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ABSTRACT

As is well known, both sampling from the posterior and computing the mean of the
posterior in Gaussian process regression reduces to solving a large linear system of
equations. We study the use of stochastic gradient descent for solving this linear
system, and show that when done right—by which we mean using specific insights
from the optimisation and kernel communities—stochastic gradient descent is
highly effective. To that end, we introduce a particularly simple stochastic dual
descent algorithm, explain its design in an intuitive manner and illustrate the design
choices through a series of ablation studies. Further experiments demonstrate
that our new method is highly competitive. In particular, our evaluations on the
UCI regression tasks and on Bayesian optimisation set our approach apart from
preconditioned conjugate gradients and variational Gaussian process approxima-
tions. Moreover, our method places Gaussian process regression on par with
state-of-the-art graph neural networks for molecular binding affinity prediction.

1 INTRODUCTION

Gaussian process regression is the standard modelling choice in Bayesian optimisation and other
applications where uncertainty-aware decision-making is required to gather data efficiently. The main
limitation of Gaussian process models is that their fitting requires solving a large linear system of
equations which, using direct methods, has a cost cubic in the number of observations.

Standard approaches to reducing the cost of fitting Gaussian process models either apply approxi-
mations to reduce the complexity of the linear system, such as the Nyström and related variational
approximations (Williams and Seeger, 2000; Titsias, 2009; Hensman et al., 2013), or use carefully
engineered iterative solvers, such as preconditioned conjugate gradients (Wang et al., 2019), or
employ a combination of both (Rudi et al., 2017). An alternative approach that we focus on in this
work is the use of stochastic gradient descent to minimise an associated quadratic objective.

Multiple works have previously investigated the use of SGD with Gaussian process and related kernel
models (Lin et al., 2023; Dai et al., 2014; Kivinen et al., 2004), with Lin et al. (2023) pointing out, in
particular, that SGD may be competitive with conjugate gradients (CG) when the compute budget is
limited, in terms of both the mean and uncertainty predictions that it produces. In this work, we go a
step further, and demonstrate that when done right, SGD can outperform CG.

To that end, we propose a simple SGD-based algorithm, which we call stochastic dual descent (SDD).
Our algorithm is an adaptation of ideas from the stochastic dual coordinate ascent (SDCA) algorithm
of Shalev-Shwartz and Zhang (2013) to the large-scale deep-learning-type gradient descent setting,
combined with insights on stochastic approximation from Dieuleveut et al. (2017) and Varre et al.
(2021). We provide the following evidence supporting the strength of SDD:

1. On standard UCI regression benchmarks with up to 2 million observations, stochastic dual
descent either matches or improves upon the performance of conjugate gradients.

∗Equal contribution.
Code available at: HTTPS://GITHUB.COM/CAMBRIDGE-MLG/SGD-GP.
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2. On the large-scale Bayesian optimisation task considered by Lin et al. (2023), stochastic
dual descent is shown to be superior to their stochastic gradient descent method and other
baselines, both against the number of iterations and against wall-clock time.

3. On a molecular binding affinity prediction task, the performance of Gaussian process regres-
sion with stochastic dual descent matches that of state-of-the-art graph neural networks.

In short, we show that a simple-but-well-designed stochastic gradient method for Gaussian processes
can be very competitive with other approaches for Gaussian processes, and may make Gaussian
processes competitive with graph neural networks on tasks on which the latter are state-of-the-art.

2 GAUSSIAN PROCESS REGRESSION

We consider Gaussian process regression over a domain X ⊂ Rd, assuming a Gaussian process prior
induced by a continuous, bounded, positive-definite kernel k : X × X → R. Our goal is to, given
some observations, either (i) sample from the Gaussian process posterior, or (ii) compute its mean.

To formalise these goals, let some observed inputs x1, . . . , xn ∈ X be collected in a matrix X ∈ Rn×d

and let y ∈ Rn denote the corresponding observed real-valued targets. We say that a random function
fn : X → R is a sample from the posterior Gaussian process associated with the kernel k, data set
(X, y), and likelihood variance parameter λ > 0, if the distribution of any finite set of its marginals is
jointly multivariate Gaussian, and the mean and covariance between the marginals of fn at any a and
a′ in X are given by

mn(a) = E[fn(a)] = k(a,X)(K + λI)−1y and

Cov(fn(a), fn(a
′)) = k(a, a′)− k(a,X)(K + λI)−1k(X, a′)

respectively, where K ∈ Rn×n is the n× n matrix whose (i, j) entry is given by k(xi, xj), I is the
n×n identity matrix, k(a,X) is a row vector in Rn with entries k(a, x1), . . . , k(a, xn) and k(X, a′)
is a column vector defined likewise (per the notation of Rasmussen and Williams, 2006).

Throughout, for two vectors a, b ∈ Rp, with p ∈ N+, we write aTb for their usual inner product and
∥a∥ for the 2-norm of a. For a symmetric positive semidefinite matrix M ∈ Rp×p, we write ∥a∥M
for the M -weighted 2-norm of a, given by ∥a∥2M = aTMa. For a symmetric matrix S, we write ∥S∥
for the operator norm of S, and λi(S) for the ith largest eigenvalue of S, such that λ1(S) = ∥S∥.

3 STOCHASTIC DUAL DESCENT FOR REGRESSION AND SAMPLING

We show our proposed algorithm, stochastic dual descent, in Algorithm 1. The algorithm can be used
for two purposes: regression, where the goal is to produce a good approximation to the posterior
mean function mn, and sampling, that is, drawing a sample from the Gaussian process posterior.

