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ABSTRACT

Hard-thresholding is an important type of algorithm in machine learning that is
used to solve ¢y constrained optimization problems. However, the true gradient of
the objective function can be difficult to access in certain scenarios, which normally
can be approximated by zeroth-order (ZO) methods. The SZOHT algorithm is the
only algorithm tackling ¢, sparsity constraints with ZO gradients so far. Unfortu-
nately, SZOHT has a notable limitation on the number of random directions due to
the inherent conflict between the deviation of ZO gradients and the expansivity of
the hard-thresholding operator. This paper approaches this problem by considering
the role of variance and provides a new insight into variance reduction: mitigat-
ing the unique conflicts between ZO gradients and hard-thresholding. Under this
perspective, we propose a generalized variance reduced ZO hard-thresholding algo-
rithm as well as the generalized convergence analysis under standard assumptions.
The theoretical results demonstrate the new algorithm eliminates the restrictions
on the number of random directions, leading to improved convergence rates and
broader applicability compared with SZOHT. Finally, we illustrate the utility of
our method on a ridge regression problem as well as black-box adversarial attacks.

1 INTRODUCTION

£y constrained optimization is a fundamental method in large-scale machine learning, particularly
in high-dimensional problems. This approach is widely favored for achieving sparse learning. It
offers numerous advantages, notably enhancing efficiency by reducing memory usage, computational
demands, and environmental impact. Additionally, this constraint plays a crucial role in combatting
overfitting and facilitating precise statistical estimation (Negahban et al., 2012} Raskutti et al., 2011}
Bithlmann and Van De Geer, 2011} |[Yuan and Li, 2021)). In this study, we focus on the following
problem:

1 n
min F(0) = EZ]‘}(G), s.t.||0]|o < K, (1)
=1

0cR4

Here, F(6) is the (regularized) empirical risk. |||, represents the number of non-zero directions.
d is the dimension of 6. Unfortunately, due to the ¢y constraint, becomes an NP-hard problem,
rendering traditional methods unsuitable for its analysis.

Therefore, we consider using the hard-threshold iterative algorithm (Raskutti et al.|[201 1} |Jain et al.}
2014; Nguyen et al.| [2017b; [Yuan et al.l 2017), which is a widely used technique for obtaining
approximate solutions to NP-hard’s ¢y constrained optimization problems. Specifically, this technique
alternates between the gradient step and the application of the hard threshold operator H, (6). Operator
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H}.(0) retains the top k elements of 6 while setting all other directions to zero. The advantage of hard-
thresholding over its convex relaxations is that it can achieve similar precision without the need for
computationally intensive adjustments, such as tuning ¢, penalties or constraints. Hard-thresholding
was first used for its full gradient form(Jain et al.| 2014). Nguyen (Nguyen et al.,|2017b)) developed
a stochastic gradient descent SGD version of hard thresholding known as StoIHT. Nevertheless,
StoIHT’s convergence condition is overly stringent for practical applications(L1 et al., [2016). To
address this issue, (Zhou et al.| 2018)), (Shen and Li,2017) and (Li et al.| 2016) implemented variance
reduction techniques to improve the performance of StoIHT in real-world problem-solving.

However, this type of StolHT is still not suitable for many problems. For example, in certain
graphical modeling tasks (Blumensath and Davies| [2009), obtaining the gradient is computationally
hard. Even worse, in some settings, the gradient is inaccessible by nature, for instance in bandit
problems (Shamir, 2017)), black-box adversarial attacks(Tu et al.l 2019} |Chen et al., [2017;2019),
or reinforcement learning (Salimans et al.,[2017; Mania et al., 2018; (Choromanski et al., 2020). To
address these challenges, zeroth-order (ZO) optimization methods have been developed(Nesterov and
Spokoinyl [2017)). These methods commonly replace the inaccessible gradient with its finite difference
approximation which can be calculated by simply using the function evaluations. Subsequently, ZO
methods have been adapted to handle convex constraint sets, rendering them suitable for solving
the /1 convex relaxation of the problem (Liu et al.,2018;Balasubramanian and Ghadimi, 2018)).
However, it’s essential to highlight that in the context of sparse optimization, ¢; regularization or
constraints can introduce substantial estimation bias and result in inferior statistical properties when
compared to ¢, regularization and constraints(Fan and L1, |2001; Zhang, 2010).

