
Finding Bipartite Components in Hypergraphs
Supplementary Material

Contents

A Proof of Theorem 2 1

A.1 Additional preliminaries . 1

A.2 Counter-example showing that rule (2) is needed 2

A.3 Computing r by a linear program . 2

A.4 Analysis of the linear program . 4

B Proof of Theorem 1 8

B.1 Convergence of diffusion process . 8

B.2 Cheeger-type inequality for hypergraph bipartiteness 13

C Further discussion 18

C.1 Discussion of simple reductions . 18

C.2 Computing the minimum eigenvector of JH is NP-hard 19

C.3 Discussion about the number of eigenvectors . 19

A Proof of Theorem 2

In this section we prove Theorem 2. After giving some additional preliminaries, and discussing the
rules of the diffusion process, we will construct a linear program which can compute the rate of
change r satisfying the rules of the diffusion process. We then give a complete analysis of the new
linear program which establishes Theorem 2.

A.1 Additional preliminaries

Given a hypergraph H = (VH , EH , w), and a weighted measure vector ft, the discrepancy of H
with respect to ft is defined by

D(ft) ,

∑
e∈EH

w(e) ·∆ft(e)
2∑

v∈VH
dH(v) · ft(v)2

.

Additionally, we define the Rayleigh quotient of the operator JH as

RH(ft) ,
fᵀt JHft
fᵀt DHft

.

For any edge e ∈ EH and vector ft, let

cft(e) , w(e) |∆ft(e)|

35th Conference on Neural Information Processing Systems (NeurIPS 2021)

and for any set S ⊆ EH , let

cft(S) ,
∑
e∈S

cft(e).

For any f, g ∈ Rn, the weighted inner product between f and g is defined by 〈f, g〉w , fᵀDHg,
where DH ∈ Rn×n is the diagonal matrix consisting of the degrees of all the vertices of H. The
weighted norm of f is defined by ‖f‖2w , 〈f, f〉w.

A.2 Counter-example showing that rule (2) is needed

First, we recall the rules which the rate of change of the diffusion process must satisfy. Given a
hypergraph H = (VH , EH , w) and a weighted diffusion vector ft, let

r =
dft
dt

be the rate of change of the vector ft. Additionally, recall that for any vertex v, we write

r(v) =
∑
e∈EH

re(v),

where re(v) is the contribution of the edge e to the rate of change of ft(v). Then, we define the rules
of the diffusion as follows:

• Rule (0a): if |re(u)| > 0 and u ∈ Sft(e), then r(u) = maxv∈Sft (e)
{r(v)}.

• Rule (0b): if |re(u)| > 0 and u ∈ Ift(e), then r(u) = minv∈Ift (e){r(v)}.

• Rule (1):
∑
v∈Sft (e)

d(v)re(v) =
∑
v∈Ift (e)

d(v)re(v) = −w(e) ·∆ft(e) for all e ∈ EH .

• Rule (2a): Assume that |re(u)| > 0 and u ∈ Sft(e).

– If ∆ft(e) > 0, then r(u) = maxv∈Sft (e)
{r(v)};

– If ∆ft(e) < 0, then r(u) = r(v) for all v ∈ Sft(e).

• Rule (2b): Assume that |re(u)| > 0 and u ∈ Ift(e):

– If ∆ft(e) < 0, then r(u) = minv∈Ift (e){r(v)};
– If ∆ft(e) > 0, then r(u) = r(v) for all v ∈ Ift(e).

One might have expected that Rules (0) and (1) together would define a unique process. Unfortunately,
this isn’t the case. For example, let us define an unweighted hypergraph H = (VH , EH), where
VH = {u, v, w} and EH = {{u, v, w}}. By setting the measure to be ft = (1, 1,−2)ᵀ and
e = {u, v, w}, we have ∆ft(e) = −1, and r(u) + r(v) = r(w) = 1 by Rule (1). In such a scenario,
either {u,w} or {v, w} can participate in the diffusion and satisfy Rule (0), which makes the process
not uniquely defined and so we introduce Rule (2) to ensure that there will be a unique vector r which
satisfies the rules.

A.3 Computing r by a linear program

Now we present an algorithm that computes the vector r = dft/dt for any ft ∈ Rn. Without loss
of generality, let us fix ft ∈ Rn, and define a set of equivalence classes U on V such that vertices
u, v ∈ VH are in the same equivalence class if ft(u) = ft(v). Next we study every equivalence class
U ∈ U in turn, and will set the r-value of the vertices in U recursively. In each iteration, we fix the
r-value of some subset P ⊆ U and recurse on U \ P . As we’ll prove later, it’s important to highlight
that the recursive procedure ensures that the r-values assigned to the vertices always decrease after
each recursion. Notice that it suffices to consider the edges e in which (Sft(e) ∪ Ift(e)) ∩ U 6= ∅,
since the diffusion process induced by other edges e will have no impact on r(u) for any u ∈ U .
Hence, we introduce the sets

SU , {e ∈ EU : Sft(e) ∩ U 6= ∅}, IU , {e ∈ EU : Ift(e) ∩ U 6= ∅},

2

where EU consists of the edges adjacent to some vertex in U . To work with the four cases listed in
Rule (2a) and (2b), we define

S+U , {e ∈ SU : ∆ft(e) < 0}
S−U , {e ∈ SU : ∆ft(e) > 0}
I+U , {e ∈ IU : ∆ft(e) < 0}
I−U , {e ∈ IU : ∆ft(e) > 0}

Our objective is to find some P ⊆ U and assign the same r-value to every vertex in P . To this end,
for any P ⊆ U we define

S+U,P ,
{
e ∈ S+U : Sft(e) ⊆ P

}
,

I+U,P ,
{
e ∈ I+U : Ift(e) ⊆ P

}
,

S−U,P ,
{
e ∈ S−U : Sft(e) ∩ P 6= ∅

}
,

I−U,P , {e ∈ I−U : Ift(e) ⊆ P}.

These are the edges which will contribute to the rate of change of the vertices in P . Before continuing
the analysis, we briefly explain the intuition behind these four definitions: (i) For S+U,P , since every
e ∈ S+U satisfies ∆ft(e) < 0 and all the vertices in Sft(e) must have the same value by Rule (2a),
all such e ∈ S+U,P must satisfy that Sft(e) ⊆ P , since the unassigned vertices will receive lower
values of r in the remaining part of the recursion process. (ii) For I+U,P , since every e ∈ I+U satisfies
∆ft(e) < 0, Rule (2b) implies that if re(u) 6= 0 then r(u) ≤ r(v) for all v ∈ Ift(e). Since
unassigned vertices will receive lower values of r later, such e ∈ I+U,P must satisfy Ift(e) ⊆ P . (iii)
For S−U,P , since every e ∈ S−U satisfies ∆ft(e) > 0, by Rule (2a) it suffices that some vertex in Sft(e)
receives the assignment in the current iteration, i.e., every such e must satisfy Sft(e) ∩ P 6= ∅. (iv)
The case for I−P is the same as S+P .

As we expect all the vertices u ∈ Sft(e) to have the same r-value for every e as long as ∆ft(e) < 0
by Rule (2a) and at the moment we are only considering the assignment of the vertices in P , we
expect that

{
e ∈ S+U \ S

+
U,P : Sft(e) ∩ P 6= ∅

}
= ∅, (3)

and this will ensure that, as long as ∆ft(e) < 0 and some u ∈ Sft(e) gets its r-value, then all the
other vertices in Sft(e) would be assigned the same value as u. Similarly, by Rule (2b), we expect all
the vertices u ∈ Ift(e) to have the same r-value for every e as long as ∆ft(e) > 0, and so we expect
that

{
e ∈ I−U \ I

−
U,P : Ift(e) ∩ P 6= ∅

}
= ∅. (4)

We will set the r-value by dividing the total discrepancy of the edges in I+U,P ∪ S
+
U,P ∪ I

−
U,P ∪ S

−
U,P

between the vertices in P . As such, we would like to find some P ⊆ U that maximises the value of

1

vol(P)
·

 ∑
e∈S+

U,P∪I
+
U,P

cft(e)−
∑

e∈S−U,P∪I
−
U,P

cft(e)

 .