The algorithm takes as input a kernel matrix K, the entries of which can be computed ‘on demand’
using the kernel function k and the observed inputs x1, . . . , xn as needed, a likelihood variance
λ > 0, and a vector b ∈ Rn. It produces a vector of coefficients αT ∈ Rn, which approximates

α⋆(b) = (K + λI)−1b . (1)

To translate this into our goals of mean estimation and sampling, given a vector α ∈ Rn, let

hα(·) =
n∑

i=1

αik(xi, ·) .

Then, hα⋆(y) gives the mean function mn, and thus running the algorithm with the targets y as the
vector b can be used to estimate the mean function. Moreover, given a sample f0 from the Gaussian
process prior associated with k, and noise ζ ∼ N (0, λI), we have that

f0 + hα⋆(y−(f0(X)+ζ))

is a sample from the Gaussian process posterior (Wilson et al., 2020, 2021). In practice, one might
approximate f0 using random features (as done in Wilson et al., 2020, 2021; Lin et al., 2023).
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Algorithm 1 Stochastic dual descent for approximating α⋆(b) = (K + λI)−1b

Require: Kernel matrix K with rows K1, . . . ,Kn ∈ Rn, targets b ∈ Rn, likelihood variance λ > 0,
number of steps T ∈ N+, batch size B ∈ {1, . . . , n}, step size β > 0,
momentum parameter ρ ∈ [0, 1), averaging parameter r ∈ (0, 1]

1: v0 = 0; α0 = 0; α0 = 0 ▷ all in Rn

2: for t ∈ {1, . . . , T} do
3: Sample It = (it1, . . . , i

t
B) ∼ Uniform({1, . . . , n}) independently ▷ random coordinates

4: gt =
n
B

∑
i∈It

((Ki + λei)
T(αt−1 + ρvt−1)− bi)ei ▷ gradient estimate

5: vt = ρvt−1 − βgt ▷ velocity update
6: αt = αt−1 + vt ▷ parameter update
7: αt = rαt + (1− r)αt−1 ▷ iterate averaging
8: return αT

The SDD algorithm is distinguished from variants of SGD used in the context of GP regression by
the following features: (i) SGD uses a dual objective in place of the usual kernel ridge regression
objective, (ii) it uses stochastic approximation entirely via random subsampling of the data instead of
random features, (iii) it uses Nesterov’s momentum, and (iv) it uses geometric, rather than arithmetic,
iterate averaging. In the following subsections, we examine and justify each of the choices behind the
algorithm design, and illustrate these on the UCI data set POL (Dua and Graff, 2017), chosen for its
small size, which helps us to compare against less effective alternatives.

3.1 GRADIENT DESCENT: PRIMAL VERSUS DUAL OBJECTIVES

For any b ∈ Rn, computing the vector α⋆(b) of equation (1) using Cholesky factorisation takes on
the order of n3 operations. We now look at how α⋆(b) may be approximated using gradient descent.

As is well known, the vector α⋆(b) is the minimiser of the kernel ridge regression objective,

L(α) =
1

2
∥b−Kα∥2 + λ

2
∥α∥2K

over α ∈ Rn (Smola and Schölkopf, 1998). We will refer to L as the primal objective. Consider
using gradient descent to minimise L(α). This entails constructing a sequence (αt)t of elements in
Rn, which we initialise at the standard but otherwise arbitrary choice α0 = 0, and setting

αt+1 = αt − β∇L(αt) ,

where β > 0 is a step-size and ∇L is the gradient function of L. Recall that the speed at which αt

approaches α⋆(b) is determined by the condition number of the Hessian: the larger the condition
number, the slower the convergence speed (Boyd and Vandenberghe, 2004). The intuitive reason for
this correspondence is that, to guarantee convergence, the step-size needs to scale inversely with the
largest eigenvalue of the Hessian, while progress in the direction of an eigenvector underlying an
eigenvalue is governed by the step-size multiplied with the corresponding eigenvalue. With that in
mind, the primal gradient and Hessian are

∇L(α) = K(λα− b+Kα) and ∇2L(α) = K(K + λI) (2)

respectively, and therefore the relevant eigenvalues are bounded as

0 ≤ λn(K(K + λI)) ≤ λ1(K(K + λI)) ≤ κn(κn+ λ) ,

where κ = supx∈X k(x, x) is finite by assumption. These bounds only allow for a step-size β on the
order of (κn(κn+ λ))−1. Moreover, since the minimum eigenvalue is not bounded away from zero,
we do not have a priori guarantees for the performance of gradient descent using L.

Consider, instead, minimising the dual objective

L∗(α) =
1

2
∥α∥2K+λI − αTb. (3)

The dual L∗ has the same unique minimiser as L, namely α⋆(b), and the two are, up to rescaling, a
strong dual pair (in a sense made precise in Appendix A). The dual gradient and Hessian are given by

g(α) := ∇L∗(α) = λα− b+Kα and ∇2L∗(α) = K + λI . (4)
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Figure 1: Comparison of full-batch primal and dual gradient descent on POL with varying step-sizes.
Primal gradient descent becomes unstable and diverges for βn greater than 0.1. Dual gradient
descent is stable with larger step-sizes, allowing for markedly faster convergence than the primal. For
βn = 0.1, the dual method makes more progress in the K-norm, whereas the primal in the K2-norm.

Examining the eigenvalues of the above Hessian, we see that gradient descent on L∗ (dual gradient
descent) may use a step-size of up to an order of κn higher than that on L (primal gradient descent),
leading to faster convergence. Moreover, since the condition number of the dual satisfies cond(K +
λI) ≤ 1 + κn/λ and λ is positive, we can provide an a priori bound on the number of iterations
required for dual gradient descent to convergence to any fixed error level for a length n sequence of
observations.

