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1. Introduction 
Polymer chemistry is a relatively young subject, 

and polymeric materials—particularly plastics—have 
become ubiquitous in everyday life due to their 
combination of low weight, widespread availability, 
and durability. However, the widespread use of 
plastics has led to severe environmental pollution, 
making the efficient recycling of waste polymers a 
critical research focus [1]. There is an urgent need for 
degradation methods that are both efficient and 
environmentally friendly. Common strategies for 
managing plastic waste include landfilling (which is 
environmentally hazardous), incineration (which is 
high carbon emissions), mechanical recycling, and 
chemical recycling. Among chemical recycling 
approaches, catalytic pyrolysis has emerged as a 
preferred method because of its low emissions, high 
selectivity, and ability to generate high-value 
products [1, 2].  

In catalytic pyrolysis, catalysts play a crucial role, 
and their presence can significantly influence not 
only reaction conditions but mechanisms. Among 
various catalysts, single-atom catalysts have emerged 
as a preferred choice due to their high atomic 
utilization and enhanced selectivity [3, 4]. Unlike 
small-molecule reactions, polymer degradation 
demands consideration of both chemical reactions at 
the microscopic scale and the motion of polymer 
chains at the mesoscopic scale. Incorporating a 
mesoscopic perspective—describing the dynamics of 
long polymer chains and their behavior after 
adsorption—provides a more comprehensive 
understanding of the catalytic system [5]. 
Furthermore, recent studies have shown that 
designing catalyst structures with constrained 
entropy at the mesoscopic scale can further enhance 
catalytic efficiency [6]. 

Machine learning has emerged as a powerful tool 
for tackling complex problems. Addressing such 
challenge requires using machine learning from a 
multiscale perspective. At the microscopic scale, 
machine learning can assist in catalyst design and 
elucidate reaction mechanisms, whereas at the 
mesoscopic scale it can model reaction kinetics and 
provide predictive insights for complex systems. 

Recent efforts in polymer pyrolysis research have 
focused primarily on experimental catalyst 
optimization, with limited integration of machine 
learning. Notably, in the development of single-atom 
catalysts for small-molecule reactions, data-driven 
approaches have already yielded significant 
improvements. However, extending such approaches 
to polymer degradation is challenging due to the 
scarcity of comprehensive degradation databases and 
the lack of key descriptors of degradation 
mechanisms [7, 8]. Overcoming these hurdles will 
require data-efficient learning strategies (e.g., 
transfer learning, few-shot learning) that remain 
effective even with limited datasets [9]. Additionally, 
given the uncertainty in reaction mechanisms, 

physics-informed neural networks (PINNs) provide a 
way to embed prior physical knowledge into model 
training, enhancing model reliability [10]. In parallel, 
reaction kinetics at the mesoscale can benefit from 
integrating diffusion generative models with 
molecular dynamics simulations; this combination 
captures the complex motion and interaction of 
polymer chains and thus improves reaction 
prediction accuracy. 

For example, Cao et al applied diffusion generative 
models to develop a novel framework for ligand 
docking, demonstrating the capability of these 
models to generate high-fidelity predictions under 
uncertain reaction conditions. This work provides a 
valuable blueprint for extending such techniques to 
polymer catalytic degradation, where multiscale 
dynamics and complex catalyst–polymer interactions 
must be accurately captured [11]. 

This confluence of methodologies—from 
microscale catalyst design informed by PINNs and 
data-efficient learning to mesoscale kinetic modeling 
via diffusion generative networks—represents a 
promising direction for overcoming current 
limitations in polymer degradation research and 
advancing the predictive accuracy of complex 
catalytic systems. 
2. Research 
2.1 Methodology 

Our research employs machine learning to 
elucidate polymer reaction mechanisms and to guide 
catalyst design. Considering limited experimental 
data, we adopt data-efficient learning strategies to 
characterize polymer reactions at both the microscale 
and mesoscale, capturing intrinsic reaction 
mechanisms as well as reaction accessibility. 

In describing polymer pyrolysis reactions across 
microscopic and mesoscopic scales, our approach can 
be summarized as from “points” to “lines,” where the 
“points” means the reactive active sites, and the 
“lines” represent the motion and diffusion of polymer 
chains. Because the rate of polymer pyrolysis is 
several orders of magnitude slower than the thermal 
motion of these chains, we consider this multi-scale 
model to be feasible. 

At the microscopic scale, the primary focus is on 
the docking between the active sites and polymer 
chains, with particular attention paid to the 
adsorption energies among those sites. Under 
thermal catalytic conditions, the ester oxygen in PET 
chains—given its high reactivity—docks with the 
active sites to form a bound structure. We adopt a 
reaction model to characterize and describe this 
process. 

At the mesoscopic scale, we further examine the 
polymer chain’s motion following microscopic 
docking. Specifically, we use a diffusion-generative-
network–based molecular dynamics approach to 
simulate the diffusion and collision behavior of the 
polymer chains. The polymer treats the catalyst’s 
active site on the surface as an “endpoint” and, driven 
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by thermal motion, continuously collides and bonds 
with the catalyst surface, thereby achieving chain 
diffusion onto the catalyst. Once the chain has fully 
diffused and adsorbed onto the catalyst surface, it 
proceeds to the subsequent catalytic reaction stage. 
By employing this multi-scale model, we couple the 
microscopic docking at active sites with mesoscopic 
chain diffusion to provide a comprehensive 
description of the polymer pyrolysis mechanism. 

In this work, we integrate machine learning with 
multiscale modeling and experimental validation to 
design PET (polyethylene terephthalate) pyrolysis 
catalysts that achieve selective ester bond cleavage 
and maximize high-value product yields. 
2.2 Results 

We leverage diverse data sources—including 
curated databases (e.g., PoLyInfo and Catalysis-Hub), 
published experimental datasets, and data generated 
from molecular dynamics (MD) simulations and low-
accuracy DFT calculations—to pretrain a reaction 
model on extensive datasets. This model is 
subsequently fine-tuned with physical insights 

specific to PET degradation. Additionally, we 
incorporate diffusion generative models into 
molecular dynamics simulations (tailored for 
polymer systems) to simulate the dynamic 
adsorption–reaction–desorption processes in PET 
pyrolysis. The obtained catalyst exhibits good 
performance under the thermocatalytic degradation 
conditions of the PET polymers. The resulting catalyst 
structure and composition are characterized by X-ray 
diffraction (XRD), X-ray photoelectron spectroscopy 
(XPS), and transmission electron microscopy (TEM), 
while product distributions are analyzed via high-
performance liquid chromatography (HPLC) and gas 
chromatography–mass spectrometry (GC–MS). The 
obtained results further confirm the successful 
synthesis of the catalyst and its catalytic 
effectiveness. This comprehensive, data-efficient 
approach not only optimizes PET degradation but 
also provides a robust framework for the rational 
design of advanced pyrolysis catalysts.

 
Fig. 1: Overall Work Introduction: 

Microscopic scale, catalyst active sites dock with polymer chains; Mesoscopic scale, the polymer chains diffuse—with docking 
sites as endpoints—as described by a diffusion generative network, further facilitating additional docking events between the 
chains and active sites.  
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