3

Taking all of these requirements into account, we will show that, for any equivalence set U , we can
find the desired set P by solving the following linear program:

maximise c(x) =
∑

e∈S+
U∪I

+
U

cft(e) · xe −
∑

e∈S−U ∪I
−
U

cft(e) · xe (5)

subject to
∑
v∈U

d(v)yv = 1

xe = yu e ∈ S+U , u ∈ Sft(e),
xe ≤ yu e ∈ I+U , u ∈ Ift(e),
xe ≥ yu e ∈ S−U , u ∈ Sft(e),
xe = yu e ∈ I−U , u ∈ Ift(e),

xe, yv ≥ 0 ∀v ∈ U, e ∈ EU .
Since the LP only gives partial assignment to the vertices’ r-values, we solve the same LP on
the reduced instance given by the set U \ P . The formal description of our algorithm is given in
Algorithm 2.

Algorithm 2: ComputeChangeRate(U,EU)

Input :vertex set U ⊆ V , and edge set EU
Output :Values of {r(v)}v∈U
Construct sets S+U , S−U , I+U , and I−U
Solve the linear program defined by (5), and define P := {v ∈ U : y(v) > 0}
Construct sets S+U,P , S−U,P , I+U,P , and I−U,P
Set C(P) := cft

(
S+U,P

)
+ cft

(
I+U,P

)
− cft

(
S−U,P

)
− cft

(
I−U,P

)
Set δ(P) := C(P)/vol(P)
Set r(u) := δ(P) for every u ∈ P
ComputeChangeRate

(
U \ P,EU \

(
S+U,P ∪ I

+
U,P ∪ S

−
U,P ∪ I

−
U,P

))

A.4 Analysis of the linear program

Now we analyse Algorithm 2, and the properties of the r-values it computes. Specifically, we will
show the following facts which will together allow us to establish Theorem 2.

1. Algorithm 2 always produces a unique vector r, no matter which optimal result is returned
when computing the linear program (5).

2. If there is any vector r which is consistent with Rules (1) and (2), then it must be equal to
the output of Algorithm 2.

3. The vector r produced by Algorithm 2 is consistent with Rules (1) and (2).

The output of Algorithm 2 is unique. First of all, for any P ⊆ U that satisfies (3) and (4), we
define vectors xP and yP by

xP (e) =

{
1

vol(P) if e ∈ S+U,P ∪ I
+
U,P ∪ S

−
U,P ∪ I

−
U,P

0 otherwise
,

yP (v) =

{
1

vol(P) if v ∈ P
0 otherwise

,

and zP = (xP , yP). It is easy to verify that (xP , yP) is a feasible solution to (5) with the objective
value c (xP) = δ(P). We will prove that ComputeChangeRate (Algorithm 2) computes a unique
vector r regardless of how ties are broken when computing the subsets P .

For any feasible solution z = (x, y), we say that a non-empty set Q is a level set of z if there is some
t > 0 such that Q = {u ∈ U : yu ≥ t}. We’ll first show that any non-empty level set of an optimal
solution z corresponds to an optimal solution.

4

Lemma 1. Suppose that z? = (x?, y?) is an optimal solution of the linear program (5). Then, any
non-empty level set Q of z? corresponds to an optimal solution of (5) as well.

Proof. Let P = {v ∈ VH : y?(v) > 0}. The proof is by case distinction. We first look at the case
in which all the vertices in P have the same value of y?(v) for any v ∈ P . Then, it must be that
z? = zP and every non-empty level set Q of z? equals to P , and so the statement holds trivially.

Secondly, we assume that the vertices in P have at least two different y?-values. We define α =
min {y?v : v ∈ P}, and have

α · vol(P) <
∑
u∈U

d(u) · y?u = 1.

We introduce vector ẑ = (x̂, ŷ) defined by

x̂(e) =

{
x?(e)−α

1−αvol(P) if x?(e) ≥ 0

0 otherwise
,

and

ŷ(v) =

{
y?(v)−α

1−αvol(P) if v ∈ P
0 otherwise

,

which implies that

z? = (1− αvol(P)) ẑ + α · 1P = (1− αvol(P)) ẑ + α · vol(P) · zP , (6)

where 1P is the indicator vector of the set P . Notice that ẑ preserves the relative ordering of the
vertices and edges with respect to x? and y?, and all the constraints in (5) hold for ẑ. These imply
that ẑ is a feasible solution to (5) as well. Moreover, it’s not difficult to see that ẑ is an optimal
solution of (5), since otherwise by the linearity of (6), zP would have a higher objective value than
z?, contradicting the fact that z? is an optimal solution. Hence, the non-empty level set defined by ẑ
corresponds to an optimal solution.

Finally, by applying the second case inductively, we prove the claimed statement of the lemma.

By applying the lemma above and the linearity of the objective function of (5), we obtain the following
corollary.
Corollary 1. The following statements hold:

• Suppose that P1 and P2 are optimal subsets of U . Then, P1 ∪ P2, as well as P1 ∩ P2

satisfying P1 ∩ P2 6= ∅, is an optimal subset of U .

• The optimal set of maximum size is unique, and contains all optimal subsets.

Now we are ready to show that the procedure ComputeChangeRate (Algorithm 2) and the linear
program (5) together will always give us the same set of r-values regardless of which optimal solution
of (5) is used for the recursive construction of the entire vector r.
Lemma 2. Let (U,EU) be the input to ComputeChangeRate, and P ⊂ U be the set returned by (5).
Moreover, let (U ′ = U \ P,EU ′) be the input to the recursive call ComputeChangeRate(U ′, EU ′).
Then, it holds for any P ′ ⊆ U ′ that δ(P ′) ≤ δ(P), where the equality holds iff δ(P ∪ P ′) = δ(P).

Proof. By the definition of the function c and sets S+,S−, I+, I−, it holds that

c
(
S+U ′,P ′

)
= c

(
S+U,P∪P ′

)
− c

(
S+U,P

)
,

and the same equality holds for sets S−, I+ and I−. We have that

δ(P ′) =
c
(
S+U ′,P ′

)
+ c

(
I+U ′,P ′

)
− c

(
S−U ′,P ′

)
− c

(
I−U ′,P ′

)
vol(P ′)

=
δ (P ∪ P ′) · vol(P ∪ P ′)− δ(P) · vol(P)

vol(P ∪ P ′)− vol(P)
.

5

Therefore, it holds for any operator ./∈ {<,=, >} that

δ(P ′) ./ δ(P)

⇐⇒ δ(P ∪ P ′) · vol(P ∪ P ′)− δ(P) · vol(P)

vol(P ∪ P ′)− vol(P)
./ δ(P)

⇐⇒ δ(P ∪ P ′) ./ δ(P),

which implies that δ(P ′) ≤ δ(P) iff δ(P ∪ P ′) ≤ δ(P) with equality iff δ(P ∪ P ′) = δ(P). Since
P is optimal, it cannot be the case that δ (P ∪ P ′) > δ(P), and therefore the lemma follows.

Combining everything together, we have the following result which summaries the properties of r
computed by Algorithm 2 and (5) and establishes the first fact promised at the beginning of this
section.

Lemma 3. For any input instance (U,EU), Algorithm 2 always returns the same output r ∈ R|U | no
matter which optimal sets are returned by solving the linear program (5). In particular, Algorithm 2
always finds the unique optimal set P ⊆ U of maximum size and assigns r(u) = δ(P) to every
u ∈ P . After removing the computed P ⊂ U , the computed r(v) = δ(P ′) for some P ′ ⊆ U \ P and
any v ∈ P ′ is always strictly less than r(u) = δ(P) for any u ∈ P .

Any r satisfying Rules (1) and (2) is computed by Algorithm 2. Next we show that if there is
any vector r which satisfies Rules (1) and (2), it must be equal to the output of Algorithm 2.

Lemma 4. For any hypergraph H = (VH , EH , w) and ft ∈ Rn, if there is a vector r = dft/dt
with an associated {re(v)}e∈EH ,v∈VH

which satisfies Rule (1) and (2), then r is equal to the output
of Algorithm 2.