In Figure 1, we plot the results of an experimental comparison of primal and dual gradient descent
on the UCI POL regression task. There, gradient descent with the primal objective is stable up to
βn = 0.1 but diverges for larger step-sizes. In contrast, gradient descent with the dual objective
is stable with a step-size as much as 500× higher, converges faster and reaches a better solution;
see also Appendix B for more detailed plots and recommendations on setting step-sizes. We show
this on three evaluation metrics: distance to α⋆(y) measured in ∥ · ∥2K , the K-norm (squared) and
in ∥ · ∥2K2 , the K2-norm (squared), and test set root-mean-square error (RMSE). To understand the
difference between the two norms, note that the K-norm error bounds the error of approximating
hα⋆(b) uniformly. Indeed, as shown in Appendix A, we have the bound

∥hα − hα⋆(b)∥∞ ≤
√
κ∥α− α⋆(b)∥K , (5)

where recall that κ = supx∈X k(x, x). Uniform norm guarantees of this type are crucial for sequential
decision-making tasks, such as Bayesian optimisation, where test input locations may be arbitrary.
The K2-norm metric, on the other hand, reflects the training error.

Examining the two gradients, its immediate that the primal gradient optimises for the K2-norm, while
the dual for the K-norm. And indeed, we see in Figure 1 that when both methods use βn = 0.1, up
to 70k iterations, the dual method is better on the K-norm metric and the primal on K2. Later, the
dual gradient method performs better on all metrics. This, too, is to be expected, as the minimum
eigenvalue of the Hessian of the dual loss is higher than that of the primal loss.

3.2 RANDOMISED GRADIENTS: RANDOM FEATURES VERSUS RANDOM COORDINATES

To compute either the primal or the dual gradients, presented in equations (2) and (4), we need to
compute matrix-vector products of the form Kα, which requires order n2 computations. We now
introduce and contrast two types of stochastic approximation for our dual gradient g(α) that reduce
the cost to order n per-step, and carefully examine the noise they introduce into the gradient.

For the sake of exposition (and exposition only, this is not an assumption of our algorithm), assume
that we are in an m-dimensional (finite) linear model setting, such that K is of the form

∑m
j=1 zjz

T
j ,

where zj ∈ Rn collects the values of the jth feature of the observations x1, . . . , xn. Then, for
j ∼ Uniform({1, . . . ,m}), we have that E[mzjz

T
j ] = K, and therefore

g̃(α) = λα− b+mzjz
T
j α
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Figure 2: A comparison of dual stochastic gradient descent on the POL data set with either random
Fourier features or random coordinates, using batch size B = 512, momentum ρ = 0.9 and averaging
parameter r = 0.001 (see Section 3.3 for explanation of latter two). Random features converge with
βn = 5 × 10−4 but perform poorly, and diverge with a higher step-size. Random coordinates are
stable with βn = 50 and show much stronger performance on all metrics. We include a version of
random coordinates where only the Kα term is subsampled: this breaks the multiplicative noise
property, and results in an estimate which is worse on both the K-norm and the K2-norm metric.

is an unbiased estimate of g(α); we call g̃ the random feature estimate of g. The alternative we
consider is random coordinates, where we take i ∼ Uniform({1, . . . , n}), and use

ĝ(α) = neie
T
i g(α) = nei(λαi − bi +Kiα) .

Observe that ĝ(α) zeros all but the ith (of n) coordinate of g(α), and then scales the result by n; since
E[neieTi ] = I , ĝ(α) is also an unbiased estimate of g(α). Note that the cost of calculating either g̃(α)
or ĝ(α) is linear in n, and therefore both achieve our goal of reduced computation time.

However, while g̃ and ĝ may appear similarly appealing, the nature of the noise introduced by these,
and thus their qualities, are quite different. In particular, one can show that

∥ĝ(α)− g(α)∥ ≤ ∥(M − I)(K + λI)∥∥α− α⋆(b)∥ ,

where M = neiei is the random coordinate approximation to the identity matrix. As such, the noise
introduced by ĝ(α) is proportional to the distance between the current iterate α, and the target α⋆,
making it a so-called multiplicative noise gradient estimate (Dieuleveut et al., 2017). Intuitively,
multiplicative noise estimates automatically reduce the amount of noise injected as the iterates get
closer to their target. On the other hand, for g̃(α), letting K̃ = mzjz

T
j , we have that

∥g̃(α)− g(α)∥ = ∥(K̃ −K)α∥ ,

and thus the error in g̃(α) is not reduced as α approaches α⋆(b). The behaviour of g̃ is that of an
additive noise gradient estimate. Algorithms using multiplicative noise estimates, when convergent,
often yield better performance (see Varre et al., 2021).

Another consideration is that when m, the number of features, is larger than n, individual features zj
may also be less informative than individual gradient coordinates eieTi g(α). Thus, picking features
uniformly at random, as in g̃, may yield a poorer estimate. While this can be addressed by introducing
an importance sampling distribution for the features zj (as per Li et al., 2019), doing so adds
implementation complexity, and could be likewise done to improve the random coordinate estimate.

In Figure 2, we compare variants of stochastic dual descent with either random (Fourier) features
or random coordinates. We see that random features, which produce high-variance additive noise,
can only be used with very small step-sizes and have poor asymptotic performance. We test two
versions of random coordinates: ĝ(α), where, as presented, we subsample the whole gradient, and an
alternative, neieTi (Kα)−y−λα, where only the Kα term is subsampled. While both are stable with
much higher step-sizes than random features, the latter has worse asymptotic performance. This is a
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Figure 3: Comparison of dual stochastic gradient descent on the POL data set with different accelera-
tion methods, using batch size B = 512, a geometric averaging parameter r = 0.001, and step-sizes
tuned individually for each method (AdaGrad βn = 10; RMSprop & Adam βn = 0.05; Nesterov’s
momentum βn = 50). Both Adam and Nesterov’s momentum perform well on Test RMSE, but the
latter performs better on the K and K2 norms.

kind of Rao-Blackwellisation trap: introducing the known value of −y + λα in place of its estimate
neie

T
i (−y + λα) destroys the multiplicative property of the noise, making things worse, not better.

