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1 Implementation details1

In Tab. 1, we describe the implementation details of our method for each dataset, including the main2

reference for the respective baseline. In addition, for the Clothing1M, we sample 1000 mini-batches3

from the training set, where in every mini batch we ensure that the 14 classes are evenly sampled to4

form a pseudo-balanced learning problem. Also for Clothing1M, we first resize the image to 2565

× 256 and then random crop to 224 × 224 with random horizontal flipping. The number of epochs6

for warmup is 10 for datasets containing 10 classes, and 15 for datasets containing 100 classes. For7

Clothing1M, we run 1 epoch of warmup.

IDN CIFAR10/100 CIFAR10/100 N Red Mini-ImageNet Animal-10N Clothing1M
Baseline reference kMEIDTM [2] Real-world [3] FaMUS [4] Nested [1] CausalNL [5]
Backbone ResNet-34 ResNet-34 Pre-act ResNet-18 VGG-19BN ResNet-50 *
# Training epochs 150 120 150 100 40
Batch size 128 128 128 128 64
Learning rate 0.02 0.02 0.02 0.02 0.002
Weight decay 5e-4 5e-4 5e-4 5e-4 1e-3
LR decay at epochs 0.1/100 0.1/80 0.1/100 0.1/50 0.1/20
Data augmentation Random Crop / Random horizontal flip
β 0.9
K 1

Table 1: Implementation detail of our method in each dataset. *: Uses ImageNet pre-trained model.
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2 Additional ablation study9

In Tab. 2, we perform a hyper-parameter sensitivity test for our method on CIFAR10-IDN, including10

coverage and uncertainty for prior label construction. To test label coverage, we first examine the11

model performance as function of β ∈ {0.5, 0.7, 0.8, 0.9} in Eq. 11, where the default value for12

β = 0.9. We observe that performance does not change much for β ∈ {0.7, 0.8, 0.9}, which indicates13

our model’s robustness with respect to that hyper-parameter. For β = 0.5, the performance drops14

significantly, indicating that using a moving average with a relatively high value for β is important15

for estimating model prediction and avoiding overfitting. We test K ∈ {1, 3} in Eq. 13 by sampling16

multiple times {ŷi,j}Kj=1 ∼ Cat(gθ(xi)). We observe no significant changes to model performance17

with this higher value of K. Therefore, we choose K = 1 for simplicity.18

We also test our model by shutting down the moving average, either by making β = 0 or by19

completely relying on the model’s current prediction, which is an experiment denoted by "argmax"20

in Tab. 2. Note that the model shows a major performance drop in both cases. This happens because21

the model overfits to the inaccurate model predictions, biasing the training procedure. Furthermore,22
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CIFAR10
20% 30% 40% 50%

β = 0.9, K = 1 92.65 91.96 91.02 89.94

Hyper-parameter

β = 0.8 92.49 91.88 90.83 88.81
β = 0.7 91.55 90.87 90.62 88.40
β = 0.5 89.13 87.98 87.48 85.73
K = 3 92.30 91.83 90.83 89.75

Coverage
β = 0 84.57 81.59 68.88 61.47
argmax 20.19 18.56 16.09 15.26
No Cov 85.57 81.00 72.42 66.61

Uncertainty Uniform w 90.10 89.66 86.25 84.28
No Unc 84.96 83.19 81.88 78.38

Table 2: Ablation study on hyper-parameter sensitivity, including β, K, coverage and uncertainty.

argmax performs the worst because inaccurate model prediction in prior label in the early stage,23

causing confirmation bias and leading to wrong optimisation goal. We also test our model without24

using the coverage term ci in Eq. 10 – this experiment is denoted as “No Cov”. In this case, the25

performance of the model drops significantly for all noise rates, compared to the default model in the26

first row, which indicates the importance of having a coverage term in our prior label construction.27

Furthermore, we study the uncertainty aspect for the prior label construction. We first experiment28

by setting wi to a uniform value (“Uniform w” row) instead of a GMM weight that represents the29

probability that the sample is carrying a clean label. The result is not competitive with the one that30

uses the GMM weight, which indicates the importance of having w representing a clean-label sample31

probability. We also test our model without the uncertainty component ui in Eq. 10 (see row “No32

Unc”). This case shows a significant performance drop in all noise rates.33
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