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ABSTRACT

Adaptive optimizers have achieved significant success in deep learning by dy-
namically adjusting the learning rate based on iterative gradients. Compared to
stochastic gradient descent (SGD), adaptive optimizers converge much faster in
various deep-learning tasks. However, as a fundamental adaptive optimizer, the
theoretical analysis of AdaGrad-Norm is inadequate, and there are many techni-
cal challenges regarding last-iterate convergence and average-iterate convergence
rates for general non-convex loss functions. This paper aims to address these lim-
itations and provides a comprehensive analysis of AdaGrad-Norm. We propose
novel techniques that avoid the assumption of no saddle points and derive last-
iterate convergence for both almost surely and mean-square senses. Furthermore,
under milder conditions, we obtain the near-optimal and sub-optimal rates w.r.t
averaged iterate in the expected sense and the almost surely sense, respectively.
We relax one restrictive assumption of the uniformly bounded stochastic gradient
used in existing high-probability convergence analysis. Moreover, the methodolo-
gies provided in this paper have the potential to contribute to further research on
the convergence properties of other stochastic algorithms.

1 INTRODUCTION

Adaptive gradient methods (Duchi et al., 2011; Kingma & Ba, 2015) have achieved tremendous
success in many fields of machine learning. It is observed that adaptive optimizers can achieve
better performance than vanilla stochastic gradient descent (SGD) (Vaswani et al., 2017; Duchi
et al., 2013; Lacroix et al., 2018; Dosovitskiy et al., 2021) in nonconvex optimization, thus become
popular in deep learning. The intuitive explanation of its superiority compared to SGD is that the
adaptive optimizers automatically adjust the learning rate based on past stochastic gradients.

AdaGrad (Duchi et al., 2011; McMahan & Streeter, 2010), as a fundamental adaptive learning rate
algorithm, has attracted significant research attention in recent years. The norm version of AdaGrad
(i.e., AdaGrad-Norm) as a single stepsize adaptation method is described as follows:

Sn = Sn−1 +
∥∥∇g(θn, ξn)

∥∥2, θn+1 = θn − α0√
Sn

∇g(θn, ξn), (1)

where g(θ) (θ ∈ Rd) is the loss function, S0 ≥ 0 is a pre-determined constant, α0 is a positive
constant, and ∇g(θ, ξn) denotes an unbiased estimate of ∇g(θ), i.e., Eξn [∇g(θ, ξn) | Fn] = ∇g(θ)
and the sequence {ξn} is a sequence of independent random variables. We define a σ-filtration
Fn := σ{θ1, ξ1, ξ2, ..., ξn−1}. Despite its simple structure, the convergence results of AdaGrad-
Norm on non-convex optimization are sparse and far from satisfactory, especially in the last-iterate
sense and the average-iterate sense.

Jin et al. (2022) established almost surely convergence of AdaGrad-Norm in the sense of last-iterate,
but heavily relied on the unrealistic assumption that the loss function does not have saddle points.
This assumption does not hold in most deep learning applications, for example for neural networks
with hidden layers. As a result, the analysis provided in Jin et al. (2022) is not applicable to general
nonconvex loss functions with saddle points. It is crucial to explore alternative approaches for
analyzing the convergence of AdaGrad-Norm in more general scenarios.

In terms of average-iterate convergence rate, most existing theoretical results for AdaGrad-Norm
are based on strong assumptions (Ward et al., 2020; Défossez et al., 2020). For example, Ward
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et al. (2020); Défossez et al. (2020) assumed the uniform upper bound for all stochastic gradients.
To the best of our knowledge, this assumption is often violated when stochastic gradients contain
Gaussian random noise. Furthermore, even the conventional mini-batch stochastic gradient fails
to satisfy this assumption when the loss function is quadratic (Wang et al., 2023). Recently, Faw
et al. (2022); Wang et al. (2023) have removed the uniform boundedness assumption of stochastic
gradients, however, they only achieve the convergence rates in the high-probability sense.

The goal of this paper is to address the limitations of existing results and provide a comprehensive
analysis of the convergence properties of AdaGrad-Norm for general non-convex loss functions.

Technological Challenges. Despite the inherent simplicity structure of AdaGrad-Norm, investigat-
ing its convergence and convergence rate under general conditions poses a significant challenge. In
this regard, we will highlight several major obstacles, of which only the first one has been effectively
tackled in previous research.

(1) Learning rate α0/
√
Sn and stochastic gradient ∇g(θn, ξn) in AdaGrad-Norm are conditionally

dependent on the σ-filtration Fn. i.e., we cannot replace E
(∇g(θn)

⊤∇g(θn,ξn)√
Sn

∣∣∣Fn

)
with ∥∇g(θn)∥2

√
Sn

.

This challenge has been effectively resolved in (Jin et al., 2022; Faw et al., 2022; Wang et al., 2023).
Faw et al. (2022) addressed this issue by scaling down 1/

√
Sn to 1/

√
Sn−1 + ∥∇g(θn)∥2. In Jin

et al. (2022); Wang et al. (2023), authors transformed 1/
√
Sn into 1/

√
Sn−1+1/

√
Sn−1−1/

√
Sn

to obtain a new recurrence relation, where the conditional dependence issue no longer exists. The
technique employed in Jin et al. (2022) to solve this issue is also utilized in the proof of this paper.

(2) The quadratic error term ∥∇g(θn, ξn)∥2/Sn generated by AdaGrad-Norm does not exhibit ad-
ditivity, i.e.,

∑+∞
n=1 ∥∇g(θn, ξn)∥2/Sn = Θ(lnSn) = +∞. The traditional proofs for the almost

surely convergence at the last iterate, i.e., limn→+∞ ∥∇g(θn)∥ = 0 a.s., for SGD or SGD with
momentum usually requires the summability of the quadratic error term. This is why the clas-
sical Robbins-Monro condition (Robbins & Siegmund, 1971; Jin et al., 2022; Lei et al., 2005;
Li & Milzarek, 2022), i.e.,

∑+∞
n=1 ϵn = +∞,

∑+∞
n=1 ϵ

2
n < +∞, where {ϵn}+∞

n=1 is the step
size of SGD, arises. Under the Robbins-Monro condition and incorporating the boundedness of
E(∥∇g(θn, ξn)∥2|Fn), it is straightforward to establish the summability of this quadratic error term.
However, this is not the same for AdaGrad-Norm. Jin et al. (2022) addressed this issue but relied
on the assumption of the absence of saddle points in the loss function. Their approach cannot be
applied to loss functions that do have saddle points. A detailed explanation of this issue is provided
in the proof sketch of Theorem 3.1 in Section 4.

(3) Demonstrating the convergence in mean square of AdaGrad-Norm with respect to the last iterate,
denoted as, limn→+∞ E ∥∇g(θn)∥2 = 0, encounters several challenges. Typically, for traditional
SGD, it is easier to prove the last-iterate mean square convergence than the last-iterate almost surely
convergence. By taking the mathematical expectation on both sides of the iteration equation associ-
ated with the loss function formed by SGD, we obtain

E(g(θn+1)) ≤ E(g(θn))− ϵn E ∥∇g(θn)∥2 +
ϵ2n
2

E ∥∇g(θn, ξn)∥2,

where ϵn is the learning rate of SGD. Regarding E ∥∇g(θn)∥2 as a unified quantity, we convert
the original stochastic dynamical system into a deterministic dynamical system. Through further
analysis, it is straightforward to derive the mean square convergence result in terms of the last
iterate. However, this methodology is not applicable to AdaGrad-Norm. Since the learning rate
of AdaGrad-Norm is a random variable, it is not allowed to move the step size α0/

√
Sn outside

the expectation when computing the mathematical expectation. While we may use operations such
as Hölder’s Inequality, it will introduce two inevitable issues. First, employing Hölder’s Inequality
introduces a change in order, which shifts our object from the second moment of the gradient norm to
an alternative quantity. Second, after using Hölder’s Inequality, our learning rate term incorporates
the mathematical expectation, resulting in α0/E

√
Sn, which makes the traditional SGD methods

no longer inapplicable. Consequently, the only option is to first prove the last-iterate almost surely
convergence and then establish the last-iterate mean-square convergence through The Lebesgue’s
Dominated Convergence Theorem. In other words, we need to prove that the expectation of the
uniform upper bound of the gradient norm sequence, i.e., E(supn≥1{∥∇g(θn)∥2}), is bounded,
which is a challenging task. Due to this inherent difficulty, so far there has been no result regarding
the mean square convergence of the last iterate of AdaGrad-Norm.

2



Under review as a conference paper at ICLR 2024

Contribution. In this paper, we overcome the aforementioned challenges, propose novel tech-
niques, and derive convergence results for both last-iterate and average-iterate under mild conditions.
Specifically, we make the following contributions:

(1) For the general nonconvex problems, we propose an innovative analytical perspective and
demonstrate the almost surely convergence for AdaGrad-Norm at the last iterate. Since
our approach does not examine the iterative characteristics of the dynamical system when
the gradients are small, the summability of the squared learning rates is not necessary in
our case. As a result, we can overcome the second challenge. Furthermore, our analysis
does not depend on the no saddle point assumption required in (Jin et al., 2022), which is a
significant improvement.

(2) We are the first to demonstrate the last-iterate mean-square convergence of AdaGrad-Norm
under mild conditions. We propose a novel approach by splitting the dynamical system of
AdaGrad-Norm into multiple sub-processes via many first entrance times. In this way, the
expectation of the maximum value is proved to be finite and addresses the third challenge.
Our analytical methodology has the potential applications to other algorithms.

(3) Based on the first two convergence results, we obtain a more exact estimate of Sn, i.e.,
ESn = O(n). Utilizing this estimate and the martingale difference estimation lemma
(Lemma A.4), we prove both the almost sure and expectation convergence rates for
AdaGrad-Norm at the average iterate without assuming the uniform boundedness on
stochastic gradients. Our results fill the gap in existing research (Ward et al., 2020; Faw
et al., 2022; Wang et al., 2023) which only achieved a high probability convergence rate.

1.1 RELATED WORKS

Both Duchi et al. (2011) and McMahan & Streeter (2010) independently proposed AdaGrad for
non-convex optimization. Since then, a series of studies have emerged, analyzing the convergence
of AdaGrad-Norm on non-convex landscapes (Ward et al., 2020; Li & Orabona, 2019; Zou et al.,
2018; Li & Orabona, 2020; Gadat & Gavra, 2020; Défossez et al., 2020; Kavis et al., 2022; Liu
et al., 2022; Faw et al., 2022).

2 PROBLEM SETUP AND ASSUMPTIONS

Throughout the paper, we focus on the following nonconvex problem

min
θ

g(θ) (2)

where g : Rd → R is a non-negative and continuously differentiable function and satisfies the
following assumptions.

Assumption 2.1. Loss function g(θ) satisfies the following conditions:

(1) The loss function g(θ) is bounded for any θ that belongs to the gradient sub-level Jη :=
{θ | ∥∇g(θ)∥2 < η} with some η > 0, i.e., g(θ) < +∞, ∀ θ ∈ Jη .

(2) The gradient ∇g(θ) is L-Lipschitz continuous, i.e., for any x, y ∈ Rd,∥∥∇g(x)−∇g(y)
∥∥ ≤ L∥x− y∥.

(3) For two fixed constants σ0, σ1 ≥ 0, the stochastic gradient ∇g(θ, ξn) satisfies that

Eξn

(∥∥∇g(θ, ξn)
∥∥2) ≤ σ0

∥∥∇g(θ)
∥∥2 + σ1 (3)

for any θ ∈ Rd.

Assumption 2.1 is standard in the non-convex analysis and optimization, which can be found in
many previous studies (Faw et al., 2022; Wang et al., 2023; Mertikopoulos et al., 2020). Regarding
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the first condition in Assumption 2.1 1, we aim to exclude the existence of a stationary point at
the point with infinite function value (i.e., f(x) = ln(x) (x → +∞)), which has been used in
the literature (Mertikopoulos et al., 2020). Note that removing this assumption does not bring any
substantial difficulties in the proofs of the theorems, but needs extra discussions on the stationary
points at which the function value is infinite. However, the stationary points with the infinite function
value are quite special and different from the infinitely distant stationary points with finite function
values in logistic regression, i.e., f(x) = e−x (x → +∞). Without this assumption, proving
the statement would become extremely lengthy. Moreover, such functions have rarely appeared in
machine learning. Therefore, we make the assumption to simplify the proof.

Jin et al. (2022) makes the assumption on the set of the stationary point to prove the last-iterate
almost surely convergence of AdaGrad-Norm. However, such an assumption is not realistic. For
loss functions with saddle points, unless the function is defined in one-dimensional space R, we
can always find an example that does not satisfy the assumption in Jin et al. (2022). In machine
learning, except for problems such as linear regression or logistic regression, the existence of saddle
points is very common in many applications. Our assumptions enable us to encompass almost any
loss function in machine learning. Besides, Assumption 2.1(3) is commonly used in the analysis of
SGD. Our Assumption 2.1(3) is much weaker than the uniformly bounded stochastic gradients (i.e.,
∥∇g(θn, ξn)∥ < K < +∞ a.s..) required in Ward et al. (2020).

3 THEORETICAL RESULTS

In this section, we present the main convergence results of the AdaGrad-Norm algorithm for smooth
nonconvex problems. The proof sketch of each result will be provided in Section 4.

The first result below demonstrates the almost surely convergence of AdaGrad-Norm at the last
iterate, which is very challenging in the theoretical analysis of gradient-based methods.

Theorem 3.1. Consider the AdaGrad-Norm algorithm defined in Equation (1), if Assumption 2.1
holds, then for any initial point θ1 ∈ Rd and S0 ≥ 0, we have

lim
n→∞

∥∇g(θn)∥ = 0 a.s..