Proof. We will focus our attention on a single equivalence class U ⊂ V where for any u, v ∈ U ,
f(u) = f(v). Recall that for each e ∈ EU , cft(e) = w(e) |∆ft(e)|, which is the rate of flow due to
e into U (if e ∈ S+

U ∪ I
+
U) or out of U (if e ∈ S−U ∪ I

−
U). Let r ∈ Rn be the vector supposed to satisfy

Rule (1) and (2). We assume that U ⊆ V is an arbitrary equivalence class, and define

T ,

{
u ∈ U : r(u) = max

v∈U
r(v)

}
.

Let us study which properties r must satisfy according to Rule (1) and (2).

• Assume that e ∈ S−U , i.e., it holds that Sft(e) ∩ U 6= ∅ and ∆ft(e) > 0. To satisfy
Rule (2a), it suffices to have that cft(e) = we · ∆ft(e) = −

∑
v∈Sft (e)

d(v)re(v) =

−
∑
v∈T d(v)re(v) if Sft(e) ∩ T 6= ∅, and re(v) = 0 for all v ∈ T otherwise.

• Assume that e ∈ S+U , i.e., it holds that Sft(e)∩U 6= ∅ and ∆ft(e) < 0. To satisfy Rule (2a),
it suffices to have Sft(e) ⊆ T , or Sft(e) ∩ T = ∅.

• Assume that e ∈ I+U , i.e., it holds that If (e) ∩ U 6= ∅ and ∆f (e) < 0. To satisfy Rule (2b),
it suffices to have that cf (e) =

∑
v∈If (e) d(v)re(v) =

∑
v∈T d(v)re(v) if If (e) ⊆ T , and

re(v) = 0 for all v ∈ T otherwise.

• Assume that e ∈ I−U , i.e., it holds that If (e) ∩ U 6= ∅ and ∆f (e) > 0. To satisfy Rule (2b),
it suffices to have If (e) ⊆ T , or If (e) ∩ T = ∅.

Notice that the four conditions above needed to satisfy Rule (2) naturally reflect our definitions of the
sets S+U,P , I

+
U,P ,S

−
U,P , and I−U,P and for all u ∈ T , it must be that r(u) = δ(T).

We will show that the output set P returned by solving the linear program (5) is the set T . To prove
this, notice that on one hand, by Corollary 1, the linear program gives us the unique maximal optimal
subset P ⊆ U , and every v ∈ P satisfies that r(v) = δ(P) ≤ r(u) = δ(T) for any u ∈ T as every
vertex in T has the maximum r-value. On the other side, we have that δ(T) ≤ δ(P) since P is the
set returned by the linear program, and therefore T = P . We can apply this argument recursively,
and this proves that Algorithm 2 must return the vector r.

6

The output of Algorithm 2 satisfies Rules (1) and (2). Now we show that the output of Algo-
rithm 2 does indeed satisfy Rules (1) and (2) which, together with Lemma 4 implies that there is
exactly one such vector which satisfies the rules.

Lemma 5. For any hypergraph H = (VH , EH , w) and vector ft ∈ Rn, the vector r constructed by
Algorithm 2 has corresponding {re(v)}e∈EH ,v∈VH

which satisfies Rules (1) and (2). Moreover, the
{re(v)}e∈EH ,v∈VH

values can be found in polynomial time using the vector r.

Proof. We will focus on a single iteration of the algorithm, in which r(v) is assigned for the vertices
in some set T ⊂ VH . We use the notation

E+T = I+U,T ∪ S
+
U,T , E−T = I−U,T ∪ S

−
U,T

and will show that the values of re(v) for e ∈ E+T ∪ E
−
T can be found and satisfy Rules (1) and (2).

Therefore, by applying this argument to each recursive call of the algorithm, we establish the lemma.
Given the set T , construct the following undirected flow graph, which is illustrated in Figure 5.

• The vertex set is E+T ∪ E
−
T ∪ T ∪ {s, t}.

• For all e ∈ E+T , there is an edge (s, e) with capacity cft(e).

• For all e ∈ E−T , there is an edge (e, t) with capacity cft(e).

• For all v ∈ T , if δ(T) ≥ 0, there is an edge (v, t) with capacity d(v)δ(T). Otherwise, there
is an edge (s, v) with capacity d(v) |δ(T)|.

• For each e ∈ E+T ∪ E
−
T , and each v ∈ T ∩ (Sft(e) ∪ Ift(e)), there is an edge (e, v) with

capacity∞.

s

T

t

E+T E−T

...

c(e) c(e)

d(v)δ(T)

∞

s

T ′

t
E+T ′ E−T ′

...

c(e)

c(e)

d(v)δ(T)
∞

Figure 5: Left: an illustration of the constructed max-flow graph, when δ(T) ≥ 0. The minimum cut
is given by {s}. Right: a cut induced by T ′ ⊂ T . We can assume that every e ∈ E+T ∪ E

−
T connected

to T ′ is on the same side of the cut as T ′. Otherwise, there would be an edge with infinite capacity
crossing the cut.

We use cut(A) to denote the weight of the cut defined by the set A in this constructed graph and note
that cut({s}) = cut({t}) since

cut({s})− cut({t}) =
∑
e∈E+T

cf (e)−
∑
e∈E−T

cf (e)− vol(T)δ(T) = 0

by the definition of δ(T).

Now, suppose that the maximum flow value on this graph is cut({s}), and let the corresponding flow
from u to v be given by Θ(u, v) = −Θ(v, u). Then, set d(v)re(v) = Θ(e, v) for any e ∈ E+T ∪ E

−
T

and v ∈ T ∩e. This configuration of the values re(v) would be compatible with the vector r computed
by Algorithm 2 and would satisfy the rules of the diffusion process for the following reasons:

• For all v ∈ T , the edge (v, t) or (s, v) is saturated and so
∑
e∈E d(v)re(v) = d(v)δ(T) =

d(v)r(v).

7

• For any e ∈ E+T ∪ E
−
T , the edge (s, e) or (e, t) is saturated and so we have that∑

v∈T∩e d(v)rv(e) = −w(e)∆(e). Since E+T ∪ E
−
T is removed in the recursive step of

the algorithm, re(v) = 0 for all v ∈ U \ T and so
∑
v∈U∩e d(v)re(v) = −w(e)∆(e). This

establishes Rule (1) since U ∩ e is equal to either Sf (e) or If (e).

• For edges in S+U,T (resp. I+U,T , I−U,T), since Sft(e) (resp. Ift(e), Ift(e)) is a subset of T and
every v ∈ T has the same value of r(v), Rule (2) is satisfied. For edges in S−U,T , for any
v 6∈ T , we have re(v) = 0 and r(v) < δ(T) which satisfies Rule (2).

We will now show that every cut separating s and t has weight at least cut({s}) which will establish
that the maximum flow on this graph is cut({s}) by the max-flow min-cut theorem.

Consider some arbitrary cut given by X = {s}∪T ′ ∪E+T ′ ∪E
−
T ′ where T ′ (resp. E+T ′ , E

−
T ′) is a subset

of T (resp. E+T , E−T). Figure 5 illustrates this cut. Since all of the edges not connected to s or t have
infinite capacity, we can assume that no such edge crosses the cut which implies that

• For all e ∈ E+T ′ , e ∩ (T \ T ′) = ∅.

• For all e ∈ E−T ′ , e ∩ (T \ T ′) = ∅.

• For all e ∈ (E+T \ E
+
T ′), e ∩ T ′ = ∅.

• For all e ∈ (E−T \ E
−
T ′), e ∩ T ′ = ∅.

These conditions, along with the definition of E+T and E−T , allow us to assume that E+T ′ = I+U,T ′∪S
+
U,T ′

and E−T ′ = I−U,T ′ ∪ S
−
U,T ′ . The size of this arbitrary cut is

cut(X) = cut({s})−
∑
e∈E+

T ′

c(e) +
∑
e∈E−

T ′

c(e) +
∑
v∈T ′

d(v)δ(T).

Since T maximises the objective function δ, we have∑
e∈E+

T ′

c(e)−
∑
e∈E−

T ′

c(e) = vol(T ′)δ(T ′) ≤ vol(T ′)δ(T) =
∑
v∈T ′

d(v)δ(T)

and can conclude that cut(X) ≥ cut({s}) which completes the proof.