Algorithm 1 combines a number of samples into a minibatched estimate to further reduce variance.
We discuss the behaviour of different stochastic gradient estimates under minibatching in Appendix B.

There are many other possibilities for constructing randomised gradient estimates. For example, Dai
et al. (2014) applied the random coordinate method on top of the random feature method, in an effort
to further reduce the order n cost per iteration of gradient computation. However, based on the above
discussion, we generally recommend estimates that produce multiplicative noise, and our randomised
coordinate gradient estimates as the simplest of such estimates.

3.3 NESTEROV’S MOMENTUM AND POLYAK-RUPPERT ITERATE AVERAGING

Momentum, or acceleration, is a range of modifications to the usual gradient descent updates that
aim to improve the rate of convergence, in particular with respect to its dependence on the curvature
of the optimisation problem (Polyak, 1964). Many schemes for momentum exist, with AdaGrad
(Duchi et al., 2011), RMSProp (Tieleman and Hinton, 2012) and Adam (Kingma and Ba, 2015)
particularly popular in the deep learning literature. These, however, are designed to adapt to changing
curvatures. As our objective has a constant curvature, we recommend the use of the simpler Nesterov’s
momentum (Nesterov, 1983; Sutskever et al., 2013), as supported by our empirical results in Figure 3,
with further results in Figure 4, showing that momentum is vital for the POL data set. The precise
form of the updates used is shown in Algorithm 1; we use a momentum of ρ = 0.9 throughout.

Polyak-Ruppert averaging returns the average of the (tail of the) stochastic gradient iterates, rather
than the final iterate, so as to reduce noise in the estimate (Polyak, 1990; Ruppert, 1988; Polyak and
Juditsky, 1992). While Polyak-Ruppert averaging is necessary with constant step-size and additive
noise, it is not under multiplicative noise (Varre et al., 2021), and indeed can slow convergence. For
our problem, we recommend using geometric averaging instead, where we let α0 = α0 and, at each
step compute

αt = rαt + (1− r)αt−1 for an averaging parameter r ∈ (0, 1) ,

and return as our estimate αT . Geometric averaging is an anytime approach, in that it does not rely on
fixed tail-window size; it can thus be used in combination with early stopping, and the value of r can
be tuned adaptively. Figure 4 shows that geometric averaging outperforms both arithmetic averaging
and returning the last iterate, αT . Here and throughout, we set r = 100/T .

3.4 CONNECTIONS TO THE LITERATURE

The dual formulation for the kernel ridge regression objective was first pointed out in the kernel
literature in Saunders et al. (1998). It features in textbooks on the topic (see equations (10.95) and
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Figure 4: Comparison of optimisation strategies for random coordinate estimator of the dual objective
on the POL data set, using momentum ρ = 0.9, averaging parameter r = 0.001, batch size B = 128,
and step-size βn = 50. Nesterov’s momentum significantly improves convergence speed across all
metrics. The dashed olive line, marked arithmetic averaging, shows the regular iterate up until 70k
steps, at which point averaging commences and the averaged iterate is shown. Arithmetic iterate
averaging slows down convergence in K-norm once enabled. Geometric iterate averaging, on the
other hand, outperforms arithmetic averaging and unaveraged iterates throughout optimisation.

(10.98) in Smola and Schölkopf, 1998), albeit with no mention of its better conditioning. Gradient
descent on the dual objective is equivalent to applying the kernel adatron update rule of Frie et
al. (1998), stated there for the hinge loss, and to the kernel least-mean-square algorithm of Liu
et al. (2008), analysed theoretically in Dieuleveut et al. (2017). Shalev-Shwartz and Zhang (2013)
introduce stochastic dual coordinate ascent (SDCA), which uses the dual objective with random
coordinates and analytic line search, and provide convergence results. Tu et al. (2016) implement
a block (minibatched) version of SDCA. Bo and Sminchisescu (2008) propose a method similar to
SDCA, but with coordinates chosen by active learning. Wu et al. (2023) reimplement the latter two
for Gaussian process regression, and link the algorithms to the method of alternating projections.

From the perspective of stochastic gradient descent, the work closest to ours is that of Lin et al.
(2023); which we refer to as SGD, to contrast with our SDD. SGD uses the gradient estimate

∇L(α) ≈ nKi(K
T
i α− bi) + λ

m∑
j=1

zjz
T
j α , (6)

where i ∼ Uniform({1, . . . , n}) is a random index and
∑m

j=1 zjz
T
j is a random Fourier feature

approximation of K. This can be seen as targeting the primal loss, with a mixed multiplicative-
additive objective. Like SDD, SGD uses geometric iterate averaging and Nesterov’s momentum;
unlike SDD, the SGD algorithm requires gradient clipping to control the gradient noise. Note that Lin
et al. (2023) also consider a modified notion of convergence which involves subspaces of the linear
system coefficients. This is of interest in situations where the number of iterations is sufficiently
small relative to data size, and generalization properties are important. While our current work does
not explicitly cover this setting, it could be studied in a similar manner.

Stochastic gradient descent approaches were also used in similar contexts by, amongst others, Dai
et al. (2014) for kernel regression with the primal objective and random Fourier features; Kivinen
et al. (2004) for online learning with the primal objective with random sampling of training data; and
Antorán et al. (2023) for large-scale Bayesian linear models with the dual objective.