The description of the last iterate convergence provides a more accurate comprehension of the con-
vergence properties of AdaGrad-Norm. This is because, in practice, we typically use the last iterate
as the output, rather than the average iterate which is commonly studied in theoretical research. To
the best of our knowledge, the literature on the convergence of AdaGrad-Norm in the almost sure
sense is sparse. Moreover, we do not assume the absence of saddle points in the loss function,
which makes a substantial improvement, compared to the results in Jin et al. (2022). The result of
Theorem 3.1 is applicable to almost any loss function encountered in the machine learning regime.

The next theorem describes the convergence of the last iterate of the AdaGrad-Norm algorithm in
the mean-square sense.

Theorem 3.2. Consider the AdaGrad-Norm algorithm shown in Equation (1), if Assumption 2.1
holds, then for any initial point θ1 ∈ Rd and S0 ≥ 0, we have

lim
n→∞

E ∥∇g(θn)∥2 = 0.

Theorem 3.2 provides the mean-square convergence of the last iterate of AdaGrad-Norm, which
is a novel result, unveiling the uniform convergence of gradient norm convergence under the L2

norm 2. We are the first to use the approach by splitting the dynamical system of AdaGrad-Norm
into multiple sub-processes through many first entrance times. The proof sketch of the method
is provided in Section 4. This approach facilitates a deeper comprehension of the properties of
AdaGrad-Norm and can also be applied to the study of other algorithms. We would like to clarify
that the almost sure convergence does not imply mean-square convergence. To illustrate this, we

1Note that Assumption 2.1 (1) only concerns near-stationary points, not regions where ∥∇g(θ)∥ may be
large. Meanwhile, compared to the assumption in Mertikopoulos et al. (2020), our assumption is weaker as we
allow the existence of a stationary point at infinity with a finite loss function value.

2The L2 norm of a random variable ζ is defined as
√

E ∥ζ∥2.
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consider a sequence of random variables {ζn}+∞
n=1, where P(ζn = 0) = 1 − 1/n2 and P(ζn =

n2) = 1/n2. According to The B-C Lemma, we can easily show that limn→+∞ ζn = 0 almost
surely. However, by calculating, we can see that E(ζn) = 1 for all n > 0.

As a direct byproduct of Theorem 3.2, we can obtain the following more accurate estimation for Sn:
Property 3.1. Consider the AdaGrad-Norm algorithm in Equation (1), if Assumption 2.1 holds,
then for any initial point θ1 ∈ Rd and S0 ≥ 0, we get that

ESn = O(n),

where other hidden constant in O(n) is uniquely determined by α0, c, g(θ1),∇g(θ1), and S0.

Proof. Through Assumption 2.1 (3) and Theorem 3.2, we can clearly obtain the result.

Faw et al. (2022); Wang et al. (2023) only obtained the estimation for Sn: E
√
Sn = O(

√
n) to

achieve the high probability result. However, this estimate is not enough to achieve convergence
rates in the expectation sense, which is more difficult than in the high probability sense. In Prop-
erty 3.1, we derive a more accurate estimation ESn = O(n), rather than E

√
Sn = O(

√
n) and

achieve a result in the expectation sense in Theorem 3.4.

Furthermore, we present the almost surely convergence rates for the AdaGrad-Norm algorithm. It
is worth noting that the convergence rates provided in this paper are based on the average-iterate
sense, rather than the last-iterate convergence rates due to the milder conditions. To obtain con-
vergence rates in the last-iterate sense, one usually needs more conditions to measure the relation-
ship between loss function g and its gradient ∥∇g∥, such as Polyak-Łojasiewicz (PL) condition or
Kurdyka-Łojasiewicz (KL) condition. Since this paper focuses on the convergence properties of
general non-convex functions, we do not provide the convergence rates of the last iterate here. The
first convergence rate result is provided in the almost-surely sense.
Theorem 3.3. Consider the AdaGrad-Norm algorithm in Equation (1), if Assumption 2.1 holds,
then for any initial point θ1 ∈ Rd and S0 ≥ 0, we have

1

T

T∑
k=2

∥∥∇g(θk)
∥∥2 = O

(
ln

3
2+σ T√
T

)
(∀ σ > 0) a.s..

Theorem 3.3 presents the near-optimal convergence rate O
(

ln
3
2
+σ T√
T

)
in the almost-surely sense for

AdaGrad-Norm. We are the first to demonstrate that AdaGrad-Norm converges in a near-optimal rate
with probability one, while Faw et al. (2022); Wang et al. (2023) solely provide the high probability
results. Moreover, unlike in Ward et al. (2020), we do not impose the restrictive requirement that
∥∇g(θn, ξn)∥ is uniformly bounded almost surely.
Theorem 3.4. Consider the AdaGrad-Norm algorithm in Equation (1), if Assumption 2.1 holds, for
any initial point θ1 ∈ Rd, S0 ≥ 0, then we have

1

T

⊤∑
n=1

E ∥∇g(θn)∥2 = O

(
ln

2
p T

T
1
p

)
, ∀ p > 2.

Theorem 3.4 shows the convergence rate O
(
ln

2
p T/T

1
p

)
(∀p > 2) for AdaGrad-Norm in the expec-

tation sense. Note that the result of Theorem 3.4 in the expectation sense is different but not weaker
than the almost surely result in Theorem 3.3 and high-probability results in Faw et al. (2022); Wang
et al. (2023). The distinctions between Theorem 3.3 and 3.4 arise because the hidden constant in
O(·) is regarded as a random variable. This hidden constant is almost surely bounded, but its dis-
tribution is unknown, so its expectation is not necessarily bounded especially when p approaches 2.
On the other hand, in Faw et al. (2022); Wang et al. (2023), the authors may also obtain the expected

result
(
E
√∑⊤

n=1 ∥∇g(θn)∥2
/
T
)2

= O(lnT/
√
T ). However, this result does not induce the re-

sult w.r.t.
∑⊤

n=1 E ∥∇g(θn)∥2
/
T of Theorem 3.4. Ward et al. (2020) has achieved a near-optimal

rate but is based on the uniformly bounded stochastic gradients assumption which is much stronger
than ours, and this assumption will facilitate the proof. We will provide a detailed explanation of
this situation in Appendix D.3.
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4 PROOF SKETCH

In this section, we will describe the proof sketch of Theorems 3.1 and 3.2, summarize the limitations
in previous approaches, and clarify the innovativeness of our methods.

4.1 PROOF SKETCH OF THEOREM 3.1

To demonstrate the almost surely convergence of AdaGrad-Norm (in Theorem 3.1), the main ob-
stacle is to prove that the iterates sequence {θn}+∞

n=1 will eventually fall within the vicinity of a
connected component of the stationary point set J. We then proceed to narrow down the scope of
this region to show that θn will ultimately converge to the stationary point set J almost surely.

Step 1: We establish a recursive inequality relationship of the loss functions g in adjacent iterative
steps θi, θi+1, i.e.,

g(θi+1)− g(θi) ≤ −α0∥∇g(θi)∥2√
Si−1

+ α0

∥∇g(θi)∥ · E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si−1

+
cα2

0

2

E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si

+ Pi +Qi +Ri, (4)

where

Pi := α0
∇g(θi)

⊤(∇g(θi)−∇g(θi, ξi))√
Si−1

, Qi := α0
∥∇g(θi)∥ · (∥∇g(θi, ξi)∥2)− E(∥∇g(θi, ξi)∥2|Fi)

Si−1

Ri :=
Lα2

0

2

∥∇g(θi, ξi)∥2 − E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si

.

It is observed that when the gradient ∥∇g(θn)∥ is relatively large, i.e., ∀ u > 0, ∥∇g(θn)∥2 > u,
the negative term −α0∥∇g(θi)∥2/

√
Si−1 will dominate the right side of the inequality (4) as the

iterations proceeds. The subsequent terms related to the square of the learning rate can be ignored.
However, the martingale difference terms Pi, Qi, Ri may be positive and affect the negative term.
Therefore, next step we aim to prove that the martingale difference term tends to zero.

Step 2: In order to prove the convergence of the martingale difference when ∥∇g(θn)∥2 > u, i.e.,∑+∞
i=1 1∥∇g(θi)∥2>u(Pi +Qi +Ri) converges almost surely. We present the useful lemma below:

Lemma 4.1. Suppose {θn} is a sequence generated by AdaGrad-norm, and Assumptions 2.1 holds.
Then for given S0 ≥ 0 and for any ∀n ∈ N+, θ1 ∈ Rd, and ϵ ∈ (0, 1

2 ), we have

n∑
k=3

E

(∥∥∇g(θk)
∥∥2

S
1
2+ϵ

k−1

)
< +∞.

This lemma was first proved in Jin et al. (2022) with the no saddle point condition. However, as we
checked, this lemma does not really need this condition. For clarity, the complete proof is provided
in Appendix B.1. Based on Lemma 4.1 and the convergence criterion for martingale difference (in
Lemma A.2), we can conclude that

∑+∞
i=1 1∥∇g(θi)∥2>u(Pi +Qi +Ri) converges almost surely.

In Steps 1-2, when the gradient norm ∥∇g(θ)∥2 is larger than any positive number u, the function
value of g on each trajectory of AdaGrad-Norm eventually shows a decreasing trend. We expect
that the decrease of function value will bring the iterate θn back to the region ∥∇g(θ)∥2 < u.
Then due to the arbitrariness of u, we can claim the convergence of ∥∇g∥. However, in non-
convex optimization, the main challenge is that the decrease of the loss function does not guarantee
a corresponding decrease in its gradient. Our approach stands out from that of Jin et al. (2022) since
this step. We will explain the inapplicability of Jin et al. (2022) to loss functions with saddle points.

Literature Review: based on loss function with no saddle points. The main result in Jin et al.
(2022) is to prove that the gradient sequence {∇g(θn)}+∞

n=1 crosses a given interval (e, o) in a fi-
nite number of times. To achieve this, the authors need to demonstrate the difference between
∥∇g(θn+1)∥2 and ∥∇g(θn)∥2 becoming sufficiently small as the iterations progress. Jin et al. (2022)
estimated ∥∇g(θn+1)∥2 − ∥∇g(θn)∥2 through g(θn+1) − g(θn) with an additional condition and
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then applied Equation (4). This condition supposes that when θ approaches Ji with sufficient prox-
imity, the inequality ∥∇g(θ)∥2 ≤ 2L|g(θ)− gi| holds for a connected component Ji of a stationary
point set J and gi := g(θ)θ∈Ji

. However, this inequality does not hold near saddle points. For any
neighborhood around a saddle point, we can always find a point with the same function value as
the saddle point, resulting in the right-hand side of inequality being zero while the left-hand side is
positive. Therefore, this method can not handle the presence of saddle points in the loss function.
Next, we will introduce our method, which can resolve saddle points.

Step 3: The goal of this step is to show that the image set of the stationary points set g(J) :=
{g(θ) | θ ∈ J} can be contained within at most a finite number of disjoint open intervals. Moreover,
there exists a lower bound for the distance between any two open intervals, and the measure of each
interval can be arbitrarily small. The main idea of the proof is as follows. First, we prove that the
stationary points set J can only be divided into countably many connected components {Ji}+∞

i=1 .
Then, since each point on each connected component has the same value of the loss function, the set
g(J) has at most countably many elements. Next, we construct a sequence of disjoint open intervals
Yx,δ :=

⋃+∞
n=1

(
(x+ (n− 1)δ, x+ nδ) ∪ (x− (n− 1)δ, x− nδ)

)
, and show that there exists an x

such that each open interval in Yx,δ does not intersect with set g(J) (the proof is given in Appendix
3.1). By considering the continuity of ∇g and g, we conclude that the elements of set g(J) are not
dense in any open intervals. This implies that within each open interval in Yx,δ , there exists at least
one open interval Hx,δ,n that does not contain any value from set g(J). Furthermore, since g(J) is a
bounded set, the measure of all these open intervals Hx,δ,n must have a minimum value δ1. Because
the value of δ can be arbitrarily small, we have achieved the goal of this step.

Next, we establish the result by demonstrating that {g(θn)} will eventually fall into one of the
aforementioned open intervals.

Step 4: For any δ0 > 0. We first construct a subsequence {kn}+∞
n=1 to record the boundary points

between the sets ∥∇g(θn)∥2 ≤ δ0/2 and ∥∇g(θn)∥2 > δ0/2 (the definition is provided in Appendix
C). By the definition, the gradient of g at θk2n−1

and θk2n
must be greater than δ0/2. We then apply

the inequality in Equation (4) to obtain

g(θk2n) ≤ g(θk2n−1+1)−
k2n−1∑

i=k2n−1+1

α0∥∇g(θj)∥2√
Sj−1

+

k2n−1∑
i=k2n−1+1

α0∥∇g(θj)∥ · E
(
∥∇g(θj , ξj)∥2

∣∣Fj

)
Sj−1

+

k2n−1∑
i=k2n−1+1

cα2
0

2

E
(
∥∇g(θj , ξj)∥2

∣∣Fi

)
Sj

+

k2n−1∑
i=k2n−1+1

(
Pj + 1(∥∇g(θi)∥2 ≥ δ0/2) · (Qj +Rj)

)
.

In Step 2, the martingale difference sequences are proven to converge. According to The Cauchy’s
Convergence Test, they can be arbitrarily smaller than any given value. Since the distance between
the two open intervals in Step 3 is at least δ, as the iteration progresses, g(θk2n

) cannot be greater
than g(θk2n−1

) + δ. We organize the open intervals in Step 3 in descending order based on the
function values they encompass. As the iteration progresses, the index of the open interval where
g(θkn) is located will definitely increase. According to the monotone convergence theorem, we can
prove that g(θkn) will definitely fall within one of the open intervals. Then, using Equation (4)
again, the gradient of points between θk2n−1 and θk2n can be bounded by O(δ). Combining this
result and the fact that the gradient of points between θk2n−2

and θk2n−1
are bounded by δ0/2, we

can obtain lim supn→+∞ ∥∇g(θn)∥2 < O(δ0, δ). Based on the arbitrariness of δ0 and δ, we prove
the result.