Proof of Theorem 2. We can now combine the results in Lemmas 4 and 5 to prove Theorem 2.

Proof of Theorem 2. Lemma 4 and Lemma 5 together imply that there is a unique vector r and
corresponding {re(v)}e∈EH ,v∈VH

which satisfies Rules (1) and (2). Lemma 4 further shows that
Algorithm 2 computes this vector r, and the proof of Lemma 5 gives a polynomial-time method for
computing the {re(v)} values by solving a sequence of max-flow problems.

B Proof of Theorem 1

In this section we will prove Theorem 1. This section is split into two subsections which correspond
to the two statements in Theorem 1. First, we show that the diffusion process converges to an
eigenvector of JH . We then show that this allows us to find sets L,R ⊂ VH with low hypergraph
bipartiteness.

B.1 Convergence of diffusion process

We show in this section that the diffusion process determined by the operator JH converges in
polynomial time to an eigenvector of JH .

8

Theorem 3. For any ε > 0, there is some t = O
(
1/ε3

)
such that for any starting vector f0, there is

an interval [c, c+ 2ε] such that

1

‖ft‖w

∑
ui:λi∈[c,c+2ε]

〈ft, ui〉w ≥ 1− ε

where (ui, λi) are the eigen-pairs of D−1H Jt = D−1H (DGt
+AGt

) and Gt is the graph constructed
by the diffusion operator JH at time t.

By taking ε to be some small constant, this shows that the vector ft converges to an eigenvector of
the hypergraph operator in polynomial time.

Proof. We will prove this by showing that the Rayleigh quotient RH(ft) is always decreasing at
a rate of at least ε3 whenever the conclusion of Theorem 3 does not hold. Since RH(ft) can only
decrease by a constant amount, the theorem will follow.

First, we derive an expression for the rate of change of the Rayleigh quotient RH(ft). Let xt ,
D

1/2
H ft, and let Jt = D

−1/2
H (DGt +AGt)D

−1/2
H . Then, we have

RH(ft) =
fᵀt (DGt +AGt)ft

fᵀt DHft
=
xᵀtJtxt
xᵀt xt

.

For every eigenvector uj of D−1H JH , the vector vj = D
1/2
H uj is an eigenvector of J with the same

eigenvalue λi. Since J is symmetric, the vectors v1 to vn are orthogonal. Additionally, notice that

〈xt, vj〉 = fᵀt DHuj = 〈ft, uj〉w

and we define αj = 〈ft, uj〉w so we can write xt =
∑n
j=1 αjvj and ft = D

−1/2
H xt =

∑n
j=1 αjuj .

Now, we have that

d

dt
〈xt,Jtxt〉 = 〈 d

dt
xt,Jtxt〉+ 〈xt,

d

dt
Jtxt〉

= −xᵀtJ 2
t xt − x

ᵀ
tJ 2

t xt

= −2

n∑
j=1

α2
jλ

2
j .

Additionally, we have

d

dt
xᵀt xt = −xᵀtJtxt − x

ᵀ
tJtxt = −2(xᵀtJtxt).

Recalling that xᵀt xt =
∑n
j=1 α

2
j , this gives

d

dt
R(ft) =

1

(xᵀt xt)
2

[(
d

dt
(xᵀtJtxt)

)
(xᵀt xt)−

(
d

dt
(xᵀt xt)

)
(xᵀtJtxt)

]
=

1

xᵀt xt

(
d

dt
(xᵀtJtxt)

)
+ 2R(ft)

2

= 2

R(ft)
2 − 1∑n

j=1 α
2
j

n∑
j=1

α2
jλ

2
j

 (7)

We will now show that at any time t, if the conclusion of the theorem does not hold, then

d

dt
R(ft) ≤ −ε3. (8)

Assuming that this holds, and using the fact that for all t it is the case that 0 ≤ R(ft) ≤ 2, when
t = 2/ε3, either R(ft) = 0 or there was some t′ < t when (d/dt′)R(ft′) > −ε3 and the conclusion
of the theorem holds.

9

Now, to show (8), consider the partial derivative

∂

∂λi
2

R(ft)
2 − 1∑n

j=1 α
2
j

n∑
j=1

α2
jλ

2
j

 = 2

[
2α2

i∑n
j=1 α

2
j

R(ft)−
2α2

i∑n
j=1 α

2
j

λi

]

=
4α2

i∑n
j=1 α

2
j

(R(ft)− λi), (9)

where we use the fact that R(ft) = (
∑n
j=1 α

2
jλj)/(

∑n
j=1 α

2
j). Notice that if λi < R(ft), the

derivative in (9) is greater than 0 and if λi > R(ft), the derivative is less than 0. This means that
in order to establish an upper-bound for (d/dt)R(ft), we can assume that the eigenvalues λj are as
close to the value of R(ft) as possible.

Now, we assume that at time t, the conclusion of the theorem does not hold. Then, one of the
following cases must hold:

1. (
∑
j:λj>R(ft)+ε

α2
j)/(

∑n
j=1 α

2
j) > ε/2

2. (
∑
j:λj<R(ft)−ε α

2
j)/(

∑n
j=1 α

2
j) > ε/2

Suppose the first case holds. By the conclusions we draw from (9), we can assume that there is an
eigenvalue λi = R(ft)+ε such that α2

i /(
∑n
j=1 α

2
j) = ε/2 and that (

∑
j:λj<R(ft)

α2
j)/(

∑n
j=1 α

2
j) =

1− ε/2. Then, since R(ft) = (
∑n
j=1 α

2
jλj)/(

∑n
j=1 α

2
j), we have

1∑n
j=1 α

2
j

∑
j:λj<R(ft)

α2
jλj = R(ft)−

ε

2
(R(ft) + ε),

which is equivalent to

1∑n
j=1 α

2
j

∑
j:λj<R(ft)

α2
j (λj −R(ft))) =

ε

2
·R(ft)−

ε

2
· (R(ft) + ε) = −ε

2

2
. (10)

Now, notice that for any λj < R(ft)) we have

(λ2j −R(ft)
2) = (λj +R(ft))(λj −R(ft))

≥ 2R(ft)(λj −R(ft)),

since λj −R(ft) < 0. As such, we have

d

dt
R(ft) = 2

R(ft)
2 − 1∑n

j=1 α
2
j

n∑
j=1

α2
jλ

2
j


= − 2∑n

j=1 α
2
j

n∑
j=1

α2
j (λ

2
j −R(ft)

2)

= −ε
(
(R(ft) + ε)2 −R(ft)

2
)
− 2∑n

j=1 α
2
j

∑
j:λj<R(ft)

α2
j (λ

2
j −R(ft)

2)

≤ −ε
(
2εR(ft) + ε2

)
− 2∑n

j=1 α
2
j

∑
j:λj<R(ft)

2α2
jR(ft)(λj −R(ft))

= −2ε2R(ft)− ε3 + 2ε2R(ft)

= −ε3

where the fifth line follows by (10). We now consider the second case. We can assume that there is an
eigenvalue λi = R(ft)−ε such that α2

i /(
∑n
j=1 α

2
j) = ε/2 and that (

∑
j:λj>R(ft)

α2
j)/(

∑n
j=1 α

2
j) =

1− ε/2. Then, we have
1∑n

j=1 α
2
j

∑
j:λj>R(ft)

α2
jλj = R(ft)−

ε

2
(R(ft)− ε) ,

10

which is equivalent to

1∑n
j=1 α

2
j

∑
j:λj>R(ft)

α2
j (λj −R(ft)) =

ε

2
R(ft)−

ε

2
(R(ft)− ε) =

ε2

2
. (11)

Now, notice that for any λj > R(ft) we have

λ2j −R(ft)
2 = (λj +R(ft))(λj −R(ft))

≥ 2R(ft) · (λj −R(ft)).

As such, we have

d

dt
R(ft) = − 2∑n

j=1 α
2
j

n∑
j=1

α2
j (λ

2
j −R(ft)

2)

= −ε
(
(R(ft)− ε)2 −R(ft)

2
)
− 2∑n

j=1 α
2
j

∑
j:λj>R(ft)

α2
j (λ

2
j −R(ft)

2)

≤ −ε
(
ε2 − 2εR(ft)

)
− 2∑n

j=1 α
2
j

∑
j:λj<R(ft)

2α2
jR(ft)(λj −R(ft))

= 2ε2g(t)− ε3 − 2ε2R(ft)

= −ε3

where the fourth line follows by (11). These two cases establish (8) and complete the proof of the
theorem.