4 EXPERIMENTS AND BENCHMARKS

We present three experiments that confirm the strength of our SDD algorithm on standard benchmarks.
The first two experiments, on UCI regression and large-scale Bayesian optimisation, replicate those
of Lin et al. (2023), and compare against SGD (Lin et al., 2023), CG (Wang et al., 2019) and SVGP
(Hensman et al., 2013). Unless indicated otherwise, we use the code, setup and hyperparameters of
Lin et al. (2023). Our third experiment tests stochastic dual descent on five molecule-protein binding
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Table 1: Root-mean-square error (RMSE), compute time (on an A100 GPU), and negative log-
likelihood (NLL), for 9 UCI regression tasks for all methods considered. We report mean values and
standard error across five 90%-train 10%-test splits for all data sets, except the largest, where three
splits are used. Targets are normalised to zero mean and unit variance. This work denoted by SDD∗.

Data POL ELEVATORS BIKE PROTEIN KEGGDIR 3DROAD SONG BUZZ HOUSEELEC

Size 15k 17k 17k 46k 49k 435k 515k 583k 2M

R
M

SE

SDD∗ 0.08± 0.00 0.35± 0.00 0.04± 0.00 0.50± 0.01 0.08± 0.00 0.04± 0.00 0.75± 0.00 0.28± 0.00 0.04± 0.00
SGD 0.13± 0.00 0.38± 0.00 0.11± 0.00 0.51± 0.00 0.12± 0.00 0.11± 0.00 0.80± 0.00 0.42± 0.01 0.09± 0.00
CG 0.08± 0.00 0.35± 0.00 0.04± 0.00 0.50± 0.00 0.08± 0.00 0.18± 0.02 0.87± 0.05 1.88± 0.19 0.87± 0.14
SVGP 0.10± 0.00 0.37± 0.00 0.08± 0.00 0.57± 0.00 0.10± 0.00 0.47± 0.01 0.80± 0.00 0.32± 0.00 0.12± 0.00

Ti
m

e
(m

in
) SDD∗ 1.88± 0.01 1.13± 0.02 1.15± 0.02 1.36± 0.01 1.70± 0.00 3.32± 0.01 185± 0.56 207± 0.10 47.8± 0.02

SGD 2.80± 0.01 2.07± 0.03 2.12± 0.04 2.87± 0.01 3.30± 0.12 6.68± 0.02 190± 0.61 212± 0.15 69.5± 0.06
CG 0.17± 0.00 0.04± 0.00 0.11± 0.01 0.16± 0.01 0.17± 0.00 13.4± 0.01 192± 0.77 244± 0.04 157± 0.01
SVGP 11.5± 0.01 11.3± 0.06 11.1± 0.02 11.1± 0.02 11.5± 0.04 152± 0.15 213± 0.13 209± 0.37 154± 0.12

N
L

L

SDD∗ -1.18± 0.01 0.38± 0.01 -2.49± 0.09 0.63± 0.02 -0.92± 0.11 -1.70± 0.01 1.13± 0.01 0.17± 0.06 -1.46± 0.10
SGD -0.70± 0.02 0.47± 0.00 -0.48± 0.08 0.64± 0.01 -0.62± 0.07 -0.60± 0.00 1.21± 0.00 0.83± 0.07 -1.09± 0.04
CG -1.17± 0.01 0.38± 0.00 -2.62± 0.06 0.62± 0.01 -0.92± 0.10 16.3± 0.45 1.36± 0.07 2.38± 0.08 2.07± 0.58
SVGP -0.67± 0.01 0.43± 0.00 -1.21± 0.01 0.85± 0.01 -0.54± 0.02 0.60± 0.00 1.21± 0.00 0.22± 0.03 -0.61± 0.01

Table 2: Test set R2 scores obtained for each target protein on the DOCKSTRING molecular binding
affinity prediction task. Results with (·)† are from García-Ortegón et al. (2022), those with (·)‡ are
from Tripp et al. (2023). SVGP uses 1000 inducing points. SDD∗ denotes this work.

Method ESR2 F2 KIT PARP1 PGR

Attentive FP† 0.627 0.880 0.806 0.910 0.678
MPNN† 0.506 0.798 0.755 0.815 0.324
XGBoost† 0.497 0.688 0.674 0.723 0.345

Method ESR2 F2 KIT PARP1 PGR

SDD∗ 0.627 0.880 0.790 0.907 0.626
SGD 0.526 0.832 0.697 0.857 0.408
SVGP‡ 0.533 0.839 0.696 0.872 0.477

affinity prediction benchmarks of García-Ortegón et al. (2022). We include detailed descriptions of
all three experimental set-ups and some additional results in Appendix C.

4.1 UCI REGRESSION BASELINES

We benchmark on the 9 UCI repository regression data sets (Dua and Graff, 2017) used by Wang
et al. (2019) and Lin et al. (2023). We run SDD for 100k iterations, the same number used by Lin
et al. (2023) for SGD, but with step-sizes 100× larger than Lin et al. (2023), except for ELEVATORS,
KEGGDIRECTED, and BUZZ, where this causes divergence, and we use 10× larger step-sizes instead.
We run CG to a tolerance of 0.01, except for the 4 largest data sets, where we stop CG after 100
iterations—this still provides CG with a larger compute budget than first-order methods. CG uses
a pivoted Cholesky preconditioner of rank 100. For SVGP, we use 3, 000 inducing points for the
smaller five data sets and 9, 000 for the larger four, so as to match the runtime of the other methods.