4.2 PROOF SKETCH OF THEOREM 3.2

Following the almost surely convergence of Theorem 3.1, we further can demonstrate the mean-
square convergence of AdaGrad-Norm. According to Lebesgue’s Dominated Convergence Theo-
rem, to obtain mean-square convergence, we only need to find a h∗ such that ∥∇g(θn)∥2 ≤ h∗ and
E
(
|h∗|

)
< +∞. Since ∥∇g(θn)∥2 ≤ supk≥1 ∥∇g(θk)∥2 always holds, our objective is to prove

E
(
supk≥1 ∥∇g(θk)∥2

)
< +∞. In this paper, we are the first to utilize the decomposition of the

dynamic system formed by AdaGrad-Norm to prove E
(
supk≥1 ∥∇g(θk)∥2

)
< +∞. In each de-

composed sub-process, this dynamic system exhibits a form similar to that of the upper martingale.

7
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Then, in each sub-process, we derive a local maximum by a derivation approach of Doob’s inequal-
ity. Finally, we sum up all the local maxima of the sub-processes to obtain the global maximum.

Step 1: We construct a recursive expression with respect to g2(θn), rather than g(θ) used in the
proof of Theorem 3.1. This is creative and necessary, and further explanation is provided in Step 4.
First, we obtain the following lemma for g2(θn):
Lemma 4.2. Suppose {θn} is a sequence generated by AdaGrad-Norm, and Assumption 2.1 holds.
Then ∀ n ∈ N+, ∀ θ1 ∈ Rd, ∀ u > 0 as long as ∥∇g(θn)∥2 > u, the following inequality holds

g2(θn+1)− g2(θn) ≤ α0(M + 1)

(
g(θn−1)

∥∥∇g(θn−1)
∥∥2√

Sn−1

−
g(θn)

∥∥∇g(θn)
∥∥2

√
Sn

)

+ α0(M + 1)
∥∇g(θn)∥3 · ∥∇g(θn, ξn)∥

Sn−1
+ Lα2

0(M + 1)
∥∇g(θn)∥2 · ∥∇g(θn, ξn)∥

Sn

− α0g(θn)∥∇g(θn)∥2√
Sn

+

(
2
(
M +

1

2

)2
α3
0L2 +

(
M +

1

2

)
L2α3

0

)
g(θn)∥∇g(θn−1, ξn−1)∥2

S
3
2
n−1

+
(
4∥∇g(θn)∥2 + 4Lα0 + 2Lα2

0g(θn)
)∥∥∇g(θn, ξn)

∥∥2
Sn

+Xn,

(5)
where Xn := 2α0g(θn)√

Sn−1

∇g(θn)
⊤(∇g(θn)−∇g(θn, ξn)

)
and M := 2σ0 + 2(σ1/u)− 1.

Lemma 4.2 holds if ∥∇g(θn)∥2 exceeds a given constant u. However, this condition may not be
fulfilled in every iteration. Therefore, we need to consider the process in segments based on whether
the gradient norm satisfies the condition ∥∇g(θ)∥2 > u. Based on this, we construct a series of first
entrance times in the next step.

Step 2: In this step, we create a sequence of stopping times. By Assumption 2.1(1) (let u := η):
for any θ in {θ | ∥∇g(θ)∥2 < u}, we have g(θ) is bounded. This implies that there exists
u0 such that ∥∇g(θ)∥2 > u for all θ in {θ | ĝ(θ) > u0}, where ĝn := g2(θn) + α0(M +

1)g(θn)∥∇g(θn−1)∥2/
√

Sn−1. For any λ > 0, the aim of our proof is to calculate the probabil-
ity P

(
max1≤k≤n ĝ(θk) > λ

)
in order to obtain the probability P

(
max1≤k≤n ∥∇g(θk)∥4 > λ

)
.

However, when the gradient norm is small, we do not have a recursive iteration formula similar to
Lemma 4.2. However, the boundedness is automatically satisfied when the gradient norm is small.
Thus, we need to decompose this process according to the following stopping time. We define events
Cn := {∥∇g(θn)∥2 > u} ∩ {u0 < ĝ(θn) < λ} and build a series of stopping times {τ (λ)i }+∞

i=1 as
follow:

τ
(λ)
1 := min{k : k ≥ 1, Ck occurs}, τ

(λ)
2 := min{k : k > τ

(λ)
1 , Ck does not occur}, ...,

τ
(λ)
2m−1 := min{k : k > τ

(λ)
2m−2, Ck occurs}, τ

(λ)
2m := min{k : k ≥ τ

(λ)
2m−1, Ck does not occur}.

Then we can define another stopping times τ := min{k : ĝ(θ1) < λ, ĝ(θ2) < λ, ..., ĝ(θk) < λ}.
Between the stopping times τ2n−2∧τ and τ2n−1∧τ , it is clear that ∥∇g(θn)∥2 < u, and before time
τ2n−1∧τ, ĝ(θn) never exceeds u0. Hence, we only need to calculate P(maxτ2n−1<k<τ2n ĝ(θk) > λ)
and then sum up the above probabilities over n. In the next step, we will focus on calculating
P(maxτ2n−1<k<τ2n ĝ(θk) > λ).

Step 3: To make it easier to understand, let’s first ignore the left stopping time at the beginning of
this step of the proof. We define events Bi,k and B′

i,k as follows

Bi,k :=

{
{Ci does not occur, Ci+1 occurs, ..., Ck occurs} for k ≥ i+ 1,
{Ci does not occur} for k ≤ i

and B′
i,k := Bi,k−1/Bi,k.

Then for any events X ∈ Fi, we get that:

E
(
1X∩B′

i,m+1
ĝm+1

)
≤ −E

(
1X∩Bi,m+1 ĝm+1 − 1X∩Bi,m ĝm

)
+ E

(
1Sm−1<4β2

0/α
2
0

(
q0∥∇g(θm, ξm)∥e0

Sr0
m

+
q1∥∇g(θm−1, ξm−1)∥e1

Sr1
m−1

))
,

8
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where e0 ≥ 2, e1 ≥ 2, r0 > 0, r1 > 0, q0, q1, and β0 are constants. The proof of the above
inequality is quite complicated, and due to limited space, it cannot be fully explained here (the
specific proof is given in Appendix D from (77) to (84)). We define τ (0) := min{k : g(θk) ≥
λ}, τ

(0)
m := min{k : g(θk) ≥ λ, k ≥ τ

(λ)
2m−1 ∧ τ}. Then, we let X = {τ ∧ τ

(λ)
2m−1 ∧ n = i} and

sum it up to obtain the result considering the left stopping time. We getting

E(ĝ
τ
(0)
m ∧n

) <

n−1∑
i=τ

(λ)
2n−2

n−1∑
m=τ∧τ

(λ)
2m−2∧n

E
(
1{τ∧τ

(λ)
2m−1∧n=i}∩B′

i,m+1
ĝm+1

)
≤ u0

(
E(1

τ∧τ
(λ)
2m−2∧n

)− E(1
τ∧τ

(λ)
2m∧n

)
)

+ β0

τ∧τ
(λ)
2m∧n∑

m=τ∧τ
(λ)
2m−2∧n

E
(

1Sm−1<4β2
0/α

2
0

(
q0∥∇g(θm, ξm)∥e0

Sr0
m

+
q1∥∇g(θm−1, ξm−1)∥e1

Sr1
m−1

))
,

(6)
where e0 ≥ 2, e1 ≥ 2, r0 > 0, r1 > 0, q0, q1 and δ0 > 0 are seven constants. Next, we will
generalize the results from time τ2m−2 ∧ τ ∧ n to time τ2m ∧ τ ∧ n to all times.

Step 4: Define ∥∇g(θn)∥2 := sup1≤k≤n ∥∇g(θn)∥2 and gn := sup1≤k≤n g
2(θk), for any λ ≥ u,

we have {∥∇g(θn)∥4 > λ} ⊂ {gn > 2cλ} ∩ {∥∇g(θn)∥2 > u} ⊂
{
sup1≤k≤n g

2
k > 2cλ

}
. Using

The Markov’s Inequality and Equation (6) gives P
(
∥∇g(θn)∥4 > λ

)
≤ 1

2Lλ

∑+∞
m=1 E(ĝτ(0)

m ∧n
) ≤

K
2cλ ≤ T

λ , where T > 0 is a finite positive constant. The proof of this inequality is provided in
Appendix D Equation 86. Then we estimate E

(
∥∇g(θn)∥2

)
and achieve that

E
(
∥∇g(θn)∥2

)
= E

(√
∥∇g(θn)∥4

)
= u+

∫ +∞

λ=u

λ
1
2−1 P

(
∥∇g(θm)∥4 > λ

)
dλ

≤ u+ T

∫ +∞

λ=u

λ− 3
2 dλ = u+

2T√
u
< +∞.

Now we are able to address the question raised in Step 1 why we use g2(θ) rather than g(θ). If
g(θ) is studied in Step 1, we obtain P

(
∥∇g(θn)∥2 > λ

)
≤ O(1/λ) in Step 3, and further achieve

that E
(
∥∇g(θn)∥2

)
< u +

∫ +∞
λ−u

λ−1dλ = +∞. Thus, this is not enough to guarantee bounded of
E
(
∥∇g(θn)∥2

)
. So far we have proven that E

(
supk≥1 ∥∇g(θk)∥2

)
< +∞. By Theorem 3.1 and

The Lebesgue’s Dominated Convergence Theorem, we have proven E
(
∥∇g(θk)∥2

)
→ 0.

4.3 PROOF SKETCH OF THEOREM 3.3 AND THEOREM 3.4

The proofs of Theorems 3.3 and 3.4 are relatively straightforward compared to those of Theorem
3.1 and Theorem 3.2. For brevity, we omit the proof sketch here, and the complete proofs can be
found in Appendix D.1 and Appendix D.2.

5 CONCLUSION

In this paper, we effectively address several limitations of the theoretical analysis of AdaGrad-Norm.
Specifically, we propose novel techniques that avoid the no saddle points assumption used in (Jin
et al., 2022) and establish the last-iterate convergence in both almost surely and mean-square senses.
Additionally, we demonstrate the near-optimal and sub-optimal convergence rates concerning the
averaged iterate in the expectation sense and the almost surely sense, respectively. Moreover, we
mitigate the uniform boundedness assumption on stochastic gradients, commonly used in existing
high-probability convergence analysis. Furthermore, our approaches pave the way for exploring the
convergence properties of other stochastic algorithms in future research.
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A USFUL LEMMAS

Lemma A.1. (Lemma 10 in Jin et al. (2022)) Suppose that f(x) ∈ C1 (x ∈ Rd) with f(x) > −∞
and its gradient satisfies the following Lipschitz condition∥∥∇f(x)−∇f(y)

∥∥ ≤ L∥x− y∥,

then ∀ x0 ∈ Rd, there is ∥∥∇f(x0)
∥∥2 ≤ 2L

(
f(x0)− f∗),

where f∗ = infx∈ Rd f(x).

Lemma A.2. (Theorem 4.2.1 in Lei et al. (2005)) Suppose that {Xn} ∈ Rd is an L2 martingale
difference sequence, and (Xn,Fn) is an adaptive process. Then it holds that

∑∞
k=0 Xk < +∞ a.s.,

if there exists p ∈ (0, 2), such that

∞∑
n=1

E(∥Xn∥p) < +∞, or
∞∑

n=1

E
(
∥Xn∥p

∣∣Fn−1

)
< +∞. a.s.

Lemma A.3. (Lemma 6 in Jin et al. (2022)) Suppose that {Xn} ∈ Rd is a non-negative sequence
of random variables, then it holds that

∑∞
n=0 Xn < +∞ a.s., if

∑∞
n=0 E

(
Xn

)
< +∞.

Lemma A.4. (Lemma 4.2.13 in Lei et al. (2005)) Let {Xk,Fk} be a martingale difference sequence,
where Xk can be a matrix. Let (Mk,Fk) be an adapted process, where Mk can be a matrix, and
∥Mk∥ < +∞ almost surely for all k. If supn E(∥Xn+1∥|Fn) < +∞ a.s., then we have

n∑
k=0

MkXk+1 = O

(( n∑
k=0

∥Mk∥
)
ln1+σ

(( n∑
k=0

∥Mk∥
)
+ e

))
(∀ σ > 0) a.s..

Lemma A.5. Suppose {θn} is a sequence generated by AdaGrad-Norm in Equation (1), and As-
sumptions 2.1 holds. Then ∀n ∈ N+, ∀θ1 ∈ Rd, ∀ϵ ∈ (0, 1

2 ), there exists ζ < +∞ such that

g(θn+1)− g∗

Sϵ
n+1

≤ ζ < +∞ a.s.,

which g∗ = infθ∈Rd g(θ).

Lemma A.6. Suppose that {θn} is a sequence generated by AdaGrad-Norm in Equation (1), and
Assumption 2.1 holds. Then ∀ n ∈ N+, ∀ θ1 ∈ Rd, as long as ∥∇g(θn)∥2 > u, the following
equation holds

(M − 1)

∥∥∇g(θn)
∥∥2√

Sn−1

+
1

M + 1

(
E
(
∥∇g(θn, ξn)∥2

∣∣Fn

)
Sn−1

)
−
(
M + 1

)∥∥∇g(θn−1)
∥∥2√

Sn−1

≤ −
∥∥∇g(θn)

∥∥2√
Sn−1

+

(
2
(
M +

1

2

)2
α2
0L2 +

(
M +

1

2

)
L2α2

0

)
∥∇g(θn−1, ξn−1)∥2

S
3
2
n−1

,

where M := 2σ0 + 2(σ1/u)− 1.