The eigenvector is at most the minimum eigenvector of the clique graph. We now show that
the eigenvector to which we converge is at most the minimum eigenvector of JG where G is the
clique reduction of H . We start by showing the following technical lemma.
Lemma 6. For any hypergraph H = (VH , EH , w), vector f ∈ Rn, and edge e ∈ EH , it is the case
that (

max
u∈e

f(u) + min
v∈e

f(v)

)2

≤
∑
u,v∈e

1

re − 1
(f(u) + f(v))2

where re is the rank of the edge e. The equality holds iff there is exactly one vertex v ∈ e with
f(v) 6= 0 or re = 2.

Proof. We will consider some ordering of the vertices in e,

u1, u2, . . . , ure ,

such that u1 = arg maxu∈e f(u) and u2 = arg minu∈e f(u) and the remaining vertices are ordered
arbitrarily. Then, for any 2 ≤ k ≤ re, we define

Ck =
∑

u,v∈{u1,...,uk}

1

k − 1
(f(u) + f(v))2

and we will show by induction on k that

Ck ≥
(

max
u∈e

f(u) + min
v∈e

f(v)

)2

(12)

for all 2 ≤ k ≤ re with equality iff k = 2 or there is exactly one vertex ui ∈ e with f(v) 6= 0. The
lemma follows by setting k = re.

The base case when k = 2 follows trivially by the definitions and the choice of u1 and u2.

For the inductive step, we assume that (12) holds for some k and will show that it holds for k + 1.
We have that

Ck+1 =
∑

u,v∈{u1,...,uk+1}

1

k
· (f(u) + f(v))2

11

which is equivalent to

Ck+1 =
1

k

k∑
i=1

(f(ui) + f(uk+1))2 +
1

k

∑
u,v∈{u1,...,uk}

(f(u) + f(v))2

=
1

k

k∑
i=1

(f(ui) + f(uk+1))2 +
k − 1

k
Ck

≥
(

1− 1

k

)(
max
u∈e

f(u) + min
v∈e

f(v)

)2

+
1

k

k∑
i=1

(f(u1) + f(uk+1))2

where the final inequality holds by the induction hypothesis. Therefore, it is sufficient to show that
k∑
i=1

(f(ui) + f(uk+1))
2 ≥

(
max
u∈e

f(u) + min
v∈e

f(v)

)2

.

We will instead show the stronger fact that(
max
v∈e

f(v) + f(uk+1)

)2

+

(
min
v∈e

f(v) + f(uk+1)

)2

≥
(

max
u∈e

f(u) + min
v∈e

f(v)

)2

. (13)

The proof is by case distinction. The first case is when sign(maxu∈e f(v)) = sign(minu∈e f(u)).
Assume w.l.o.g. that the sign is positive. Then, since f(uk+1) ≥ minv∈e f(v), we have(

max
v∈e

f(v) + f(uk+1)

)2

≥
(

max
v∈e

f(v) + min
u∈e

f(v)

)2

and (13) holds. Moreover, the inequality is strict if |minu∈e f(u)| > 0 or |f(uk+1)| > 0.

For the second case, we assume that sign(minu∈e f(u)) 6= sign(maxv∈e f(v)). Expanding (13), we
would like to show(

max
u∈e

f(u)

)2

+

(
min
v∈e

f(v)

)2

+ 2f(uk+1)

(
max
u∈e

f(u)

)
+ 2f(uk+1)

(
min
v∈e

f(v)

)
+ 2f(uk+1)2

≥
(

max
u∈e

f(u)

)2

+

(
min
u∈e

f(u)

)2

− 2

(
max
u∈e

f(u)

) ∣∣∣∣min
u∈e

f(u)

∣∣∣∣
which is equivalent to

2f(uk+1)2 + 2f(uk+1)

(
max
u∈e

f(u)

)
+ 2f(uk+1)

(
min
v∈e

f(v)

)
≥ −2

(
max
u∈e

f(u)

) ∣∣∣∣min
v∈e

f(v)

∣∣∣∣ .
Notice that exactly one of the terms on the left hand side is negative. Recalling that minu∈e f(u) ≤
f(uk+1) ≤ maxv∈e f(v), it is clear that

• if f(uk+1) < 0, then −2 (maxu∈e f(u)) |minv∈e f(v)| ≤ 2f(uk+1) (maxv∈e f(v)) ≤ 0
and the inequality holds.

• if f(uk+1) ≥ 0, then −2 (maxu∈e f(u)) |minv∈e f(v)| ≤ 2f(uk+1) (minu∈e f(u)) ≤ 0
and the inequality holds.

Moreover, in both cases the inequality is strict if−2 (maxv∈e f(v)) |minu∈e f(u)| < 0 or |f(uk1)| >
0.

Now, we can show that we always find an eigenvector which is at most the minimum eigenvector of
the clique reduction.
Lemma 7. For any hypergraph H = (VH , EH , w) with clique reduction G, if f is the eigenvector
corresponding to λ1(D−1G JG), then

fᵀJHf

fᵀDHf
≤ λ1(D−1G JG)

and the inequality is strict if mine∈EH
re > 2.

12

Proof. Since λ1(D−1G JG) = (fᵀJGf)/(fᵀDGf) and (fᵀDGf) = (fᵀDHf) by the construction
of the clique graph, it suffices to show that

fᵀJHf ≤ fᵀJGf

which is equivalent to∑
e∈EH

w(e)

(
max
v∈e

f(v) + min
u∈e

f(u)

)2

≤
∑

(u,v)∈EG

wG(u, v)(f(u) + f(v))2

=
∑
e∈EH

w(e)
∑
u,v∈e

1

re − 1
(f(u) + f(v))2

which holds by Lemma 6.

Furthermore, if mine∈EH
re > 2, then by Lemma 6 the inequality is strict unless every edge e ∈ EH

contains at most one v ∈ e with f(v) 6= 0. Suppose the inequality is not strict, then it must be that

λ1(D−1G JG) =

∑
(u,v)∈EG

wG(u, v)(f(v) + f(u))2∑
v∈VG

dG(v)f(v)2

=

∑
v∈VG

dG(v)f(v)2∑
v∈VG

dG(v)f(v)2

= 1

since for every edge (u, v) ∈ EG, at most one of f(u) or f(v) is not equal to 0. This cannot
be the case, since it is a standard fact that the maximum eigenvalue λn(D−1G JG) = 2 and so∑n
i=1 λi(D

−1
G JG) ≥ (n − 1) + 2 = n + 1 which contradicts the fact that the trace tr(D−1G JG) is

equal to n. This proves the final statement of the lemma.

B.2 Cheeger-type inequality for hypergraph bipartiteness

The operator JH has a well-defined minimum eigenvector. Before proving Theorem 2, we will
prove some intermediate facts about the new hypergraph operator JH which will allow us to show that
the operator JH has a well-defined minimum eigenvector. Given a hypergraph H = (VH , EH , w),
for any edge e ∈ EH and weighted measure vector ft, let rSe , maxv∈Sft (e)

{r(v)} and rIe ,
minv∈Ift (e){r(v)}, and recall that cft(e) = w(e) |∆ft(e)|.
Lemma 8. Given a hypergraph H = (VH , EH , w) and normalised measure vector ft, let

r =
dft
dt

= −D−1H JHft.

Then, it holds that
‖r‖2w = −

∑
e∈E

w(e)∆ft(e)
(
rSe + rIe

)
.