The results, reported in Table 1, show that SDD matches or outperforms all baselines on all UCI
data sets in terms of root-mean-square error of the mean prediction across test data. SDD strictly
outperforms SGD on all data sets and metrics, matches CG on the five smaller data sets, where the
latter reaches tolerance, and outperforms CG on the four larger data sets. The same holds for the
negative log-likelihood metric (NLL), computed using 64 posterior function samples, except on BIKE,
where CG marginally outperforms SDD. Since SDD requires only one matrix-vector multiplication
per step, as opposed to two for SGD, it provides about 30% wall-clock time speed-up relative to SGD.
We run SDD for 100k iterations to match the SGD baseline, SDD often converges earlier than that.

4.2 LARGE-SCALE THOMPSON SAMPLING

Next, we replicate the synthetic large-scale black-box function optimisation experiments of Lin
et al. (2023), which consist of finding the maxima of functions mapping [0, 1]8 → R sampled from
Matérn-3/2 Gaussian process priors with 5 different length-scales and 10 random functions per

8
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Figure 5: Results for the Thompson sampling task. Plots show mean and standard error of the
maximum function values identified, across 5 length scales and 10 seeds, against both the number
of observations acquired and the corresponding compute time on an A100 GPU. The compute time
includes drawing posterior function samples and finding their maxima. All methods share an initial
data set of 50k points, and take 30 steps of parallel Thompson sampling, acquiring 1k points at each.

length-scale, using parallel Thompson sampling (Hernández-Lobato et al., 2017). We set the kernel
used by each model to match that of the unknown function. All methods are warm-started with
the same 50k points chosen uniformly at random on the domain. We then run 30 iterations of the
parallel Thompson sampling, acquiring 1000 points at each iteration. We include two variants of the
experiment, one with a small compute budget, where SGD and SDD are run for 15k steps, SVGP
is given 20k steps and CG is run for 10 steps, and one with a large budget, where all methods are
run for 5 times as many steps. We present the results on this task in Figure 5, averaged over both
length-scales and seeds, and a detailed breakdown in Appendix C. In both large and small compute
settings, SDD makes the most progress, in terms of maximum value found, while using the least
compute. The performance of SDD and SGD degrades gracefully when compute budget is limited.

4.3 MOLECULE-PROTEIN BINDING AFFINITY PREDICTION FOR DRUG DISCOVERY

In this final experiment, we show that Gaussian processes with SDD are competitive with graph
neural networks in predicting binding affinity, a widely used filter in drug discovery (Pinzi and
Rastelli, 2019; Yang et al., 2021). We use the DOCKSTRING regression benchmark of García-Ortegón
et al. (2022), which contains five tasks, corresponding to five different proteins. The inputs are the
graph structures of 250k candidate molecules, and the targets are real-valued affinity scores from
the docking simulator AutoDock Vina (Trott and Olson, 2010). For each protein, we use a standard
train-test splits of 210k and 40k molecules, respectively. We use Morgan fingerprints of dimension
1024 (Rogers and Hahn, 2010) to represent the molecules, and use a Gaussian process model based
on the Tanimoto kernel of Ralaivola et al. (2005) with the hyperparameters of Tripp et al. (2023).

In Table 2, following García-Ortegón et al. (2022), we report R2 values. Alongside results for SDD
and SGD, we include results from García-Ortegón et al. (2022) for XGBoost, and for two graph
neural networks, MPNN (Gilmer et al., 2017) and Attentive FP (Xiong et al., 2019), the latter of
which is the state-of-the-art for this task. We also include the results for SVGP reported by Tripp
et al. (2023). These results show that SDD matches the performance of Attentive FP on the ESR2
and FP2 proteins, and comes close on the others. To the best of our knowledge, this is the first time
Gaussian processes have been shown to be competitive on a large-scale molecular prediction task.

5 CONCLUSION

We introduced stochastic dual descent, a specialised first-order stochastic optimisation algorithm for
computing Gaussian process mean predictions and posterior samples. We showed that stochastic dual
descent performs very competitively on standard regression benchmarks and on large-scale Bayesian
optimisation, and matches the performance of state-of-the-art graph neural networks on a molecular
binding affinity prediction task.
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A CONVEX DUALITY AND UNIFORM APPROXIMATION BOUNDS

Claim 1 (Strong duality). We have that
min
α∈Rn

L(α) = −λ min
α∈Rn

L∗(α),

for L,L∗ defined per equations (2) and (4) respectively, with α⋆(b) minimising both sides.

Proof. That α⋆(b) minimises both L and L⋆ can be established from the first order optimality
conditions. Now, for the duality, observe that we can write minα∈Rn L(α) equivalently as the
constrained optimisation problem

min
u∈Rn

min
α∈Rn

1

2
∥u∥2 + λ

2
∥α∥2K subject to u = Kα− b .

Note that this is quadratic in both u and α. Introducing Lagrange multipliers β ∈ Rn, in the form λβ,
where we recall that λ > 0, the solution of the above is equal to that of

min
u∈Rn

min
α∈Rn

sup
β∈Rn

1

2
∥u∥2 + λ

2
∥α∥2K + λβT(b−Kα− u) .

This is a finite-dimensional quadratic problem, and thus we have strong duality (see, e.g., Examples
5.2.4 in Boyd and Vandenberghe, 2004). We can therefore exchange the order of the minimum
operators and the supremum, yielding the again equivalent problem

sup
β∈Rn

{
min
u∈Rn

1

2
∥u∥2 − λβTu

}
+

{
min
α∈Rn

λ

2
∥α∥2K − λβTKα

}
+ λβTb.