To tackle this issue, a recent development introduced the Stochastic Zeroth-Order Hard-Thresholding
algorithm (SZOHT)(de Vazelhes et al.,|2022)), specifically designed for ¢, sparsity constraints and
gradient-free optimization. Unfortunately, as the only available algorithm in zeroth-order hard-
thresholding so far, SZOHT has notable limitations due to the inherent conflict between the deviation
of ZO estimators and the expansivity of the hard-thresholding. This limitation makes the algorithm
difficult to use in practice, and a natural question is proposed: Could we have a simple ZO hard-
thresholding algorithm whose convergence does not rely on the number of ¢ (the number of random
directions used to estimate the gradient, further defined in Section E])?

In this paper, we provide a positive response to this question. Our approach centers on the role of
variance in addressing this problem. We firmly believe that variance reduction can offer a dual benefit.
It not only holds the potential to accelerate convergence speed but, more importantly, it can effectively
mitigate the unique conflicts associated with zero-order hard-thresholding. From this perspective,
SZOHT is characterized by its limitation in restricting the sampling of zero-order gradients, essentially
representing an incomplete approach to variance reduction. This incompleteness leads to strict
conditions for SZOHT. In contrast, we have developed better algorithms by using historical gradients
to reduce variance thoroughly. We then provide the convergence and complexity analysis for the
generalized variance reduce algorithm under the standard assumptions of sparse learning, which are
restricted strong smoothness (RSS), and restricted strong convexity (RSC) (Nguyen et al.| 2017bj
Shen and Li,|2017) to retain generality. These algorithms eliminate the restrictions on zero-order
gradient steps, leading to improved convergence rates and broader applicability. Crucial to our
analysis is to provide how variance reduction mitigates contradictions on the parameters ¢ and k.
Finally, we demonstrate the effectiveness of our method by applying it to both ridge regression
problems and black-box adversarial attacks. Our results highlight that our method can achieve
competitive performance when compared to state-of-the-art methods for zeroth-order algorithms
designed to enforce sparsity.

The majority of our work can be summarized in three parts:

1. New Perspective on Resolving Conflicts Between Zeroth-Order Methods and Hard-
Thresholding. Our paper acknowledges the necessity of mitigating this contradiction,
emphasizing the demand for a more flexible and resilient approach. By employing the per-
spective of variance to analyze this issue, our paper presents a more practical and effective
solution.

2. Variance Reduction: Another key innovation presented in the paper is the introduction of
variance reduction. This concept provides a unique solution to £y-constrained zeroth-order
optimization. By employing data-driven techniques to reduce variance, the paper not only
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Figure 1: Motivation of our algorithm.

enhances the algorithm’s convergence but also expands its utility across a wider range of
scenarios.

3. General Analysis: The introduction of a general analysis framework is another contribution
to the paper. This framework systematically evaluates the performance and behavior of
varying variance reduced algorithms under ¢y-constraint and ZO gradient.

2 PRELIMINARIES

Throughout this paper, we use ||f|| to denote the Euclidean norm for a vector, ||0||o to denote the
maximum absolute component of that vector, and ||#]|, to denote the ¢y norm (which is not a proper
norm). The following two assumptions are widely adopted (Li et al.} 2016}, Nguyen et al.,[2017b) and
are needed in this paper.

Assumption 1 (Restricted strong convexity (RSC) (Li et al 2016; [Nguyen et al}, 2017b)). A

differentiable function F is restricted p_ -strongly convex at sparsity s if there exists a generic
constant p; > 0 such that for any 6, §' € R with ||0 — ¢'||o < s, we have:

F(0) - F(O') — (VF(O),0—0) = o - o' @

Assumption 2 (Restricted strong smoothness (RSS) (Li et al., 2016} [Nguyen et al.|[2017b)). For any
i € [n], a differentiable function f; is restricted p} -strongly smooth at sparsity level s if there exists
a generic constant pt > 0 such that for any 6, ' € R with |0 — 0'||o < s, we have

IV £i(0) = V£i(0)]] < pJ1|0 = 6']].

We assume that the objective function F(#) satisfies the RSC condition and that each component
function f;();_, satisfies the RSS condition. We also define the restricted condition number as
ks = pd/p5 . This assumption ensures that the objective function behaves like a strongly convex and
smooth function over a sparse domain, even when it is non-convex.

