\cdot|\bar{s},a) - \bar{T}_{\omega_x}(\cdot|\bar{s},a)||_1 \ge \epsilon) \le \kappa$ is true:

44 **Lemma 4.** For inputs κ and ϵ ($0 < \kappa < 1, 0 < \epsilon < 2$), we have that for $m \ge \frac{2[\ln(2^{|\bar{S}|}-2)-\ln(\kappa)]}{\epsilon^2}$ the 45 following holds:

$$\Pr(||\bar{T}_Y(\cdot|\bar{s},a) - \bar{T}_{\omega_x}(\cdot|\bar{s},a)||_1 \ge \epsilon) \le \kappa.$$
(13)

46 *Proof.* To shorten notation we again use the definitions $P_Y \triangleq \overline{T}_Y(\cdot|\bar{s}, a)$ and $P_{\omega_x} \triangleq \overline{T}_{\omega_x}(\cdot|\bar{s}, a)$. We 47 have from Lemma 1 that

$$\Pr(||P_Y - P_{\omega_x}||_1 \ge \epsilon) \le (2^{|\bar{S}|} - 2)e^{-\frac{1}{2}m\epsilon^2}.$$
(14)

48 We need to select m such that $\kappa \ge (2^{|\bar{S}|} - 2)e^{-\frac{1}{2}m\epsilon^2}$:

$$\kappa \ge (2^{|\bar{S}|} - 2)e^{-\frac{1}{2}m\epsilon^2} \tag{15}$$

$$\frac{\kappa}{2^{|\bar{S}|} - 2} \ge e^{-\frac{1}{2}m\epsilon^2} \tag{16}$$

$$\ln(\kappa) - \ln(2^{|\bar{S}|} - 2) \ge -\frac{m\epsilon^2}{2}$$
(17)

$$\frac{m\epsilon^2}{2} \ge \ln(2^{|\bar{S}|} - 2) - \ln(\kappa)$$
(18)

$$m \ge \frac{2[\ln(2^{|S|} - 2) - \ln(\kappa)]}{\epsilon^2}$$
(19)

49 Thus if $m \geq rac{2[\ln(2^{|\vec{S}|}-2)-\ln(\kappa)]}{\epsilon^2}$ we have

$$\Pr(||P_Y - P_{\omega_x}||_1 \ge \epsilon) \le \kappa.$$

⁵⁰ Using the Union bound, we can give a lower bound on the probability that, for every (\bar{s}, a) , $\bar{T}_Y(\cdot|\bar{s}, a)$ ⁵¹ and $\bar{T}_{\omega_x}(\cdot|\bar{s}, a)$ are ϵ close:

52 Lemma 5. If

$$\forall_{(\bar{s},a)} \left[\Pr(||\bar{T}_Y(\cdot|\bar{s},a) - \bar{T}_{\omega_x}(\cdot|\bar{s},a)||_1 \ge \epsilon) \right] \le \frac{\delta}{|\bar{S}||A|}$$
(20)

then with probability at least $1 - \delta$ the following holds:

$$\max_{(\bar{s},a)} \left[||\bar{T}_Y(\cdot|\bar{s},a) - \bar{T}_{\omega_x}(\cdot|\bar{s},a)||_1 \right] \le \epsilon.$$
(21)

54 Proof. We define

$$\Delta_{\bar{s},a} \triangleq ||\bar{T}_Y(\cdot|\bar{s},a) - \bar{T}_{\omega_x}(\cdot|\bar{s},a)||_1.$$
(22)

55 Then $\Pr(\max_{(\bar{s},a)} \{ \Delta_{\bar{s},a} \geq \epsilon \})$ is the probability that for at least one abstract state-action pair 56 $\Delta_{\bar{s},a} \geq \epsilon$. From the union bound it follows that $\Pr(\max_{(\bar{s},a)} \{ \Delta_{\bar{s},a} \geq \epsilon \}) \leq \delta$:

$$\Pr(\max_{(\bar{s},a)} \{ \Delta_{\bar{s},a} \ge \epsilon \}) \le \sum_{\bar{s},a} \Pr(\Delta_{\bar{s},a} \ge \epsilon)$$
(23)

$$\leq \sum_{\bar{s},a} \frac{\delta}{|\bar{S}||A|} \tag{24}$$

$$=\delta.$$
 (25)

- 57 Since $\Pr(\max_{(\bar{s},a)} \{ \Delta_{\bar{s},a} \le \epsilon \}) = 1 \Pr(\max_{(\bar{s},a)} \{ \Delta_{\bar{s},a} \ge \epsilon \})$ it follows that $\Pr(\max_{(\bar{s},a)} \{ \Delta_{\bar{s},a} \le \epsilon \}) \ge 1 \delta$. Thus the probability that (21) holds is at least 1δ .
- 59 Now we are ready to proof Theorem 1:
- ⁶⁰ *Proof of Theorem 1.* By Assumption 1, and the earlier assumption that |S| and |A| are finite, we ⁶¹ have that for every abstract state-action pair we can obtain m samples, for any m > 0, in finite time. ⁶² Given the inputs $|\bar{S}|$, A, ϵ and δ , Algorithm 3 sets $m = \lceil \frac{2[\ln(2^{|\bar{S}|} - 2) - \ln(\kappa)]}{\epsilon^2} \rceil$, where $\kappa = \frac{\delta}{|\bar{S}||A|}$. Then ⁶³ for every (\bar{s}, a) a prototype state $x_{\bar{s},a} = s \in \bar{s}$ is selected. We use (18) to define ω_x and (8) to define ⁶⁴ \bar{T}_{ω_x} .
- For all (\bar{s}, a) Algorithm 3 obtains a sequence $\bar{Y}_{\bar{s},a}$ by sampling from the transition function from the prototype state $x_{\bar{s},a}$ and Algorithm 1 constructs the empirical transition functions as in (10).
- Given our choice of m it follows from Lemma 4, with inputs $\kappa = \frac{\delta}{|\overline{S}||A|}$ and ϵ , it holds that

$$\forall_{(\bar{s},a)} \operatorname{Pr}(||\bar{T}_Y(\cdot|\bar{s},a) - \bar{T}_{\omega_x}(\cdot|\bar{s},a)||_1 \ge \epsilon) \le \frac{\delta}{|\bar{S}||A|}.$$
(26)

⁶⁸ Then by Lemma 5 we have that, with probability at least $1 - \delta$, (19) holds.

69 References

- [1] George Boole. An investigation of the laws of thought: on which are founded the mathematical
 theories of logic and probabilities. Dover Publications, 1854.
- [2] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the American Statistical Association*, 58(301):13–30, 1963.
- [3] David A Levin and Yuval Peres. *Markov chains and mixing times*, volume 107. American
 Mathematical Soc., 2017.
- [4] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger.
 Inequalities for the 11 deviation of the empirical distribution. *Hewlett-Packard Labs, Tech. Rep*,
- 78 2003.