B PROOFS OF LEMMAS IN SECTIONS 4 AND A

B.1 PROOF OF LEMMA 4.1

Proof. First of all, we consider the situation ∥∇g(θn)∥2 > σ1 (from here to Equation 22)

g(θn+1)− g(θn) ≤ ∇g(θn)
⊤(θn+1 − θn) +

Lα2
0

2

∥∥∇g(θn, ξn)
∥∥2

Sn

= −α0∇g(θn)
⊤∇g(θn, ξn)√
Sn

+
Lα2

0

2

∥∥∇g(θn, ξn)
∥∥2

Sn
.

(7)
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Note that ∥∥∥∥ 1√
M0 + 1

∇g(θn, ξn)−
√
M0 + 1∇g(θn)

∥∥∥∥2
=

1

M0 + 1

∥∥∇g(θn, ξn)
∥∥2 + (M0 + 1)

∥∥∇g(θn)
∥∥2 − 2∇g(θn)

⊤∇g(θn, ξn),

(8)

where M0 = σ0 + 2 and σ0 is defined in Assumption 2.1 (3). Substitute Equation 8 into Equation
7, then we get that

g(θn+1)− g(θn)

≤ −α0

2

(
1

M0 + 1

∥∥∇g(θn, ξn)
∥∥2

√
Sn

+ (M0 + 1)

∥∥∇g(θn)
∥∥2

√
Sn

)

+
α0

2

1√
Sn

∥∥∥ 1√
M0 + 1

∇g(θn, ξn)−
√
M0 + 1∇g(θn)

∥∥∥2 + Lα2
0

2

∥∥∇g(θn, ξn)
∥∥2

Sn
.

(9)

Due to Sn ≥ Sn−1, it follows that

α0

2

1√
Sn

∥∥∥ 1√
M0 + 1

∇g(θn, ξn)−
√

M0 + 1∇g(θn)
∥∥∥2

≤ α0

2

1√
Sn−1

∥∥∥ 1√
M0 + 1

∇g(θn, ξn)−
√

M0 + 1∇g(θn)
∥∥∥2. (10)

Substitute Equation 10 into Equation 9, then we have

g(θn+1)− g(θn)

≤ −α0

2

(
1

M0 + 1

∥∥∇g(θn, ξn)
∥∥2

√
Sn

+ (M0 + 1)

∥∥∇g(θn)
∥∥2

√
Sn

)

+
α0

2

1√
Sn−1

∥∥∥ 1√
M0 + 1

∇g(θn, ξn)−
√
M0 + 1∇g(θn)

∥∥∥2 + Lα2
0

2

∥∥∇g(θn, ξn)
∥∥2

Sn
.

(11)

Notice that
α0

2

1√
Sn−1

∥∥∥ 1√
M0 + 1

∇g(θn, ξn)−
√

M0 + 1∇g(θn)
∥∥∥2

=
α0

2

1√
Sn−1

(
1

M0 + 1

∥∥∇g(θn, ξn)
∥∥2 + (M0 + 1)

∥∥∇g(θn)
∥∥2 − 2∇g(θn, ξn)

⊤∇g(θn)

)
=

α0

2

1√
Sn−1

(
1

M0 + 1

∥∥∇g(θn, ξn)
∥∥2 + (M0 + 1)

∥∥∇g(θn)
∥∥2 − 2

∥∥∇g(θn)
∥∥2)

+
α0√
Sn−1

∇g(θn)
⊤(∇g(θn)−∇g(θn, ξn)

)
.

(12)

Substitute Equation 12 into Equation 11, and divide both sides of the inequality by Sϵ
n (ϵ < 1

2 ), then
we get

g(θn+1)

Sϵ
n

− g(θn)

Sϵ
n

≤ −α0

2

(
1

M0 + 1

∥∥∇g(θn, ξn)
∥∥2

S
1
2+ϵ
n

+ (M0 + 1)

∥∥∇g(θn)
∥∥2

S
1
2+ϵ
n

)

+
α0

2

1

S
1
2+ϵ
n−1

(
1

M0 + 1

∥∥∇g(θn, ξn)
∥∥2 + (M0 + 1)

∥∥∇g(θn)
∥∥2 − 2

∥∥∇g(θn)
∥∥2)

+
Lα2

0

2

∥∥∇g(θn, ξn)
∥∥2

S1+ϵ
n

+
α0

S
1
2+ϵ
n−1

∇g(θn)
⊤(∇g(θn)−∇g(θn, ξn)

)
.
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Notice that g(θn+1)
Sϵ
n

> g(θn+1)
Sϵ
n+1

, then we obtain

g(θn+1)

Sϵ
n+1

− g(θn)

Sϵ
n

≤ −α0
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(13)

Rearrange the above inequality, then it holds that
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(14)

where G
(ϵ)
n is defined as follow
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S
1
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n−1

∇g(θn)
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)
.

Due to ∥∇g(θn)∥2 > σ1, we have

E
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)
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Moreover, using the Taylor formula, we obtain∥∥∇g(θn)
∥∥2 =

∥∥∇g(θn−1) +
(
∇g(θn)−∇g(θn−1)

)∥∥2
=
∥∥∇g(θn−1)
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From inequality 2a⊤b ≤ λ∥a∥2 + 1
λ∥b∥

2 (λ > 0), it follows that
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(17)

By substituting Equation 15 into Equation 17, we have
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Divide both sides of Equation 18 by S
1
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n−1 , and notice M0−1
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5 since M0 > 2, then it holds that

1

M0 + 1

∥∥∇g(θn, ξn)
∥∥2

S
1
2+ϵ
n−1

+

∥∥∇g(θn)
∥∥2

S
1
2+ϵ
n−1

≤ (M0 + 1)

∥∥∇g(θn−1)
∥∥2

S
1
2+ϵ
n−1

−
∥∥∇g(θn)

∥∥2
5S

1
2+ϵ
n−1

+ 4M2
0α

2
0L2

∥∥∇g(θn−1, ξn−1)
∥∥2

S
3
2+ϵ
n−1

+
2

α0
H(ϵ)

n ,

(19)

where
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Making some simple transformations on Equation 19 leads to
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(20)

Substitute Equation 20 into Equation 14, then we get
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It follows that
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Substituting Equation 22 into Equation 21 yields
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Then we calculate the inequality when ∥∇g(θn)∥2 ≤ σ1, (from here to Equation 34) dividing both
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Due to Sn+1 ≥ Sn, it holds that
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Then we make some transformations to obtain that
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Due to
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Substitute it into Equation 26, then we get
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We make some transformations on −α0

∥∥∇g(θn)
∥∥2

2S
1
2
+ϵ

n−1

to obtain that

−
α0

∥∥∇g(θn)
∥∥2

2S
1
2+ϵ
n−1

≤ −
α0

∥∥∇g(θn)
∥∥2

20S
1
2+ϵ
n−1

−
α0

∥∥∇g(θn)
∥∥2

20S
1
2+ϵ
n−1

= −
α0

∥∥∇g(θn)
∥∥2

20S
1
2+ϵ
n−1

− α0

20

∥∥∇g(θn−1)
∥∥2

S
1
2+ϵ
n−2

+
α0

20

(∥∥∇g(θn−1)
∥∥2

S
1
2+ϵ
n−2

−
∥∥∇g(θn)

∥∥2
S

1
2+ϵ
n−1

)
.

(30)

Then we use inequality 2a⊤b ≤ λ∥a∥2 + 1
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2 (λ > 0) on Equation 16 to get
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Divide both sides of Equation 90 by S
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Substitute Equation 33 into Equation 29, then we have
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Then we combine the events ∥∇g(θn)∥2 ≤ σ1 and ∥∇g(θn)∥2 > σ1,
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Through Equation 23, we get that
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Through Equation 34, we get
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Calculating Equation 35 + Equation 36, then we have
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(37)
Notice 1∥∇g(θn)∥2≤σ1

≤ 1, then we get
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Substitute Equation 38 into Equation 37, then we get
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We make a summation of Equation 39 to get
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(40)
Then we get
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Substituting Equation 44 into Equation 40 leads to
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It follows that
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Then we calculate mathematical expectation on Equation 45
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With this, we have completed the proof.

B.2 PROOF OF LEMMA A.5

Proof. It follows from Equation 45 that
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From Equation 27, we obtain
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E

(
1∥∇g(θk)∥2≤σ1

α2
0

S1+2ϵ
n−1

(∥∥∇g(θn)
∥∥2 −∇g(θn)

⊤∇g(θn, ξn)
)2)

≤ 2E

(
α2
0

∥∥∇g(θn)
∥∥2

S1+2ϵ
n−1

(
1∥∇g(θk)∥2≤σ1

∥∥∇g(θn)
∥∥2))+ 2E

(
α2
01∥∇g(θk)∥2≤σ1

S1+2ϵ
n−1

∥∥∇g(θn)
∥∥2∥∥∇g(θn, ξn)

∥∥2)

≤ 2(M + 2)E

(
α2
0σ1

∥∥∇g(θn)
∥∥2

S1+ϵ
n−1

)

≤ 2(M + 2)α2
0σ1 E

(
α2
0σ1

∥∥∇g(θn)
∥∥2

S
1
2+ϵ
n−1

)

< 40(M + 2)α0σ1

(
g(θ1)

Sϵ
1

+ L

)
.

(47)
It follows from Lemma A.2 that
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B.3 PROOF OF LEMMA A.6

Proof. We can find
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∥∥∥∥∇g(θn−1, ξn−1)

∥∥ ≤ 1

2

∥∥∇g(θn−1)
∥∥2+2

(
M+

1

2

)2
α2
0L2 ∥∇g(θn−1, ξn−1)∥2

Sn−1
.

We get that

(
M +

1

2

)∥∥∇g(θn)
∥∥2 ≤

(
M + 1

)∥∥∇g(θn−1)
∥∥2 + (2(M +

1

2

)2
α2
0L2 +

(
M +

1

2

)
L2α2

0

)
∥∇g(θn−1, ξn−1)∥2

Sn−1
,

that is

(M − 1)
∥∥∇g(θn)

∥∥2 + σ0 +
σ1

u

M + 1

∥∥∇g(θn)
∥∥2

≤ −
∥∥∇g(θn)

∥∥2 + (M + 1
)∥∥∇g(θn−1)

∥∥2 + (2(M +
1

2

)2
α2
0L2 +

(
M +

1

2

)
L2α2

0

)
∥∇g(θn−1, ξn−1)∥2

Sn−1
.

Then we multiple 1/
√
Sn−1 on both side of above inequality, and noting when ∥∇g(θn)∥2 > u,

there is

σ0 +
σ1

u

M + 1

∥∥∇g(θn)
∥∥2 ≥ 1

M + 1
E(∥∇g(θn, ξn)∥2|Fn),

getting

(M − 1)

∥∥∇g(θn)
∥∥2√

Sn−1

+
1

M + 1

(
E
(
∥∇g(θn, ξn)∥2

∣∣Fn

)
Sn−1

)
−
(
M + 1

)∥∥∇g(θn−1)
∥∥2√

Sn−1

≤ −
∥∥∇g(θn)

∥∥2√
Sn−1

+

(
2
(
M +

1

2

)2
α2
0L2 +

(
M +

1

2

)
L2α2

0

)
∥∇g(θn−1, ξn−1)∥2

S
3
2
n−1

.

Thus, we have completed the proof.
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B.4 PROOF OF LEMMA 4.2

Proof. we calculate g2(θn+1)− g2(θn) as follow:

g2(θn+1)− g2(θn)

≤ −2α0g(θn)∇g(θn)
⊤∇g(θn, ξn)√

Sn

+
(
4∥∇g(θn)∥2 + 4Lα0 + 2Lα2

0g(θn)
)∥∥∇g(θn, ξn)

∥∥2
Sn

≤ −α0g(θn)

(
1

M + 1

∥∥∇g(θn, ξn)
∥∥2

√
Sn

+ (M + 1)

∥∥∇g(θn)
∥∥2

√
Sn

)

+ α0g(θn)
1√
Sn−1

∥∥∥ 1√
M + 1

∇g(θn, ξn)−
√
M + 1∇g(θn)

∥∥∥2
+
(
4∥∇g(θn)∥2 + 4Lα0 + 2Lα2

0g(θn)
)∥∥∇g(θn, ξn)

∥∥2
Sn

≤ α0g(θn)(M + 1)

(∥∥∇g(θn−1)
∥∥2√

Sn−1

−
∥∥∇g(θn)

∥∥2
√
Sn

)

+ α0g(θn)

(
1

M + 1

E
(∥∥∇g(θn, ξn)

∥∥2∣∣Fn

)√
Sn−1

+
(M − 1)

∥∥∇g(θn)
∥∥2√

Sn−1

−
(M + 1)

∥∥∇g(θn−1)
∥∥2√

Sn−1

)

+
(
4∥∇g(θn)∥2 + 4Lα0 + 2Lα2

0g(θn)
)∥∥∇g(θn, ξn)

∥∥2
Sn

+Xn,

(49)
where Xn is defined as follow

Xn :=
2α0g(θn)√

Sn−1

∇g(θn)
⊤(∇g(θn)−∇g(θn, ξn)

)
,

and M := 2σ0 + 2(σ1/u)− 1. For the term

α0g(θn)(M + 1)

(∥∥∇g(θn−1)
∥∥2√

Sn−1

−
∥∥∇g(θn)

∥∥2
√
Sn

)
,

we have

α0g(θn)(M + 1)

(∥∥∇g(θn−1)
∥∥2√

Sn−1

−
∥∥∇g(θn)

∥∥2
√
Sn

)

= α0(M + 1)

(
g(θn)

∥∥∇g(θn−1)
∥∥2√

Sn−1

−
g(θn+1)

∥∥∇g(θn)
∥∥2

√
Sn

)

+ α0(M + 1)
∣∣g(θn+1)− g(θn)

∣∣∥∇g(θn)∥2√
Sn−1

≤ α0(M + 1)

(
g(θn)

∥∥∇g(θn−1)
∥∥2√

Sn−1

−
g(θn+1)

∥∥∇g(θn)
∥∥2

√
Sn

)

+ α0(M + 1)
∥∇g(θn)∥3 · ∥∇g(θn, ξn)∥

Sn
+ Lα2

0(M + 1)
∥∇g(θn)∥2 · ∥∇g(θn, ξn)∥

Sn
.