Proof. Let P ⊂ V be one of the densest vertex sets defined with respect to the solution of the linear
program (5). By the description of Algorithm 2, we have r(u) = δ(P) for every u ∈ P , and therefore∑
u∈P

d(u)r(u)2 = vol(P) · δ(P)2

=
(
cft

(
S+U,P

)
+ cft

(
I+U,P

)
− cft

(
S−U,P

)
− cft

(
I−U,P

))
· δ(P)

=

 ∑
e∈S+

U,P

cft(e) +
∑

e∈I+U,P

cft(e)−
∑

e∈S−U,P

cft(e)−
∑

e∈I−U,P

cft(e)

 · δ(P)

=
∑

e∈S+
U,P

cft(e) · rSe +
∑

e∈I+U,P

cft(e) · rIe −
∑

e∈S−U,P

cft(e) · rSe −
∑

e∈I−U,P

cft(e) · rIe .

13

Since each vertex is included in exactly one set P and each edge will appear either in one each of
S+U,P and I+U,P or in one each of S−U,P and I−U,P , it holds that

‖r‖2w =
∑
v∈V

d(v)r(v)2

=
∑
P

∑
v∈P

d(v)r(v)2

=
∑
P

 ∑
e∈S+

U,P

cft(e) · rSe +
∑

e∈I+U,P

cft(e) · rIe −
∑

e∈S−U,P

cft(e) · rSe −
∑

e∈I−U,P

cft(e) · rIe


= −

∑
e∈E

w(e)∆ft(e)
(
rSe + rIe

)
,

which proves the lemma.

Next, we define γ1 = minf D(f) and now show that any vector f that satisfies γ1 = D(f) is an
eigenvector of JH with eigenvalue γ1. We start by showing that the Raleigh quotient of the new
operator is equivalent to the discrepancy ratio of the hypergraph.

Lemma 9. For any hypergraph H and vector ft ∈ Rn, it holds that D(ft) = RH(ft).

Proof. Since fᵀt DHft =
∑
v∈V d(v)ft(v)2, it is sufficient to show that

fᵀt JHft =
∑
e∈EH

w(e)

(
max
u∈e

ft(u) + min
v∈e

ft(v)

)2

Recall that for some graph Gt, JH = DGt +AGt . Then, we have that

fᵀt JHft = fᵀt (DGt
+AGt

)ft

=
∑

(u,v)∈EG

wG(u, v)(ft(u) + ft(v))2

=
∑
e∈EH

∑
(u,v)∈Sft (e)×Ift (e)

wGt
(u, v)(ft(u) + ft(v))2

=
∑
e∈EH

w(e)

(
max
u∈e

ft(u) + min
v∈e

ft(v)

)2

,

which follows since the graph Gt is constructed by splitting the weight of each hyperedge e ∈ EH
between the edges Sft(e)× Ift(e).

Lemma 10. For a hypergraph H , operator JH , and vector ft, the following statements hold:

1. d
dt‖ft‖

2
w = −2fᵀt JHft;

2. d
dt (f

ᵀ
t JHft) = −2‖D−1H JHft‖2w;

3. d
dtR(ft) ≤ 0 with equality if and only if D−1H JHft ∈ span(ft).

14

Proof. By definition, we have that

d‖ft‖2w
dt

=
d

dt

∑
v∈V

d(v)ft(v)2

=
∑
v∈V

d(v) · dft(v)2

dt

=
∑
v∈V

d(v) · dft(v)2

dft(v)

dft(v)

dt

= 2
∑
v∈V

d(v)ft(v) · dft(v)

dt

= 2

〈
ft,

dft
dt

〉
w

= −2〈ft, D−1H JHft〉w,

which proves the first statement.

For the second statement, by Lemma 9 we have

fᵀt JHft =
∑
e∈E

w(e)

(
max
u∈e

ft(u) + min
v∈e

ft(v)

)2

,

and therefore

d

dt
fᵀt JHft =

d

dt

∑
e∈E

w(e)

(
max
u∈e

ft(u) + min
v∈e

ft(v)

)2

= 2
∑
e∈E

w(e)∆ft(e) ·
d

dt

(
max
u∈e

ft(u) + min
v∈e

ft(v)

)
= 2

∑
e∈E

w(e)∆ft(e) ·
(
rSe + rIe

)
, (14)

where the last equality holds by the way that all the vertices receive their r-values by the algorithm
and the definitions of rSe and rIe . On the other side, by definition r = −D−1H JHft and so by Lemma 8,

‖D−1H JHft‖2w = ‖r‖2w = −
∑
e∈E

w(e)∆ft(e)
(
rSe + rIe

)
. (15)

By combining (14) with (15), we have the second statement.

For the third statement, notice that we can write fᵀt JHft as 〈ft, D−1H JHft〉w. Then, we have that

d

dt

〈ft, D−1H JHft〉w
‖ft‖2w

=
1

‖ft‖2w
·

d 〈ft, D−1H JHft〉w
dt

− 〈ft, D−1H JHft〉w ·
1

‖ft‖4w
d ‖ft‖2w

dt

= − 1

‖ft‖4w
·
(

2 · ‖ft‖2w · ‖D−1H JHft‖2w +
〈
ft, D

−1
H JHft

〉
w
· d ‖ft‖2w

dt

)
= − 2

‖ft‖4w
·
(
‖ft‖2w · ‖D−1H JHft‖2w −

〈
ft, D

−1
H JHft

〉2
w

)
≤ 0,

where the last inequality holds by the Cauchy-Schwarz inequality on the inner product 〈·, ·〉w with
the equality if and only if D−1H JHft ∈ span(ft).

This allows us to establish the following key fact.

Lemma 11. For any hypergraphH , γ1 = minf D(f) is an eigenvalue ofD−1H JH and any minimiser
f is its corresponding eigenvector.

15

Proof. By Lemma 9, it holds that R(f) = D(f) for any f ∈ Rn. When f is a minimiser of D(f), it
must hold that

dR(f)

dt
= 0,

which implies by Lemma 10 that D−1H JHf ∈ span(f) and proves that f is an eigenvector.

Cheeger-type inequality. We are now able to prove a Cheeger-type inequality for our operator and
the hypergraph bipartiteness.

Lemma 12. Given a hypergraph H = (VH , EH) with sets L,R ⊂ VH such that β(L,R) = β, it is
the case that

γ1 ≤ 2β

where γ1 is the smallest eigenvalue of D−1H JH .

Proof. Let χL,R ∈ {−1, 0, 1}n be the indicator vector of the cut L,R such that

χL,R(u) =

{
1 if u ∈ L
−1 if u ∈ R
0 otherwise

.

Then, by Lemma 9, the Rayleigh quotient is given by

RH (χL,R) =

∑
e∈E w(e) (maxu∈e χL,R(u) + minv∈e χL,R(v))

2∑
v∈V d(v)χL,R(v)2

=
4w(L|L) + 4w(R|R) + w(L,L ∪R|R) + w(R,L ∪R|L)

vol(L ∪R)

≤ 2β(L,R),

which completes the proof since γ1 = minf RH(f) by Lemma 11.

The proof of the other direction of the Cheeger-type inequality is more involved, and forms the basis
of the second claim in Theorem 1.

Theorem 4. For any hypergraph H = (V,E,w), let JH be the operator defined with respect to H ,
and γ1 = minf D(f) = minf R(f) be the minimum eigenvalue of D−1H JH . Then, there are disjoint
sets L,R ⊂ V such that

β(L,R) ≤
√

2γ1.

Proof. Let f ∈ Rn be the vector such that D(f) = γ1. For any threshold t ∈ [0,maxu f(u)2],
define Xt such that

Xt(u) =

 1 if f(u) ≥
√
t

−1 if f(u) ≤ −
√
t

0 otherwise
.

We will show that choosing t ∈
[
0,maxu f(u)2

]
uniformly at random gives

E

[∑
e∈EH

w(e)

∣∣∣∣max
u∈e

Xt(u) + min
v∈e

Xt(v)

∣∣∣∣
]
≤
√

2γ1 · E

[∑
v∈VH

d(v) |Xt(v)|

]
. (16)

Notice that every such Xt defines disjoints vertex sets L and R that satisfies

β(L,R) =

∑
e∈EH

w(e) |maxu∈eXt(u) + minv∈eXt(v)|∑
v∈VH

d(v) |Xt(v)|
.

Hence, (16) would imply that there is some Xt such that the disjoint L,R defined by Xt would
satisfy ∑

e∈EH

w(e)

∣∣∣∣max
u∈e

Xt(u) + min
v∈e

Xt(v)

∣∣∣∣ ≤√2γ1 ·
∑
v∈VH

d(v) |Xt(v)| ,

16

which implies that
β(L,R) ≤

√
2γ1.