Noting that the two inner minimisation problems are quadratic, we solve these analytically using the
first order optimality conditions, that is α = β and u = λβ, to obtain that the above is equivalent to

sup
β∈Rn

−λ

(
1

2
∥β∥2K+λI − βTb

)
= −λ min

β∈Rn
L∗(β) .

The result follows by chaining the above equalities and relabelling β 7→ α.

To show equation (5), the uniform approximation bound, we first need to define reproducing kernel
Hilbert spaces (RKHSes). Let H be a Hilbert space of functions X → R with inner product ⟨·, ·⟩
and corresponding norm ∥ · ∥H. We say H is the RKHS associated with a bounded kernel k if the
reproducing property holds:

∀x ∈ X , ∀h ∈ H, ⟨k(x, ·), h⟩ = h(x) .

That is, k(x, ·) is the evaluation functional (at x ∈ X ) on H. For observations X , let Φ: H → Rn

be the linear operator mapping h 7→ h(X), where h(X) = (h(x1), . . . , h(xn)). We will write Φ∗

for the adjoint of Φ, and observe that K is the matrix of the operator ΦΦ∗ with respect to a standard
basis on Rn (that used implicitly throughout).
Claim 2 (Uniform approximation). For any α, α′ ∈ Rn,

∥hα − hα′∥∞ ≤
√
κ∥α− α′∥K ,

where κ = supx∈X k(x, x).

Proof. First, observe that,
∥hα − hα′∥∞ = sup

x∈X
|hα(x)− hα′(x)| (defn. of sup norm)

= sup
x∈X

|⟨k(x, ·), hα − hα′⟩| (reproducing property)

≤ sup
x∈X

∥k(x, ·)∥H∥hα − hα′∥H (Cauchy-Schwarz)

≤
√
κ∥hα − hα′∥H , (defn. of κ)

Now, observe that hα = Φ∗α and hα′ = Φ∗α′, and so we have the equalities
∥hα − hα′∥2H = ⟨Φ∗(α− α′),Φ∗(α− α′)⟩ (defn. norm)

= ⟨α− α′,ΦΦ∗(α− α′)⟩ (defn. adjoint)

= ∥α− α′∥2K , (defn. K)
where for the final equality, we note that K is the matrix of the operator ΦΦ∗ with respect to the
standard basis. Combining the above two displays yields the claim.
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Figure 6: Comparison of dual stochastic gradient descent on the POL with a momentum parameter
ρ = 0.9, averaging parameter r = 0.001, batch size B = 512, and varying step-sizes βn. For the
mixed additive-multiplicative noise gradient estimator in the top row, higher step-size leads to faster
convergence, but worse asymptotic result. For our recommended multiplicative noise estimator in the
bottom row, higher step-size improves both the speed of convergence and the asymptotic result.

B EFFECTS OF VARYING STEP-SIZE AND BATCH-SIZE

In Figures 6 to 8 we examine the trade-offs related to step-size and batch-size for stochastic dual
gradient descent with gradient estimators either of the mixed additive-multiplicative type, used by
SGD, or the purely multiplicative type, recommended in this work. In short, trade-offs exist in the
additive-multiplicative case, and we cannot make clear recommendations. For purely multiplicative
noise, the picture is clearer:

• Step-size should be chosen as large as possible while avoiding divergence, to improve both
the rate of convergence and the asymptotic quality of the result.

• Batch-size should be chosen as small as possible while avoiding divergence, since a larger
batch incurs a larger per-step computational cost without affecting the convergence of the
algorithm.

Of course, this then leaves a step-size versus batch-size trade-off for SDD, translating into a trade-off
between the rate of convergence and the asymptotic behaviour versus wall-clock time. This trade-off
will need to be addressed on a case-by-case basis.

C ADDITIONAL DETAILS ON EXPERIMENTAL SETUPS AND RESULTS

We use the implementation and hyperparameter configurations from Lin et al. (2023) for the SGD,
SVGP and CG baselines,1 which uses the jax library (Bradbury et al., 2018). Some more detail on
the implementations is as follows.

CG We implement CG using the jax.scipy library, with a pivoted Cholesky preconditioner of
size 100 computed using the TensorFlow Probability library.

SGD We use minibatches of 512 to estimate the fit term of equation (6), and 100 random features for
the regulariser. For UCI and Bayesian optimisation experiments, random Fourier features are
used. For the molecule task, random hashes, as described in Tripp et al. (2023). SGD uses

1HTTPS://GITHUB.COM/CAMBRIDGE-MLG/SGD-GP
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Figure 7: Dual stochastic gradient descent on the POL with a momentum parameter ρ = 0.9, averaging
parameter r = 0.001, step-size βn = 50, and varying batch sizes B, with metrics plotted against the
number of iterations. For the mixed additive-multiplicative noise gradient estimator in the top row,
higher batch size improves the final performance. For our preferred multiplicative noise estimator in
the bottom row, batch sizes has little effect on performance, so long as it is not so low that it causes
the optimisation to diverge.
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Figure 8: Dual stochastic gradient descent on the POL with a momentum parameter ρ = 0.9, averaging
parameter r = 0.001, step-size βn = 50, and varying batch sizes B, with metrics plotted against wall-
clock time. For the mixed additive-multiplicative noise gradient estimator, conclusions match those
in Figure 7. For our preferred multiplicative noise estimator in the bottom row, since performance for
batch sizes that lead to convergence is similar, performance is best for the smallest batch-size that
does not lead to divergence, as batch-size increases the per-step computation cost.
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Nesterov’s momentum of 0.9 and geometric iterate averaging, as implemented in optax,
with r = 100/T , where T is the total number of SGD iterations. We clip the 2-norm of the
gradient estimates to 0.1. These settings are replicated from Lin et al. (2023), which in turn
takes these from Antorán et al. (2023).