(50)
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Substitute Equation 50 into Equation 49, we acquiring

g2(θn+1)− g2(θn)

≤ α0(M + 1)

(
g(θn)

∥∥∇g(θn−1)
∥∥2√

Sn−1

−
g(θn+1)

∥∥∇g(θn)
∥∥2

√
Sn

)

+ α0(M + 1)
∥∇g(θn)∥3 · ∥∇g(θn, ξn)∥

Sn
+ Lα2

0(M + 1)
∥∇g(θn)∥2 · ∥∇g(θn, ξn)∥

Sn

+ α0g(θn)

(
1

M + 1

E
(∥∥∇g(θn, ξn)

∥∥2∣∣Fn

)√
Sn−1

+
(M − 1)

∥∥∇g(θn)
∥∥2√

Sn−1

−
(M + 1)

∥∥∇g(θn−1)
∥∥2√

Sn−1

)

+
(
4∥∇g(θn)∥2 + 4Lα0 + 2Lα2

0g(θn)
)∥∥∇g(θn, ξn)

∥∥2
Sn

+Xn,

(51)
Due to Lemma A.6, we have

(M − 1)

∥∥∇g(θn)
∥∥2√

Sn−1

+
1

M + 1

(
E
(
∥∇g(θn, ξn)∥2

∣∣Fn

)
Sn−1

)
−
(
M + 1

)∥∥∇g(θn−1)
∥∥2√

Sn−1

≤ −
∥∥∇g(θn)

∥∥2√
Sn−1

+

(
2
(
M +

1

2

)2
α2
0L2 +

(
M +

1

2

)
L2α2

0

)
∥∇g(θn−1, ξn−1)∥2

S
3
2
n−1

.

(52)

Substitute Equation 52 into Equation 51, getting

g2(θn+1)− g2(θn) ≤ α0(M + 1)

(
g(θn)

∥∥∇g(θn−1)
∥∥2√

Sn−1

−
g(θn+1)

∥∥∇g(θn)
∥∥2

√
Sn

)

+ α0(M + 1)
∥∇g(θn)∥3 · ∥∇g(θn, ξn)∥

Sn
+ Lα2

0(M + 1)
∥∇g(θn)∥2 · ∥∇g(θn, ξn)∥

Sn

− α0g(θn)∥∇g(θn)∥2√
Sn−1

+

(
2
(
M +

1

2

)2
α3
0L2 +

(
M +

1

2

)
L2α3

0

)
g(θn)∥∇g(θn−1, ξn−1)∥2

S
3
2
n−1

+
(
4∥∇g(θn)∥2 + 4Lα0 + 2Lα2

0g(θn)
)∥∥∇g(θn, ξn)

∥∥2
Sn

+Xn.

Thus, we have completed the proof.

C PROOF OF THEOREM 3.1

Proof. Through Lemma 4.1 and Lemma A.3, we know that

n∑
k=3

∥∥∇g(θk)
∥∥2

S
1
2+ϵ

k−1

< +∞ a.s. . (53)

Below, we divide the set of all tracks into the following two sets:

S1 :=
{

lim
n→+∞

Sn < +∞
}
, S2 :=

{
lim

n→+∞
Sn = +∞

}
.

In S1, we have

lim sup
n→+∞

∥∇g(θn)∥2 < M lim sup
n→+∞

∥∥∇g(θn)
∥∥2

S
1
2+ϵ
n−1

,

where M := 2 limn→+∞ 1/S
1
2+ϵ
n−1 . In S1, it is evident that we have

lim
n→+∞

1/S
1
2+ϵ
n−1 = 0 a.s.,
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so we have in S1, there is lim supn→+∞ ∥∇g(θn)∥2 = 0 a.s., that is lim supn→+∞ ∥∇g(θn)∥2 =
0 a.s.. Next, let us consider the case in the set S1. In this set, we once again divide the tracks into
two sets based on the convergence or divergence of the series

∑+∞
n=1 1/

√
Sn, i.e.,

S2,1 :=

{
lim

n→+∞
Sn = +∞ and

+∞∑
n=1

1√
Sn

< +∞
}
,

S2,2 :=

{
lim

n→+∞
Sn = +∞ and

+∞∑
n=1

1√
Sn

= +∞
}
.

Then we will demonstrate that S2,1 = ∅ a.s. . We know that for any ϵ ∈ (0, 1/2), we can find a
constant ϵ′ > 0 such that (ϵ+ ϵ′) ∈ (0, 1/2) holds. Then we calculate the following series
n∑

k=3

∥∇g(θk, ξk)∥2

S
1
2+ϵ+ϵ′

k−1

=

n∑
k=3

E
(
∥∇g(θk, ξk)∥2

∣∣Fk

)
S

1
2+ϵ+ϵ′

k−1

+

n∑
k=3

∥∇g(θk, ξk)∥2 − E
(
∥∇g(θk, ξk)∥2

∣∣Fk

)
S

1
2+ϵ+ϵ′

k−1

≤ σ0 ·
n∑

k=3

E ∥∇g(θk)∥2

S
1
2+ϵ+ϵ′

k−1

+ σ1 ·
n∑

k=3

1

S
1
2+ϵ+ϵ′

k−1

+

n∑
k=3

∥∇g(θk, ξk)∥2 − E
(
∥∇g(θk, ξk)∥2

∣∣Fk

)
S

1
2+ϵ+ϵ′

k−1

.

(54)
Based on Lemma 53 and the properties of set S2,1, we can deduce that

σ0 ·
n∑

k=3

E ∥∇g(θk)∥2

S
1
2+ϵ+ϵ′

k−1

+ σ1 ·
n∑

k=3

1

S
1
2+ϵ+ϵ′

k−1

< +∞ a.s.. (55)

Then, according to Lemma A.1 and A.5, we can verify the following inequality:

sup
n>0

E

(∣∣∣∣∥∇g(θn, ξn)∥2 − E
(
∥∇g(θn, ξn)∥2

∣∣Fn

)
Sϵ′
n−1

∣∣∣∣
∣∣∣∣∣Fn

)
≤ 2 sup

n>0

σ0 · ∥∇g(θn)∥2 + σ1

Sϵ
n−1

≤ 2 sup
n>0

σ0 · g(θn) + σ1

Sϵ
n−1

< +∞ a.s..

Then, based on Lemma A.4 and the properties of set S2,1, we obtain
n∑

k=3

∥∇g(θk, ξk)∥2 − E
(
∥∇g(θk, ξk)∥2

∣∣Fk

)
S

1
2+ϵ+ϵ′

k−1

< +∞ a.s.. (56)

Substitute Equation 55 and Equation 56 into Equation 54, we getting
n∑

k=3

∥∇g(θk, ξk)∥2

S
1
2+ϵ+ϵ′

k−1

< +∞ a.s.. (57)

Then we get

+∞ >

+∞∑
k=3

∥∇g(θk, ξk)∥2

S
1
2+ϵ+ϵ′

k−1

>

∫ +∞

S
1
2
+ϵ+ϵ′

2

1

x
1
2+ϵ+ϵ′

= +∞ a.s. .

That means S2,1 = ∅ a.s. . Furthermore, we can get in S2, having
∑+∞

n=1 1/
√
Sn = +∞ a.s..

Next, we aim to prove lim infn→+∞ ∥∇g(θn)∥2 = 0 a.s. by contradiction . For a given trajectory,
we assume that lim infn→+∞ ∥∇g(θn)∥2 > l > 0. Then we get exists N > 0, for any n > N, such
that ∥∇g(θn)∥2 > l0/2. Then we get

+∞ =

+∞∑
n=N+1

1

S
1
2+ϵ+ϵ′

k−1

<
l0
2
·

+∞∑
n=N+1

∥∇g(θk)∥2

S
1
2+ϵ+ϵ′

k−1

< +∞ a.s.,

which is creates a contradiction. That means we have lim infn→+∞ ∥∇g(θn)∥2 = 0 a.s.. Since we
have already proven limn→+∞ ∥∇g(θn)∥2 = 0 a.s. for any trajectory in set S1, we can conclude
that for any trajectory, there is lim infn→+∞ ∥∇g(θn)∥2 = 0 a.s.. Below, we focus on proving
lim supn→+∞ ∥∇g(θn)∥2 = 0 a.s..
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Let J := {θ|∇g(θ) = 0}. For any bounded closed set T , we know that T ∩ J is a bounded closed
set. Next, for any positive number δ > 0, we construct an open cover

⋃
θ∈T ∩Ω U(θ, δ) for the set

T ∩ Ω. According to The Heine-Borel Theorem, we know that this open cover must have a finite
subcover

⋃Tδ

i=1 U(θi, δ) ⊃ T ∩ Ω. Then we construct a sequence of open sets {Oi}+∞
i=1 as follows:

O1 :=

T1⋃
i=1

U(θ1,i, 1), O2 := O1 ∩
T1/2⋃
i=1

U(θ2,i, 1/2), ..., On := On−1 ∩
T1/n⋃
i=1

U(θn,i, 1/n), ...

Obviously, the sequence of sets satisfies Oi ⊃ Oi+1 (∀ i) and it is evident that J = limn→+∞ On.

For any given Ok, we can express it as Ok :=
⋃

t1,t2,...,tk

⋂k
i=1 U(θi,ti , 1/i). It is easy to see that

each U(θi,ti , 1/i) is a convex set, so the intersection of them can generate at most a finite number
of connected components. This proves that for Ok, there are at most a finite number of connected
components. This implies that J ∩T has at most countably many connected components. By taking
T = U(0, N) and letting positive integer N tend to infinity, we can conclude that J has at most
countably many connected components.

We assign these connect components as {Ji}+∞
i=1 . It is easy to see that points located on the same

connected component Ji have the same value of the loss function g(θ), ∀ θ ∈ Ji. We denote these
value as {gi}+∞

i=1 . Let us denote the set of all distinct values in the sequence {gi}+∞
i=1 as G.

Next, we define a family of open intervals Yx,δ :=
⋃+∞

n=1

(
(x + (n − 1)δ, x + nδ) ∪ (x − (n −

1)δ, x− nδ)
)
. We then use a proof by contradiction to show that for any δ > 0, there exists at least

one x ∈ R such that G ⊂ Yx,δ. We assume that such an x does not exist. Then, we can deduce that
for any x ∈ (0, δ/2), we can always find a gx ∈ G such that gx /∈ Yx,δ. Based on the properties
of the set Yx,δ, we can conclude that for different x0 ̸= x1, we have gx0

̸= gx1
. This means that

for every x in (0, δ/2), we can find an element in G that corresponds to x, and for different x, these
corresponding gx are distinct. This implies that the cardinality of set G is equal to the cardinality of
set (0, 1/2), which is ℵ. However, this contradicts the fact that G can have at most countably many
elements. Therefore, we can conclude that for any δ > 0 there exists at least one x ∈ R such that
G ⊂ Yx,δ.

Next, we prove that the set of values corresponding to G cannot be dense in any open interval in R.
We use a proof by contradiction. Suppose there exists an open interval (a, b) such that G is dense in
(a, b). Then, by the continuity of ∇g and g, we can conclude that (a, b) ⊂ G. This implies that the
cardinality of the G is ℵ, which contradicts countability. Therefore, we can conclude that G is not
dense in any open interval in R. This means that for every interval (x + (n − 1)δ, x + nδ), we can
find an open interval Hx,δ,n ⊂ (x + (n − 1)δ, x + nδ), such that Hx,δ,n ∩ G = ∅. Without loss of
generality, we can always find an interval with the maximum length among all such intervals in one
(x+ (n− 1)δ, x+ nδ). Let the measure of this interval be denoted as |Hx,δ,n|. Due to g(J) < +∞
(shown in Assumption 2.1), we can always find a δ1 such that for all Hx,δ,n, we have |Hx,δ,n| > δ1.

For any δ, we construct the set S := {∥∇g(θ)∥2 < δ0/2}. We define g ◦ S := {g(θ)|θ ∈ S}.
It is easy to see that for sufficiently small δ0, we can always achieve (g ◦ S) ∩

(⋃+∞
n=0 Hx,δ,n

)
⊂⋃+∞

n=0 H′
x,δ,n, where H′

x,δ,n can at most be the left half of the interval Hx,δ,n, that is, there exists a
δ̂0 > 0 such that for any δ0 < δ̂0, we have (g ◦S)∩

(⋃+∞
n=0 Hx,δ,n

)
⊂
⋃+∞

n=0 H′
x,δ,n, where H′

x,δ,n

can at most be the left half of the interval Hx,δ,n. Then we take δ0 < min{δ̂0, δ/2}. Then due to
lim infn→+∞ ∥∇g(θn)∥2 = 0 a.s., there exist infinitely many values ∥∇g(θk)∥2 in the sequence
{∥∇g(θn)∥2}+∞

n=1 such that ∥∇g(θk)∥2 < δ0/2. This implies that there are infinitely many values
of {∥∇g(θn)∥2}+∞

n=1 satisfying ∥∇g(θk)∥2 < δ0/2, ∥∇g(θk+1)∥2 ≥ δ0/2 and ∥∇g(θk′)∥2 <
δ0/2, ∥∇g(θk′−1)∥2 ≥ δ0/2. We can arrange these values in increasing order of their in-
dices to form a subsequence {∥∇g(θn)∥2}+∞

n=1 of the sequence {∥∇g(θkn)∥2}+∞
n=1, which holds

∥∇g(θk2n−1)∥2 < δ0/2, ∥∇g(θk2n−1+1)∥2 ≥ δ0/2, ∥∇g(θk2n−1)∥2 ≥ δ0/2, ∥∇g(θk2n)∥2 <
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δ0/2. Then we calculate g(θi+1)− g(θi) as follow:

g(θi+1)− g(θi) = −α0∇g(θi)
⊤∇g(θi, ξi)√
Si

+
Lα2

0

2

∥∥∇g(θi, ξi)
∥∥2

Si

= −α0∇g(θi)
⊤∇g(θi, ξi)√
Si−1

+ α0∇g(θi)
⊤∇g(θi, ξi)

(
1√
Si−1

− 1√
Si

)
+

Lα2
0

2

∥∥∇g(θi, ξi)
∥∥2

Si

≤ −α0∇g(θi)
⊤∇g(θi, ξi)√
Si−1

+ α0∥∇g(θi)∥ · ∥∇g(θi, ξi)∥ ·
∥∇g(θi, ξi)∥2√

Si−1

√
Si(

√
Si +

√
Si−1)

+
Lα2

0

2

∥∥∇g(θi, ξi)
∥∥2

Si
≤ −α0∇g(θi)

⊤∇g(θi, ξi)√
Si−1

+ α0
∥∇g(θi)∥ · ∥∇g(θi, ξi)∥2

Si−1

= −α0∥∇g(θi)∥2√
Si−1

+ α0

∥∇g(θi)∥ · E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si−1

+
Lα2

0

2

E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si

+ Pi +Qi +Ri,
(58)

where

Pi := α0
∇g(θi)

⊤(∇g(θi)−∇g(θi, ξi))√
Si−1

, Qi := α0
∥∇g(θi)∥ · (∥∇g(θi, ξi)∥2)− E(∥∇g(θi, ξi)∥2|Fi)

Si−1

Ri :=
Lα2

0

2

∥∇g(θi, ξi)∥2 − E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si

.