Hence, it suffices to prove (16). We assume without loss of generality that maxu
{
f(u)2

}
= 1, so t

is chosen uniformly from [0, 1]. First of all, we have that

E

[∑
v∈VH

d(v) |Xt(v)|

]
=
∑
v∈VH

d(v)E [|Xt(v)|] =
∑
v∈VH

d(v)f(v)2.

To analyse the left-hand side of (16), we will focus on a particular edge e ∈ EH . Let xe =
maxu∈e f(u) and ye = minv∈e f(v). We will drop the subscript e when it is clear from context. We
will show that

E
[∣∣∣∣max

u∈e
Xt(u) + min

v∈e
Xt(v)

∣∣∣∣] ≤ |xe + ye| (|xe|+ |ye|). (17)

1. Suppose sign(xe) = sign(ye). Our analysis is by case distinction:

• |maxu∈eXt(u) + minv∈eXt(v)| = 2 with probability min(x2e, y
2
e);

• |maxu∈eXt(u) + minv∈eXt(v)| = 1 with probability
∣∣x2e − y2e ∣∣;

• |maxu∈eXt(u) + minv∈eXt(v)| = 0 with probability 1−max(x2e, y
2
e).

Assume without loss of generality that x2e = min
(
x2e, y

2
e

)
. Then, it holds hat

E
[∣∣∣∣max

u∈e
X(u) + min

v∈e
X(v)

∣∣∣∣] = 2x2e +
∣∣x2e − y2e ∣∣ = x2e + y2e ≤ |xe + ye| (|xe|+ |ye|).

2. Suppose sign(xe) 6= sign(ye). Our analysis is by case distinction:

• |maxu∈eXt(u) + minv∈eXt(v)| = 2 with probability 0;
• |maxu∈eXt(u) + minv∈eXt(v)| = 1 with probability

∣∣x2e − y2e ∣∣;
• |maxu∈eXt(u) + minv∈eXt(v)| = 0 with probability min(x2e, e

2
e).

Assume without loss of generality that x2e = min
(
x2e, y

2
e

)
. Then, it holds that

E
[∣∣∣∣max

u∈e
Xt(u) + min

v∈e
Xt(v)

∣∣∣∣] =
∣∣x2e − y2e ∣∣ = (|xe|−|ye|)(|xe|+|ye|) = |xe + ye| (|xe|+|ye|),

where the final equality follows because xe and ye have different signs.

These two cases establish (17). Now, we have that

E

[∑
e∈EH

w(e)

∣∣∣∣max
u∈e

Xt(u) + min
v∈e

Xt(v)

∣∣∣∣
]
≤
∑
e∈EH

w(e) |xe + ye| (|xe|+ |ye|)

≤
√∑
e∈EH

w(e) |xe + ye|2
√∑
e∈EH

w(e)(|xe|+ |ye|)2

=

√√√√∑
e∈EH

w(e)

(
max
u∈e

f(u) + min
v∈e

f(v)

)2√∑
e∈EH

w(e)(|xe|+ |ye|)2.

By our assumption that f is the eigenvector corresponding to the eigenvalue γ1, it holds that∑
e∈EH

w(e)

(
max
u∈e

f(u) + min
v∈e

f(v)

)2

≤ γ1
∑
v∈VH

d(v)f(v)2.

On the other side, we have that∑
e∈EH

w(e)(|xe|+ |ye|)2 ≤ 2
∑
e∈EH

w(e)(|xe|2 + |ye|2) ≤ 2
∑
v∈VH

d(v)f(v)2.

This gives us that

E

[∑
e∈EH

w(e)

∣∣∣∣max
u∈e

X(u) + min
v∈e

X(v)

∣∣∣∣
]
≤
√

2γ1
∑
v∈VH

d(v)f(v)2 =
√

2γ1 · E

[∑
v∈VH

d(v) |X(v)|

]
,

which proves the statement.

17

Proof of Theorem 1. Now, we are able to combine these results to prove Theorem 1, which we
restate here for completeness.
Theorem 1 (Main Result). Given a hypergraph H = (VH , EH , w) and parameter ε > 0, the
following holds:

1. There is an algorithm that finds an eigen-pair (λ, f) of the operator JH such that λ ≤
λ1(JG), where G is the clique reduction of H and the inequality is strict if mine∈EH

re > 2.
The algorithm runs in poly(|VH |, |EH |, 1/ε) time.

2. Given an eigen-pair (λ, f) of the operator JH , there is an algorithm that constructs the
two-sided sweep sets defined on f , and finds sets L and R such that βH(L,R) ≤

√
2λ. The

algorithm runs in poly(|VH |, |EH |) time.

Proof. The first statement of the Theorem follows by setting the starting vector f0 of the diffusion
to be the minimum eigenvector of the clique graph G. By Lemma 7, we have that RH(f0) ≤
λ1(D−1G JG) and the inequality is strict if mine∈EH

re > 2. Then, Theorem 3 shows that the
diffusion process converges to an eigenvector and that the Rayleigh quotient only decreases during
convergence, and so the inequality holds. The algorithm runs in polynomial time since, by Theorem 3,
the diffusion process converges in polynomial time, and each step of Algorithm 1 can be computed in
polynomial time using a standard algorithm for solving the linear programs.

The second statement is a restatement of Theorem 4. The sweep set algorithm runs in polynomial
time since there are n different sweep sets, and computing the hypergraph bipartiteness for each one
also takes only polynomial time.

C Further discussion

C.1 Discussion of simple reductions

One could naturally ask if we can construct a 2-graph G from the original hypergraph H and apply
the 2-graph diffusion process on G to find a good approximation of the cut structure of H . However,
a simple graph reduction would introduce a factor of r, which relates to the rank of hyperedges
in H , into the approximation guarantee. To see this, we consider the following two natural graph
reductions: (1) Clique Reduction: From H = (V,EH), we construct G = (V,EG) in which every
hyperedge e ∈ EH of rank re is replaced by a clique of re vertices in G; (2) Random Reduction:
From H = (V,EH), we construct G = (V,EG) in which every hyperedge e ∈ EH is replaced by an
edge connecting two random vertices of e.

To discuss the drawback of the both reductions, we study the following two r-uniform hypergraphs
H1, H2, in which all the edges are between the vertex sets L,R and are constructed as follows: (1) in
H1, every e that connects L and R contains exactly one vertex from L, and r− 1 vertices from R; (2)
in H2, every e that connects L and R contains exactly r/2 vertices from L and r/2 vertices from R.
See Figure 6 for illustration. As such, we have that wH1

(L,R) = |EH1
|, and wH2

(L,R) = |EH2
|.

L R

Hypergraph H1

L R

Hypergraph H2

...

...

...

...
...

...
...

...
...

Figure 6: Example hypergraphs illustrating the problem with simple reductions to 2-graphs.

Now we analyse the size of the cut (L,R) in the reduced graph.

18

• Let wG(L,R) be the cut value of (L,R) in the random graph G constructed from H by the
random reduction. We have for H1 that E[wG(L,R)] = Θ(1/r) · wH1(L,R) and for H2

that E[wG(L,R)] = Θ(1) · wH2(L,R).

• Similarly, by setting wG(L,R) to be the cut value of (L,R) in the reduced graph G
constructed from H by the clique reduction, we have for H1 that wG(L,R) = Θ(r) ·
wH1

(L,R) and for H2 that wG(L,R) = Θ(r2) · wH2
(L,R).

Since these two approximation ratios differ by a factor of r in the two reductions, no matter how we
weight the edges in the reduction, there are always some hypergraphs in which some cuts cannot
be approximated better than a factor of O(r). This suggests that reducing a hypergraph H to some
2-graph with some simple reduction would always introduce a factor of r in the approximation
guarantee, and that is why a significantly different approach, like what we present in this paper, is
needed for hypergraph clustering problems.

C.2 Computing the minimum eigenvector of JH is NP-hard

We now show a straightforward but very important fact about the operator JH and its eigenvalues.