SVGP We initialise inducing points using k-means and k-means++. We then optimise all
variational parameters, including inducing point locations, by maximising the ELBO with
the Adam optimiser until convergence, using the GPJax library (Pinder and Dodd, 2022).

C.1 UCI REGRESSION

For all methods, we use a Matérn-3/2 kernel with a fixed set of hyperparameters chosen by Lin
et al. (2023) via maximum likelihood. To ease reproducibility, we make the full hyperparameter set
available as a Python file in our source code HERE. SGD uses βn = 0.5 to estimate the mean function
weights, and βn = 0.1 to draw samples. For SDD, we use step-sizes βn which are 100 times larger,
except for ELEVATORS, KEGGDIR and BUZZ, where this causes divergence; there, we use a 10×
larger step-size instead. SDD and SGD are both run for 100k steps with batch size B = 512 for both
the mean function and posterior samples. For CG, we use a maximum of 1000 steps for data sets
with N ≤ 50k, and a tolerance of 0.01. On the four largest data sets, the per step cost of CG is too
large to run 1000 steps, and we run 100 steps instead. For SVGP, the number of inducing points
is chosen such that the compute cost approximately matches that of other methods: 3000 for the
smaller five data sets and 9000 for the larger four. Negative log-likelihood computations are done by
estimating the predictive variances using 64 posterior samples, with 2000 random Fourier features
used to approximate the requisite prior samples.

C.2 LARGE-SCALE THOMPSON SAMPLING

We draw target functions X → R from a Gaussian process prior with a Matérn-3/2 kernel and length
scales (0.1, 0.2, 0.3, 0.4, 0.5), using 2000 random Fourier features. For each length scale, we repeat
the experiment for 10 seeds. All methods use the same kernel that was used to generate the data.

We optimise the target functions on X = [0, 1]8 using parallel Thompson sampling (Hernández-
Lobato et al., 2017). That is, we choose xnew = argmaxx∈X fn for a set of posterior function
samples drawn in parallel. We replicate the multi-start gradient optimisation maximisation strategy of
Lin et al. (2023) (see therein). For each function sample maximum, we evaluate ynew = g(xnew) + ε
with ε drawn from a zero-mean Gaussian with variance of 10−6. We then add the pair (xnew, ynew) to
the training data. We use an acquisition batch size of 1000. We initialise all methods with a data set
of 50k observations sampled uniformly at random from X .

Here, SGD uses a step-size of βn = 0.3 for the mean and βn = 0.0003 for the samples. SDD uses
step-sizes that are 10× larger: βn = 3 for the mean and βn = 0.003 for the samples.

C.3 MOLECULE-PROTEIN BINDING AFFINITY PREDICTION

We use the data set and standard train-test splits from García-Ortegón et al. (2022), which were
produced by structure-based clustering to avoid similar molecules from occurring both in the train
and test set. We perform all the preprocessing steps for this benchmark outlined by García-Ortegón
et al. (2022), including limiting the maximum docking score to 5.

Fingerprints, Tanimoto Kernel and Random Features Molecular fingerprints are a way to encode
the structure of molecules by indexing sets of subgraphs present in a molecule. There are many
types of fingerprints. Morgan fingerprints represent the subgraphs up to a certain radius around each
atom in a molecule (Rogers and Hahn, 2010). The fingerprint can be interpreted as a sparse vector
of counts, analogous to a ‘bag of words’ representation of a document. Accordingly, the Tanimoto
coefficient T (x, x′), also called the Jaccard index, is a way to measure similarity between fingerprints,
given by

T (x, x′) =

∑
i min(xi, x

′
i)∑

i max(xi, x′
i)
.

This function is a valid kernel and has a known random feature expansion using random hashes
(Tripp et al., 2023). The feature expansion builds upon prior work for fast retrieval of documents
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Figure 9: Maximum function values, with mean and standard error across 10 seeds, obtained by
parallel Thompson sampling, for functions with different length-scales l, plotted as functions of
acquisition steps and the compute time on an A100 GPU. All methods share an initial data set of 50k
points, and take 30 Thompson steps, acquiring a batch of 1000 points in each. The algorithms perform
differently across the length-scales: CG performs better in settings with smaller length-scales, which
give better conditioning; SVGP tends to perform better in settings with larger length-scales and thus
higher smoothness; SGD and SDD perform well in both settings.
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using random hashes that approximate the Tanimoto coefficient; that is, a distribution Ph over hash
functions h such that

Ph(h(x) = h(x′)) = T (x, x′) .

Per Tripp et al. (2023), we extend such hashes into random features by using them to index a random
tensor whose entries are independent Rademacher random variables, and use the random hash of
Ioffe (2010).

Gaussian Process Setup The results for the SVGP baseline are taken from Tripp et al. (2023). As
the Tanimoto kernel itself has no hyperparameters, the only kernel hyperparameters are a constant
scaling factor A > 0 for the kernel and the noise variance λ, and a constant GP prior mean µ0 (the
Gaussian process regresses on y − µ0 in place of y). These are chosen by using an exact GP to a
randomly chosen subset of the data and held constant during the optimisation of the inducing points.
The values of these are given in Table 3. The same values are also used for SGD and SDD to ensure
that the differences in accuracy are solely due to the quality of the GP posterior approximation. The
SGD method uses 100-dimensional random features for the regulariser.

Table 3: Hyperparameters for all Gaussian process methods used in the molecule-protein binding
affinity experiments of Section 4.3.

Data ESR2 F2 KIT PARP1 PGR

A 0.497 0.385 0.679 0.560 0.630
λ 0.373 0.049 0.112 0.024 0.332
µ0 -6.79 -6.33 -6.39 -6.95 -7.08
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