Then for any i ∈ (k2n−1, k2n), we calculate g(θi)− g(θk2n−1+1) as follow:

g(θi)− g(θk2n−1+1) =

i−1∑
j=k2n−1+1

(
g(j + 1)− g(j)

)
.

By substituting Equation 58 into the above equation, we can obtain the following expression:

g(θi)− g(θk2n−1+1)

≤ −
i−1∑

j=k2n−1+1

α0∥∇g(θj)∥2√
Sj−1

+

i−1∑
j=k2n−1+1

α0∥∇g(θj)∥ · E
(
∥∇g(θj , ξj)∥2

∣∣Fj

)
Sj−1

+

i−1∑
j=k2n−1+1

Lα2
0

2

E
(
∥∇g(θj , ξj)∥2

∣∣Fi

)
Sj

+

i−1∑
j=k2n−1+1

(
Pj +Qj +Rj

)
.

Due to ∥∇g(θi)∥2 ≥ δ0/2 ∀ i ∈ (k2rn−1, k2rn) we know Qi+Ri = 1(∥∇g(θi)∥2 ≥ δ0/2) · (Qi+
Rj) a.s., which conclude

g(θi)− g(θk2n−1+1)

≤ −
i−1∑

j=k2n−1+1

α0∥∇g(θj)∥2√
Sj−1

+

i−1∑
j=k2n−1+1

α0∥∇g(θj)∥ · E
(
∥∇g(θj , ξj)∥2

∣∣Fj

)
Sj−1

+

i−1∑
j=k2n−1+1

Lα2
0

2

E
(
∥∇g(θj , ξj)∥2

∣∣Fi

)
Sj

+

i−1∑
j=k2n−1+1

(
Pj + 1(∥∇g(θi)∥2 ≥ δ0/2) · (Qj +Rj)

)
.

(59)
We assign Rn := maxk2n−1<i<k2n ∥∇g(θi)∥2, R̃n := maxk2n−1<i<k2n g(θi). We get

Rn ≤
√
δ0√
2

+ L
k2n−1∑

i=k2n−1

∥θi+1 − θi∥ ≤
√
δ0√
2

+ Lα0

k2n−1∑
i=k2n−1

E
(
∥∇g(θi, ξi)∥

∣∣Fi

)√
Si−1

+

k2n−1∑
i=k2n−1

Ti,

(60)
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and

R̃n ≤ g(θk2n−1
) +Rn

k2n−1∑
i=k2n−1

∥θi+1 − θi∥ ≤ g(θk2n−1
) + α0Rn

k2n−1∑
i=k2n−1

E
(
∥∇g(θi, ξi)∥

∣∣Fi

)√
Si−1

+
Rn

L

k2n−1∑
i=k2n−1

Ti <

√
δ0
2

,

(61)
where

Ti :=
Lα0∥∇g(θi, ξi)∥ − E

(
∥∇g(θi, ξi)∥

∣∣Fi

)√
Si−1

.

Using The Jensen’s Inequality, we know

Lα0

k2n−1∑
i=k2n−1

E
(
∥∇g(θi, ξi)∥

∣∣Fi

)√
Si−1

≤ Lα0

k2n−1∑
i=k2n−1+1

√
E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)√
Si−1

≤ Lα0

(√
σ0

√
δ0√

2
+
√
σ1

)
· 1√

Sk2n

+ Lα0

k2n−1∑
i=k2n−1+1

√
σ0∥∇g(θi)∥√

Si−1

+ Lα0

k2n−1∑
i=k2n+1

√
σ1√
Si−1

≤ Lα0

(√
σ0

√
δ0√

2
+
√
σ1

)
· 1√

Sk2n

+

(√
2Lα0

√
σ0√

δ0
+

2Lα0
√
σ1

δ0

)
·

k2n−1∑
i=k2n−1+1

∥∇g(θi)∥2√
Si−1

.

(62)
Substitute Equation 62 into Equation 60, getting

Rn ≤
√
δ0√
2

+ Lα0

(√
σ0

√
δ0√

2
+

√
σ1

)
1√
Sk2n

+ u

k2n−1∑
i=k2n−1+1

α0∥∇g(θi)∥2√
Si−1

+

k2n−1∑
i=k2n−1

Ti

(63)

and

R̃n ≤ g(θk2n−1
) +Rnα0

(√
σ0

√
δ0√

2
+

√
σ1

)
· 1√

Sk2n

+
uRn

L

k2n−1∑
i=k2n−1+1

α0∥∇g(θi)∥2√
Si−1

+
Rn

L

k2n−1∑
i=k2n−1

Ti,

(64)

where

u :=

√
2L√σ0√

δ0
+

2L√σ1

δ0
.

For Equation 59, we take i = k2n−1, acquiring

g(θk2n
)− g(θk2n−1+1)

≤ −
k2n−1∑

i=k2n−1+1

α0∥∇g(θj)∥2√
Sj−1

+

k2n−1∑
i=k2n−1+1

α0∥∇g(θj)∥ · E
(
∥∇g(θj , ξj)∥2

∣∣Fj

)
Sj−1

+

k2n−1∑
i=k2n−1+1

Lα2
0

2

E
(
∥∇g(θj , ξj)∥2

∣∣Fi

)
Sj

+

k2n−1∑
i=k2n−1+1

(
Pj + 1(∥∇g(θi)∥2 ≥ δ0/2) · (Qj +Rj)

)
.

(65)
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Next we calculate Equation 63+u·Equation 65, getting

Rn + u
(
g(θk2n

)− g(θk2n−1+1)
)
≤ u

k2n−1∑
i=k2n−1+1

α0∥∇g(θi)∥ · E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si−1

+

√
δ0√
2

+ u

k2n−1∑
i=k2n−1+1

Lα2
0

2

E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si

+ Lα0

(√
σ0

√
δ0√

2
+

√
σ1

)
1√
Sk2n

+

k2n−1∑
i=k2n−1+1

(
uPi + Ti + 1(∥∇g(θi)∥2 ≥ δ0/2) · u(Qi +Ri)

)
(66)

and Equation 64+uRn/L·Equation 65, getting

R̃n +
uRn

L
(
g(θk2n)− g(θk2n−1+1)

)
≤ uRn

L

k2n−1∑
i=k2n−1+1

α0∥∇g(θi)∥ · E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si−1

+ g(θk2n−1) +
uRn

L

k2n−1∑
i=k2n−1+1

Lα2
0

2

E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si

+Rnα0

(√
σ0

√
δ0√

2
+
√
σ1

)
1√
Sk2n

+
uRn

L

k2n−1∑
i=k2n−1+1

(
uPi + Ti + 1(∥∇g(θi)∥2 ≥ δ0/2) · (Qi +Ri)

)
.

(67)
Then for Pi, we test following series, acquiring

+∞∑
i=2

E
(
∥Pi∥2

∣∣Fi

)
≤

+∞∑
i=2

∥∇g(θi)∥2 · (σ0∥∇g(θi)∥2 + σ1)

Si−1

≤ σ0

+∞∑
n=1

∥∇g(θn)∥4

Sn−1
+ σ1

+∞∑
n=1

∥∇g(θn)∥2

Sn−1
< +∞ a.s..

(68)

Through Lemma A.2, we know
∑+∞

i=1 uPi is convergence almost surely. Similarly, we
know

∑+∞
i=1 Ti is convergence almost sirely. For 1(∥∇g(θi)∥2 ≥ δ0/2) · Qi, we test∑n

i=1 E(1(∥∇g(θi)∥2 ≥ δ0/2) · ∥Qi∥|Fi), getting
+∞∑
i=2

E
(
1(∥∇g(θi)∥2 ≥ δ0/2) · ∥Qi∥

∣∣Fi

)
≤ 2

+∞∑
i=2

σ01(∥∇g(θi)∥2 ≥ δ0/2)∥∇g(θi)∥3

Si−1
+ 2

+∞∑
i=2

σ11(∥∇g(θi)∥2 ≥ δ0/2)

Si−1

≤ 2√
r

+∞∑
i=2

σ0∥∇g(θi)∥4

Si−1
+

2

r

+∞∑
i=2

∥∇g(θi)∥2

Si−1

≤ 2√
r

+∞∑
i=2

σ0∥∇g(θi)∥2

S
1
2+ϵ
i−1

+
2

r

+∞∑
i=2

∥∇g(θi)∥2

Si−1
< +∞ a.s.,

(69)

where the last inequality is derived from Equation 53, and the second-to-last inequality is derived
from Lemma A.5. Through Lemma A.2, we know

∑+∞
i=1 1(∥∇g(θi)∥2 ≥ δ0/2)·uQi is convergence

almost surely. Similarly, we get
∑+∞

i=1 1(∥∇g(θi)∥2 ≥ δ0/2) · uRi is convergence almost surely.
As a result, we have

+∞∑
i=1

(
uPi + Ti + 1(∥∇g(θi)∥2 ≥ δ0/2) · u(Qi +Ri)

)
30
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is convergence almost surely. Then we use The Cauchy’s Convergence Test, acquiring

lim
n→+∞

k2n−1∑
i=k2n−1+1

(
uPi + Ti + 1(∥∇g(θi)∥2 ≥ δ0/2) · u(Qi +Ri)

)
= 0 a.s..

Furthermore, according to the Lemma A.1 and Lemma A.5, it is evident that we have

lim
n→+∞

1√
Sn−1

= 0 a.s..

Similarly, according to Equation 55, we can also obtain

lim
n→+∞

(
u

k2n−1∑
i=k2n−1+1

α0∥∇g(θi)∥ · E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si−1

+ u

k2n−1∑
i=k2n−1+1

cα2
0

2

E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si

)
= 0 a.s.,

and

lim
n→+∞

cα0

k2n−1∑
i=k2n

E
(
∥∇g(θi, ξi)∥

∣∣Fi

)√
Si−1

= 0 a.s..

This implies that there exists a positive integer n0 such that for any n > n0, we have

u

k2n−1∑
i=k2n−1+1

α0∥∇g(θi)∥ · E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si−1

+ cα0

(√
σ0

√
δ0√

2
+

√
σ1

)
1√
Sk2n

+

k2n−1∑
i=k2n−1+1

(
uPi + Ti + 1(∥∇g(θi)∥2 ≥ δ0/2) · u(Qi +Ri)

)
<
(
1− 1√

2

)√
δ0,

(70)

and

u

L

k2n−1∑
i=k2n−1+1

α0∥∇g(θi)∥ · E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si−1

+ α0

(√
σ0

√
δ0√

2
+
√
σ1

)
1√
Sk2n

+
u

L

k2n−1∑
i=k2n−1+1

(
uPi + Ti + 1(∥∇g(θi)∥2 ≥ δ0/2) · (Qi +Ri)

)
<

δ1

2
√
δ0

.

(71)

Since (g ◦S)∩
(⋃+∞

n=0 Hx,δ,n

)
= ∅, we know that g(θk2n−1+1) and g(θk2n−1

) must lie between two
intervals H′

x,δ,n1−1 and H′
x,δ,n1

. Now, we construct a mapping g(2n−1) := x + n1δ. Then through
Equation 70 and Equation 71, we have for any n > n0, there is

Rn ≤ u
(
g(θk2n−1+1)− g(θk2n

)
)

+ u

k2n−1∑
i=k2n−1+1

α0∥∇g(θi)∥ · E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si−1

+

√
δ0√
2

+ u

k2n−1∑
i=k2n−1+1

Lα2
0

2

E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si

+ Lα0

(√
σ0

√
δ0√

2
+
√
σ1

)
1√
Sk2n

+

k2n−1∑
i=k2n−1+1

(
uPi + Ti + 1(∥∇g(θi)∥2 ≥ δ0/2) · u(Qi +Ri)

)
<
√

δ0

(72)
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and

R̃n ≤ uRn

L
(
g(θk2n−1+1)− g(θk2n

)
)
+

uRn

L

k2n−1∑
i=k2n−1+1

α0∥∇g(θi)∥ · E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si−1

+ g(θk2n−1
) +

uRn

L

k2n−1∑
i=k2n−1+1

Lα2
0

2

E
(
∥∇g(θi, ξi)∥2

∣∣Fi

)
Si

+Rnα0

(√
σ0

√
δ0√

2
+
√
σ1

)
1√
Sk2n

+
uRn

L

k2n−1∑
i=k2n−1+1

(
uPi + Ti + 1(∥∇g(θi)∥2 ≥ δ0/2) · (Qi +Ri)

)
< g(θk2n−1) +

δ1
2
.