Theorem 5. Given any operator that satisfies a Cheeger-type inequality for hypergraph bipartiteness,
there’s no polynomial-time algorithm that computes a multiplicative-factor approximation of the
minimum eigenvalue or eigenvector unless P = NP.

Proof. Our proof is based on considering the following MAX SET SPLITTING problem: For any
given hypergraph, the problem looks for a partition L,R with L∪R = VH and L∩R = ∅, such that
it holds for any e ∈ EH that e ∩ L 6= ∅ and e ∩R 6= ∅. This problem is known to be NP-complete ?.
This is also referred to as HYPERGRAPH 2-COLORABILITY and we can consider the problem of
coloring every vertex in the hypergraph either red or blue such that every edge contains at least one
vertex of each color.

We will assume that there is some operator L which satisfies the Cheeger-type inequality given by
Lemma 12 and Theorem 4 and that there is an algorithm which can compute the minimum eigen-pair
of the operator in polynomial time. We will show that this would allow us to solve the MAX SET
SPLITTING problem in polynomial time.

Given a 2-colorable hypergraph H with coloring (L,R), we will use the eigenvector of the operator
JH to find a valid coloring. By definition, we have that β(L,R) = 0 and γ1 = 0 by Lemma 12.
Furthermore, by Theorem 4 we can compute disjoint sets L′, R′ such that β(L′, R′) = 0. Note that
in general L′ and R′ will be different from L and R.

Now, let E′ = {e ∈ EH : e∩ (L′ ∪R′) 6= ∅}. Then, by the definition of bipartiteness, for all e ∈ E′
we have e∩L′ 6= ∅ and e∩R′ 6= ∅. Therefore, if we color every vertex in L′ blue and every vertex in
R′ red then every e ∈ E′ will be satisfied. That is, they will contain at least one vertex of each color.

It remains to color the vertices in V \ (L′ ∪ R′) such that the edges in EH \ E′ are satisfied. The
hypergraph H ′ = (V \ (L′ ∪R′), EH \E′) must also be 2-colorable and so we can recursively apply
our algorithm until every vertex is colored. This algorithm will run in polynomial time since there are
at most O(n) iterations and each iteration is polynomial time by our assumption.

So, we have answered an open question posed by Yoshida ? by giving a hypergraph operator which
satisfies a Cheeger-type inequality for hypergraph bipartiteness. We have also shown that one cannot
hope to compute the minimum eigenvector of any such operator unless P = NP.

C.3 Discussion about the number of eigenvectors

In this section, we investigate the spectrum of the non-linear hypergraph Laplacian operator introduced
in ? and our new operator JH by considering some example hypergraphs.

The hypergraph LaplacianLH can have more than 2 eigenvalues. Similarly to our new operator
JH , for some vector f , the operator LH behaves like the graph Laplacian LG = DG −AG for some
graph G constructed by splitting the weight of each hyperedge e between the edges in Sf (e)× If (e).
We refer the reader to ? for the full details of this construction.

19

v1

v2 v3

H

v1

v2 v3

G1

v1

v2 v3

G2

v1

v2 v3

G3

1
3

1
3

1
3

1
2

1
2

1

Figure 7: Given the hypergraph H , there are three graphs G1, G2, and G3 which correspond to eigenvalues of
the hypergraph Laplacian LH .

Now, with reference to Figure 7, we consider the simple hypergraph H where VH = {v1, v2, v3}
and EH = {{v1, v2, v3}}. Letting f1 = [1, 1, 1]ᵀ, notice that the graph G1 in Figure 7 is the graph
constructed such that LH is equivalent to LG1

. In this case,

LG1 =


2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3
2
3


and we have

D−1H LHf1 = LG1
f1 = [0, 0, 0]ᵀ

which shows that f1 is the trivial eigenvector of D−1H LH with eigenvalue 0.

Now, consider f2 = [1,−2, 1]ᵀ. In this case, G2 shown in Figure 7 is the graph constructed such that
LH is equivalent to LG2

. Then, we have

LG2 =


1
2 − 1

2 0

− 1
2 1 − 1

2

0 − 1
2

1
2


and

D−1H LHf2 = LG2
f2 =

[
3

2
,−3,

3

2

]ᵀ
and so f2 is an eigenvector of D−1H LH with eigenvalue 3/2.

Finally, we consider f3 = [1,−1, 0] and notice that the graph G3 is the constructed graph. Then,

LG3
=


1
2 − 1

2 0

− 1
2

1
2 0

0 0 0


and

D−1H LHf3 = LG3f3 = [2,−2, 0]
ᵀ

which shows that f3 is an eigenvector of LH with eigenvalue 2.

Through an exhaustive search through the other possible constructed graphs on {v1, v2, v3} we find
that these are the only eigenvalues. By the symmetries of f2 and f3 this means that the operator LH
has a total of 7 different eigenvectors and 3 distinct eigenvalues. It is useful to point out that since the
LH operator is non-linear, a linear combination of eigenvectors with the same eigenvalue is not, in
general, an eigenvector. This example answers an open question in ? which showed that there are
always two eigenvalues and asked whether there can be any more, although further investigation of
the spectrum of this operator would be very interesting.

20

Kn
2

Kn
2

H

...
Kn

2
Kn

2

G

...
→...

...
...

...

Figure 8: Given the hypergraph H , there are 2n/3 possible graphs G, each of which correspond to a different
eigenvector of the hypergraph operator JH .

The hypergraph operator JH can have an exponential number of eigenvectors. To study the
spectrum of our new operator JH , we construct a hypergraph H in the following way:

• There are n vertices split into two clusters L and R of size n/2. There is a clique on each
cluster.
• The cliques are joined by n/3 edges of rank 3, such that every vertex is a member of exactly

one such edge.

Now, we can construct a vector f as follows. For each edge e of rank 3 in the hypergraph, let u ∈ e
be the vertex alone in one of the cliques, and v, w ∈ e be the two vertices in the other clique. Then,
we set f(u) = 1 and one of f(v) or f(w) to be −1 and the other to be 0. Notice that there are 2n/3

such vectors. Each one corresponds to a different graph G, as illustrated in Figure 8, which is the
graph constructed such that JH is equivalent to JG when applied to the vector f .

Notice that, by the construction of the graph H , half of the edges of rank 3 must have one vertex in L
and two vertices in R and half of the rank-3 edges must have two vertices in L and one vertex in R.
This means that, within each cluster L or R, one third of the vertices have f -value 1, one third have
f -value −1 and one third have f -value 0.

Now, we have that (
D−1H JHf

)
(u) =

(
D−1H JGf

)
(u)

=
2

n

∑
u∼Gv

(f(u) + f(v))

where u ∼G v means that u and v are adjacent in the graph G. Suppose that f(u) = 0, meaning that
it does not have an adjacent edge in G from its adjacent rank-3 edge in H . In this case,(

D−1H JHf
)

(u) =
2

n

∑
u∼Gv

f(v)

=
2

n

[n

3 · 2
· 1 +

n

3 · 2
· (−1)

]
= 0.

Now, suppose that f(u) = 1, and so it has an adjacent edge in G from its adjacent rank-3 edge in H .
Then, (

D−1H JHf
)

(u) =
2

n

∑
u∼Gv

(1 + f(v))

=
2

n

[n
2

+
n

3 · 2
· (−1) +

(n

3 · 2
− 1
)
· 1− 1

]
= 1− 4

n
.

Similarly, if f(u) = −1, we find that(
D−1H JHf

)
(u) =

4

n
− 1

21

and so we can conclude that f is an eigenvector of the operator JH with eigenvalue (n− 4)/n. Since
there are 2n/3 possible such vectors f , there are an exponential number of eigenvectors with this
eigenvalue. Once again, we highlight that due to the non-linearity of JH , a linear combination of
these eigenvectors is in general not an eigenvector of the operator.

22

	Proof of Theorem 2
	Additional preliminaries
	Counter-example showing that rule (2) is needed
	Computing r by a linear program
	Analysis of the linear program

	Proof of Theorem 1
	Convergence of diffusion process
	Cheeger-type inequality for hypergraph bipartiteness

	Further discussion
	Discussion of simple reductions
	Computing the minimum eigenvector of JH is NP-hard
	Discussion about the number of eigenvectors