According to the definitions of g(2n) and g(2n−1), we know that in order for g(2n) > g(2n−1) to hold,
we must have at least g(2n) − g(2n−1) > δ1/2. However, since R̃n ≤ g(θk2n−1

) + δ1/2, we can
deduce that there must be g(2n) ≤ g(2n−1) (∀ n > n0). We have actually proven that {g(n)}+∞

n=n0+1
is a monotonic sequence. According to The Monotone Convergence Theorem, we can prove the
existence of a limit for {g(n)}+∞

n=1. Furthermore, since the sequence {g(n)}+∞
n=n0+1 only has a finite

number of distinct values, we can assert that there exists an n′′ such that for n > n′′, we have
g(n) ≡ g∗.

Next, we will prove that the sequence of loss functions {g(θn)}+∞
n=1 converges almost surely. For

any i+ 1 ∈ (k2n−1, k2n), we have
g(θi+1)− g(θi)

= ∇g(θ′i)
⊤(θi+1 − θi) = ∇g(θi)

⊤(θi+1 − θi) + (∇g(θ′i)−∇g(θi))
⊤(θi+1 − θi)

= −α0∇g(θI)
⊤∇g(θi, ξi)√
Si

+ (∇g(θ′i)−∇g(θi))
⊤(θi+1 − θi)

= −α0∥∇g(θi)∥2√
Si−1

+ α0∇g(θi)
⊤∇g(θi, ξi)

(
1√
Si−1

− 1√
Si

)
+ (∇g(θ′i)−∇g(θi))

⊤(θi+1 − θi) + Pi,

(73)

where we utilized The Lagrange’s Mean Value Theorem and θ′i lies between θi and θi+1. Pi is
defined in Equation 58. Note that Equation 73 does not overlap with Equation 58. Since Equation
58 contains an inequality, it will have an impact on subsequent estimations. We back to Equation
65, we have

k2n−1∑
i=k2n−1+1

α0∥∇g(θj)∥2√
Sj−1

≤ g(θk2n−1+1)− g(θk2n
) +

k2n−1∑
i=k2n−1+1

α0∥∇g(θj)∥ · E
(
∥∇g(θj , ξj)∥2

∣∣Fj

)
Sj−1

+

k2n−1∑
i=k2n−1+1

Lα2
0

2

E
(
∥∇g(θj , ξj)∥2

∣∣Fi

)
Sj

+

k2n−1∑
i=k2n−1+1

(
Pj + 1(∥∇g(θi)∥2 ≥ δ0/2) · (Qj +Rj)

)
.

It is easy to find that for any n > max{n0, n
′′}, we have

k2n−1∑
i=k2n−1+1

α0∥∇g(θj)∥2√
Sj−1

<
(
1− 1√

2

)√
δ0 + 2δ <

( 1√
2
− 1

2

)√
δ + 2δ. (74)

Based on Equation 73, we know for any i+ 1 ∈ (k2n−1, k2n), there is
g(θi+1)− g(θk2n−1

)

= −
i∑

j=k2n−1

α0∥∇g(θj)∥2√
Sj−1

+ α0

i∑
j=k2n−1

∇g(θj)
⊤∇g(θj , ξj)

(
1√
Sj−1

− 1√
Sj

)

+

i∑
j=k2n−1

(∇g(θ′j)−∇g(θj))
⊤(θj+1 − θj) +

i∑
j=k2n−1

Pj ,
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which means when n > max{n0, n
′′}, there is

|g(θi+1)− g(θk2n−1
)|

≤
k2n∑

j=k2n−1

α0∥∇g(θj)∥2√
Sj−1

+ α0

i∑
j=k2n−1

∣∣∣∣∣∇g(θj)
⊤∇g(θj , ξj)

(
1√
Sj−1

− 1√
Sj

)∣∣∣∣∣
+

i∑
j=k2n−1

∣∣(∇g(θ′j)−∇g(θj))
⊤(θj+1 − θj)

∣∣+ ∣∣∣∣∣
i∑

j=k2n−1

Pj

∣∣∣∣∣
< 2
( 1√

2
− 1

2

)√
δ + 2δ.

That means for any n > k2max{n0,n′′}−1, there is

|g(θn)− g∗| < 2
( 1√

2
− 1

2

)√
δ + 3δ.

By the arbitrariness of δ0, we can prove that {g(θn)}+∞
n=1 is convergence almost surely. We back to

Equation 72, we have for any n > n0.

Rn ≤ u
∣∣g(θk2n−1+1)− g(θk2n)

∣∣+ √
δ0√
2

+
(
1− 1√

2

)√
δ0 = u

(
g(θk2n−1+1)− g(θk2n)

)
+
√
δ0.

(75)

Since we have already proven that the sequence {g(θn)}+∞
n=1 convergence almost surely, according

to The Cauchy’s Convergence Test, we obtain the existence of n′′′, such that for n > max{n′′′, n0},
we have

∣∣g(θk2n−1+1)− g(θk2n)
∣∣ < δ0/u. Then we get when n > max{n′′′, n0}, we have

Rn ≤ u
∣∣g(θk2n−1+1)− g(θk2n)

∣∣+ √
δ0√
2

+
(
1− 1√

2

)√
δ0 = u

(
g(θk2n−1+1)− g(θk2n)

)
+
√
δ0

< δ0 +
√
δ0,

which implies that for any i ∈ (k2n−1, k2n), we have ∥∇g(θi)∥2 ≤ R2
n ≤ (δ0 +

√
δ0)

2. Conse-
quently, we can prove that for any n > k2max{n′′′,n0}−1, there is ∥∇g(θn)∥2 < (δ0 +

√
δ0)

2. By
the arbitrariness of δ0, we can prove that

lim
n→+∞

∥∥∇g(θn)
∥∥ = 0 a.s. (76)

With this, we complete the proof.

D PROOF OF THEOREM 3.2

Proof. Without loss of generality, in this proof, we assume that infθ∈Rd g(θ) = 1 (If this condition is
not satisfied, we can construct a new loss function gnew = g− infθ∈Rd g(θ)+1). In the proof of The-
orem 3.1, we have actually shown that the sequence {∥∇g(θn)∥2}+∞

n=1 converges to 0 almost surely.
According to The Lebesgue’s Dominated Convergence Theorem, in order to obtain mean-square
convergence, we only need to find a h∗ such that it satisfies ∥∇g(θn)∥2 ≤ h∗ and E

(
|h∗|

)
< +∞.

However, we know that for any ∥∇g(θn)∥2, we always have ∥∇g(θn)∥2 ≤ supk≥1 ∥∇g(θk)∥2.
Therefore, the objective is to prove E

(
supk≥1 ∥∇g(θk)∥2

)
< +∞. In the proof of Theorem 3.1,

since we are considering convergence in the trajectory sense (almost surely sense), we do not need
to consider the randomness of certain subscripts. However, in the discussion of mean-square con-
vergence, we must also take into account the randomness of these subscripts.

Now we begin to prove this theorem. We divide the discussion of this problem into two cases. The
first case is when g(θ) (θ ∈ Rd) is bounded. In this case, it is evident from the inequality in Lemma
A.1 that we can obtain E

(
supk≥1 ∥∇g(θk)∥2

)
< +∞ immediately.
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Next, we focus on the case where g is unbounded. From Lemma 4.2, for any u, we know that when
∥∇g(θn)∥2 > u, there is

g2(θn+1)− g2(θn) ≤ α0(M + 1)

(
g(θn)

∥∥∇g(θn−1)
∥∥2√

Sn−1

−
g(θn+1)

∥∥∇g(θn)
∥∥2

√
Sn

)

+ α0(M + 1)
∥∇g(θn)∥3 · ∥∇g(θn, ξn)∥

Sn
+ cα2

0(M + 1)
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g(θn)∥∇g(θn−1, ξn−1)∥2

S
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+
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0g(θn)
)∥∥∇g(θn, ξn)
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+Xn,

where

Xn :=
2α0g(θn)√

n− 1
∇g(θn)

⊤(∇g(θn)−∇g(θn, ξn)).

We define a new object

ĝn := g2(θn) + α0(M + 1)
g(θn)∥∇g(θn−1)∥2√

Sn−1

.

Obviously, we know ĝn ∈ Fn, and

ĝn+1 − ĝn ≤ α0(M + 1)
∥∇g(θn)∥3 · ∥∇g(θn, ξn)∥

Sn
+ Lα2
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∥∇g(θn)∥2 · ∥∇g(θn, ξn)∥
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0g(θn)
)∥∥∇g(θn, ξn)
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+Xn.

Then we take u := η, (η shown in Assumption 2.1). Through we know that ∀ θ ∈ {∥∇g(θ)∥2 < u},
there is

g(θ) < û0 < +∞,

which means ∃ u0, ∀ θ ∈ {θ|ĝ(θ) > u0}, there is ∥∇g(θ)∥2 > u. Then for any λ > 0, we construct
events Cn := {∥∇g(θn)∥2 > u}∩ {u0 < ĝ(θn) < λ}. Then we construct a series of stopping times
{τ (λ)i }+∞

i=1 as follow:

τ
(λ)
1 := min{k : k ≥ 1, Ck occurs}, τ

(λ)
2 := min{k : k > τ

(λ)
1 , Ck does not occur}, ...,

τ
(λ)
2m−1 := min{k : k > τ

(λ)
2m−2, Ck occurs}, τ

(λ)
2m := min{k : k ≥ τ

(λ)
2m−1, Ck does not occur}.

Obviously, we get for any i, j, there is τ
(λ)
i < τ

(λ)
j and F

τ
(λ)
i

⊂ F
τ
(λ)
j

. Then we define another
stopping times

τ := min{k : ĝ(θ1) < λ, ĝ(θ2) < λ, ..., ĝ(θk) < λ} , τ ′ := {k : θk ∈ R} , τ ′′ := {k : θk ∈ K} .

Then we define events

Bi,k := {Ci does not occur, Ci+1 occurs, ..., Ck occurs} (k ≥ i+ 1),

Bi,k := {Ci does not occur} (k ≤ i), B′
i,k := Bi,k−1/Bi,k.
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Then for any events X ∈ Fi, we have
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S
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∥∥2
Sm

+ 1X∩Bi,m
Xm + 1X∩Bi,m

Ym.

(77)
The reason the above inequality holds is due to the fact that where 1X∩Bi,m , we have ∥∇g(θm)∥2 >
u. For the left side of the above inequality, we notice

1X∩Bi,m
ĝm+1 = (1X∩Bi,m

− 1X∩Bi,m+1
)ĝm+1 + 1X∩Bi,m+1

ĝm+1

= 1X∩B′
i,m+1

ĝm+1 + 1X∩Bi,m+1 ĝm+1.

Then we acquire
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)
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∥∥2
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(78)

For convenient, we assign

Ai,m := α0(M + 1)1X∩Bi,m

∥∇g(θm)∥3 · ∥∇g(θm, ξm)∥
Sm

+ Lα2
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(
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1

2

)
L2α3
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)
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3
2
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(
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.

(79)

Then take the mathematical expectation on Equation 78, noting 1X∩Bi,m
∈ Fm, we getting

E
(
1X∩B′

i,m+1
ĝm+1

)
≤ −E

(
1X∩Bi,m+1 ĝm+1 − 1X∩Bi,m ĝm

)
− E

(
1X∩Bi,m

α0g(θm)∥∇g(θm)∥2√
Sm−1

)
+ E(Ai,m) + 0 + 0.

(80)
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For E(Ai,m), we have

E(Ai,m) ≤ α0(M + 1)E
(

1X∩Bi,m

∥∇g(θm)∥3 · (√σ0∥∇g(θm)∥+√
σ1)

Sm−1

)
+ Lα2

0(M + 1)E
(

1X∩Bi,m

∥∇g(θm)∥2 · (√σ0∥∇g(θm)∥+√
σ1)

Sm−1

)
+

(
2
(
M +

1

2

)2
α3
0L2 +

(
M +

1

2

)
L2α3

0

)
E
(
1X∩Bi,m

g(θm)(σ0∥∇g(θm)∥2 + σ1)

S
3
2
m−1

)

+ E
(

1X∩Bi,m

(
4∥∇g(θm)∥2 + 4Lα0 + 2Lα2

0g(θm)
)(σ0∥∇g(θm)∥2 + σ1)
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)
.

Now let us simplify the inequality above. We notice that where 1X∩Bi,m
= 1Rd , we have u <

∥∇g(θm)∥2, and combine Lemma A.1, that, at the beginning of our proof, we assumed g(θ) ≥ 1,
we getting

σ0∥∇g(θm)∥2 + σ1 ≤
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σ1

u

)
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and
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(81)

Substitute Equation 81 into Equation 80, yielding
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(82)

where β0 is defined as:

β0 := α0(M + 1)

(
1 +

(
1

2L
+

Lα0√
2L

)(
√
σ0 +

√
σ1

u
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+
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(83)

Then we have

− E

(
1Sm−1≥4β2

0/α
2
0
· 1X∩Bi,mg(θm)∥∇g(θm)∥2

(
α0

2
√

Sm−1

− β0
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≤ 0.

Substitute above inequality into Equation 82, we concluding

E
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.
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Combine Equation 79, we acquire

E

(
1Sm−1<4β2

0/α
2
0

(
Ai,m − 1X∩Bi,mg(θm)∥∇g(θm)∥2 α0

2
√
Sm−1

))

≤ E

(
1Sm−1<4β2

0/α
2
0

(
q0∥∇g(θm, ξm)∥e0

Sr0
m

+
q1∥∇g(θm−1, ξm−1)∥e1
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,

(84)

where e0 ≥ 2, e1 ≥ 2, r0 > 0, r1 > 0 and q0, q1 are six constants. We know that the necessary
condition for the above inequality to hold is m ≥ i+1. In order to facilitate the subsequent stacking,
we also need an inequality for the case when m = i. Upon observation, we find that 1Bi,i+1

≤
1Bi,i∩{∥∇g(θi)∥>u−Lα0}, which means

1B′
i,i+1

ĝm+1 + 1Bi,i+1 ĝm+1 − 1Bi,i ĝm ≤ 1Bi,i∩{∥∇g(θi)∥>
√
η−Lα0}

(
ĝm+1 − ĝm

)
.

Then, next, we can use the inequality Equation 5 when u := (
√
η−Lα0)

2 to complete the inequality.
We define

τ (0) := min{k : g(θk) ≥ λ}, τ (0)m := min{k : g(θk) ≥ λ, k ≥ τ
(λ)
2m−1 ∧ τ}.

We take X = {τ ∧ τ
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2m−1 ∧ n = i}, and make a sum, getting
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(85)

where
∑τ∧τ
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.

Next we define ∥∇g(θn)∥2 := sup1≤k≤n ∥∇g(θn)∥2 and gn := sup1≤k≤n g
2(θk). We can get for

any λ ≥ u, there is

{∥∇g(θn)∥4 > λ} ⊂ {gn > 2cλ} ∩ {∥∇g(θn)∥2 > u} ⊂
{

sup
1≤k≤n

g2k > 2cλ
}
.
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Using The Markov’s Inequality and Equation 85, we get
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(86)
Noting when Sm−1 < 4β2

0/α
2
0, we have

+∞∑
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E
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< K < +∞.

Substitute the bound of g(θk) into Equation 86, and use the result presented in Lemma 4.1, we get

P
(
∥∇g(θn)∥4 > λ

)
≤ K

2Lλ
≤ T

λ
,

where T > 0 is a finite positive constant. Then we calculate E
(
∥∇g(θn)∥2

)
, acquiring

E
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dλ

≤ u+ T
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λ=u

λ− 3
2 dλ = u+

2T√
u
< +∞.

Then, according to The Lebesgue’s Monotone Convergence Theorem, we know that
limn→+∞ ∥∇g(θn)∥2 = supn≥1 ∥∇g(θn)∥2 a.s., and

lim
n→+∞

E
(
∥∇g(θn)∥2

)
= E

(
sup
n≥1

∥∇g(θn)∥2
)
,

which implies

E
(
sup
n≥1

∥∇g(θn)∥2
)
≤ u+

2T√
u
< +∞.

Then, based on the almost surely convergence result in Theorem 3.1 and The Lebesgue’s Dominated
Convergence Theorem, we can obtain the mean-squre convergence, i.e.,

lim
n→∞

E ∥∇g(θn)∥2 = 0.

With this, we have completed the proof.
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D.1 PROOF OF THEOREM 3.3

Proof. Through Equation 40, we get
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where M0 := σ0 + 2. For each fixed n, taking the limit as ϵ → 0 on both sides of the above
inequality, we obtain:
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Gk + 1∥∇g(θk)∥2>σ1
Hk + 1∥∇g(θk)∥2≤σ1

Jk + 1∥∇g(θk)∥2≤σ1
Kk

)
,

(87)
where

1∥∇g(θk)∥2>σ1
Gk + 1∥∇g(θk)∥2>σ1

Hk + 1∥∇g(θk)∥2≤σ1
Jk + 1∥∇g(θk)∥2≤σ1

Kk

:=
α0√
Sk−1

1∥∇g(θk)∥2>σ1
∇g(θk)

⊤(∇g(θk)−∇g(θk, ξk)
)

+
α0

2
1∥∇g(θk)∥2>σ1

(
1

M0 + 1

E
(∥∥∇g(θk, ξk)

∥∥2∣∣∣Fk−1

)
√

Sk−1

− 1

M0 + 1

∥∥∇g(θk, ξk)
∥∥2√

Sk−1

)
+

α0√
Sk−1

1∥∇g(θk)∥2≤σ1

(∥∥∇g(θk)
∥∥2 −∇g(θk)

⊤∇g(θk, ξk)
)

+
α0

∥∥∇g(θk)
∥∥2

2σ1(M0 + 1)
√
Sk−1

1∥∇g(θk)∥2≤σ1

(∥∥∇g(θk, ξk)
∥∥2 − E

(∥∥∇g(θk, ξk)
∥∥2∣∣∣Fk−1

))
.
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Accroding Lemma 4.1 and A.3, we know
n∑

k=3

(
1∥∇g(θk)∥2>σ1

Hk + 1∥∇g(θk)∥2>σ1
Gk + 1∥∇g(θk)∥2≤σ1

Jk + 1∥∇g(θk)∥2≤σ1
Kk

)
< +∞ a.s.,

Substitute above result into Equation 87,acquiring
T∑

n=2

∥∥∇g(θn)
∥∥2√

Sn−1

< U1 ln(ST ) + U2 a.s.,

where U1 is a constant and U2 < +∞ a.s. is a random variable. Then we set n := T, getting

1

T

T∑
n=2

∥∥∇g(θn)
∥∥2 <

U1

√
ST ln(ST ) + U2

√
ST

T
a.s., (88)

For ST , we have

ST =

T∑
k=1

E
(
∥∇g(θk, ξk)∥2

∣∣Fk

)
+

⊤∑
k=1

(∥∇g(θk, ξk)∥2 − E
(
∥∇g(θk, ξk)∥2

∣∣Fk))
)
.

By the result of Theorem 3.1, we can verify that the martingale difference sequence
{∥∇g(θk, ξk)∥2 − E

(
∥∇g(θk, ξk)∥2

∣∣Fk)}+∞
k=1 satisfies the conditions of Lemma A.4. Therefore,

we have:
T∑

k=1

(∥∇g(θk, ξk)∥2 − E
(
∥∇g(θk, ξk)∥2

∣∣Fk) = O(T ln1+σ T ) a.s..

Substitute it into Equation 88, we get

1

T

T∑
k=1

∥∥∇g(θk)
∥∥2 = O

(
ln

3
2+σ T√
T

)
(∀ σ > 0) a.s..

D.2 PROOF OF THEOREM 3.4

Proof. Without loss of generality, in this proof, we assume that infθ∈Rd g(θ) = 1 (If this condition
is not satisfied, we can construct a new loss function gnew = g − infθ∈Rd g(θ) + 1).

The proof of the convergence rate in this theorem is much simpler compared to the previous two
theorems. In this theorem, the key step is to provide an estimate for g2(θn+1) − g2(θn). Since we
have already provided an estimate when ∥∇g(θn)∥2 > u in Lemma 4.2, we only need to provide
another estimate when ∥∇g(θn)∥2 ≤ u, We have

g2(θn+1)− g2(θn)

≤ −2α0g(θn)∇g(θn)
⊤∇g(θn, ξn)√

Sn

+
(
4∥∇g(θn)∥2 + 4Lα0 + 2Lα2

0g(θn)
)∥∥∇g(θn, ξn)

∥∥2
Sn

≤ −2α0g(θn)∇g(θn)
⊤∇g(θn, ξn)√

Sn−1

+ 2α0g(θn)∇g(θn)
⊤∇g(θn, ξn)

(
1√
Sn−1

− 1√
Sn

)

+
(
4∥∇g(θn)∥2 + 4Lα0 + 2Lα2

0g(θn)
)∥∥∇g(θn, ξn)

∥∥2
Sn

.

(89)
Under Assumption 2.1, we get that∥∥∇g(θn)

∥∥2 ≤
∥∥∇g(θn−1)

∥∥2
+ 2
∥∥∇g(θn−1)

∥∥∥∥∇g(θn)−∇g(θn−1)
∥∥+ ∥∥∇g(θn)−∇g(θn−1)

∥∥2
≤
∥∥∇g(θn−1)

∥∥2 + 2α0L√
Sn−1

∥∥∇g(θn−1)
∥∥∥∥∇g(θn−1, ξn−1)

∥∥
+ L2α2

0

∥∥∇g(θn−1, ξn−1)
∥∥2

Sn−1
.
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Then we use inequality 2a⊤b ≤ λ∥a∥2 + 1
λ∥b∥

2 (λ > 0) to get∥∥∇g(θn)
∥∥2 − ∥∥∇g(θn−1)

∥∥2 ≤
∥∥∇g(θn−1)

∥∥2
10(M + 1)

+
10α2

0L2(M + 1)

Sn−1

∥∥∇g(θn−1, ξn−1)
∥∥2 + α2

0L2

Sn−1

∥∥∇g(θn−1, ξn−1)
∥∥2. (90)

Divide both sides of Equation 90 by
√
Sn−1 and notice Sn−2 ≤ Sn−1 ≤ Sn, then we have

− 1

M + 1

∥∥∇g(θn−1)
∥∥2

10
√
Sn−2

− 10α2
0L2(M + 1)

Sn−1
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∥∥2

− α2
0L2

S
3
2
n−1

∥∥∇g(θn−1, ξn−1)
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Sn−1

−
∥∥∇g(θn)

∥∥2
√
Sn

.

(91)

On the other hand, we have

α0g(θn)(M + 1)

(∥∥∇g(θn−1)
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Sn−1

−
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∥∥2
√
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)

= α0(M + 1)

(
g(θn)
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∥∥2√

Sn−1

−
g(θn+1)

∥∥∇g(θn)
∥∥2

√
Sn

)

+ α0(M + 1)
∣∣g(θn+1)− g(θn)

∣∣∥∇g(θn)∥2√
Sn−1
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∥∥∇g(θn−1)
∥∥2√
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−
g(θn)
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∥∥2

√
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)
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(92)

Combine Equation 92 and Equation 91, we getting
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(93)

Substitute Equation 93 into Equation 89, acquiring
g2(θn+1)− g2(θn)
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∥∥2
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(
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−
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√
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Now that we have obtained an estimate for g2(θn+1)− g2(θn) under the condition ∥∇g(θn)∥2 ≤ u.
Combining Lemma A.6, we can now derive the estimate for any arbitrary θn ∈ Rd as follow:

E
(
g2(θn+1)

)
− E

(
g2(θn)

)
= E

(
1∥∇g(θn)∥2≤u(g

2(θn+1)− g2(θn))
)
+ E

(
1∥∇g(θn)∥2>u(g

2(θn+1)− g2(θn))
)

≤ −α0

2
E
(
g(θn)∥∇g(θn)∥2√

Sn−1

)
+ k0 E

(
∥∇g(θn, ξn)∥2

Sn

)
α0(M + 1)E

(
g(θn)∥∇g(θn−1)∥2√

Sn−1

− g(θn+1)∥∇g(θn)∥2√
Sn

)
+ k1 E

(
1√
Sn−1

− 1√
Sn

)
.

Due to the complexity of the specific expressions for k0 and k1, we will not provide a de-
tailed description here. Both of these numbers are polynomial functions of S0, L, u, and M.
Here, we explain why we assume g ≥ 1. In the derivation process, we encounter the term
−g(θn)∥∇g(θn)∥2 + ∥∇g(θn)∥2. By assuming g ≥ 1, we ensure that this term can be less than
0. Then, we sum up the above inequality and use Property 3.1 to obtain:

α0

2

T∑
n=1

E
(
g(θn)∥∇g(θn)∥2√

Sn−1

)
≤ A0 + k0 E(lnST ) ≤ A0 + k0 ln

(
E(ST )

)
= O(lnT ),

where A0 is a constant determined by g(θ1) and ∥∇g(θ1)∥. Noting Lemma A.1, we have
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4L
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2
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)
= O(lnT ).

According to Equation (87), we know that there is
T∑

n=1

E
(
∥∇g(θn)∥2√

Sn−1

)
≤ A1 + k1 ln(E(ST )) = O(lnT ),

where A1, K1 is two constants. Then for any 2 ≤ p ≤ 4, we have
T∑

n=1

E
(
∥∇g(θn)∥p√

Sn−1

)
≤ Q1 +Q2 ln(E(ST )),

where Q1 > 0 and Q2 > 0 are two constants that are uniformly bounded for all p ∈ (2, 4]. Through
The Hölder’s Inequality, and using Property 3.1, we have
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(94)
where p > 0, p1 > 0 are two constants. Then we acquire

1

T

T∑
n=1

E ∥∇g(θn)∥2 = O

(
ln

2
p T

T
1
p

)
.

Therefore, we complete the proof.
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D.3 DISCUSSION ON THE ASSUMPTION OF UNIFORMLY BOUNDED
STOCHASTIC GRADIENT

In this appendix, we will demonstrate the statement in the introduction that the bounded stochastic
gradient assumption, i.e., ∃ K > 0, ∀ n ≥ 1, such that ∥∇g(θn, ξn)∥2 < K < +∞, greatly
simplifies the proof and circumvents some of the key challenges. Back to equation 87, we have
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.

We take the mathematical expectation, getting
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≤ O
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))
≤ O(lnESn).

Then if we have the condition ∥∇g(θk, ξk)∥2 < K, we can immediately acquire
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≤ O(lnESn) < O(lnn).

Then we can get the near-optimal rate

1

T

T∑
n=1

E ∥∇g(θn)∥2 = O

(
lnT√
T

)
.

It can be observed that, without the bounded stochastic gradient assumption, even though we have
proven ∥∇g(θn)∥ → 0 a.s., E ∥∇g(θn)∥2 → 0 in Theorems 3.1 and Theorem 3.2, we still cannot
guarantee that the following inequality holds:

n∑
k=2

E
(∥∥∇g(θk)

∥∥2
·
√
n

)
≤ K ′

n∑
k=2

E
(∥∥∇g(θk)

∥∥2√
Sk−1

)
,

where K ′ < +∞ is a constant. Therefore, we can only obtain sub-optimal results.
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