2.1 ZO ESTIMATE

Then, we give our zeroth-order gradient estimator below adopted by (de Vazelhes et al, 2022):

V1(6) = % S O+ ) — SO, 3)

where each random direction w; is a unit vector sampled uniformly from the set {u € R? : ||u||y <
sa, |Ju|| = 1}, ¢ is the number of random unit vectors, and p > 0 is a constant called the smoothing
radius (typically taken as small as possible, but no too small to avoid numerical errors). To obtain
these vectors, we can first sample a random set of coordinates .S of size s, from [d]. Following,
we sample a random vector w supported on S, in other words, uniformly sampled from the set
{fueR?: uy_s =0, ||u| = 1}. Especially, if s, = d, the general estimator is the usual vanilla
estimator with uniform smoothing on the sphere [2018). Additionally, for convenience, we
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define Z* = supp(6*) as the support of §*. Let (") be a sparse vector with ||§(")||o < k and support
T() = supp(6")). Define, with Hyy,(-) the hard-thresholding operator of sparsity 2k:

T = supp(Har(VF(07)) U supp(67).

and let Z = 7(") 4 Z(r+1) 4 7. €y = pj2sd, e = q(sit-i&-2) ((871)(5271) +3) + 2, e7c =

d—1
s(sa—1 2dpT?ss s—1)(s2—1 2
q(si{iQ) ( (jl ))3 Eabs = Psq 2 <( d)ilz ) + 1) + pj sd.

2.2 REVISIT OF SZOHT

Based on this assumption and ZO estimation, de Vazelhes proposed the SZOHT algorithm (de Vazel,
hes et al.l 2022)). The iteration relationship of this algorithm is:

O+ = 24,6 — nVF(H))

where Hy,(+) is the hard-thresholding operator and VF (0()) is ZO gradient estimate defined by ,
7 represents learning rate. SZOHT can address some ZO ¢y-constrained problems under specific
conditions. However, it’s important to note that the hard-thresholding operator, unlike the projection
onto the /1 ball, lacks non-expansiveness. Consequently, it has the potential to divert the algorithm’s
iteration away from the desired solution. To deal with this challenge, SZOHT imposes stringent
limitations on both k (hard-thresholding coefficients) and g. That is,

-2 * 2+4 L%
<1_ p: k* (4ez +1)2p} §k§d2k
(
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Evidently, these conditions are exceedingly stringent and may not be suitable for numerous real-world
problems. Therefore, we urgently need an algorithm with fewer constraints.

cifso=1:¢q >

3 GENERAL ANALYSIS WITH VARIANCE

In this section, we will analyze the random ZO hard-thresholding algorithm from the perspective of
variance and provide a positive response to the above questions. These algorithms can be described
using the following general iterative expression:

00+ =k (07 = ng (97)), @)

where §(")(0(")) is the generalized gradient estimate (applicable to all ZO hard-thresholding algo-

rithms). Let o = 1 + jg_ﬁ% Then, we have:

Theorem 1. Assume that each f; is (p7,, s')—RSS and that F is (p; , s)—RSC. For any stochastic

ZO hard-thresholding algorithm capable of expressing its iterative relationships as described in (@),
we can establish the following:

B[00+ — 6|13 < (1 -+ 120, )aBlI0) — 0*|13 + n?aEl|g8" (07|13 — 2na [F(0)) - F(6")]
N an%uuz

_2
Ps
Q)

Remark 1. Differing from the approach in (Yuan et al.| 2017 \Nguyen et al.l 2017b} |de Vazel-
hes et al.| |2022), where the convergence inequality is segregated into linear convergence terms
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n*epp®
- _—2

(represented as (1 + n?p~ sz)aIE\ 10 — 0*||3 in (El) and error terms (represented as «

ps
2na [F(0M) — F(6%)] in (E]) we have introduced the gradient squared term n>aE||§) (0())||3 to
elucidate the role of variance better. We can transform ([O) into the form of (Yuan et all 2017; [Nguyen
et al.| | 2017b; \de Vazelhes et al.| 2022) by establishing an upper bound for the gradient squared term,
which is often feasible for specific algorithms.

Conflict analysis through variance. It is worth noting that among these three components, only
the gradient squared term n?alE[§(") (0(")) % encompasses both the hard-thresholding parameter
(included by «) and the ZO gradient parameter (included by ||§(") (§("))||3). In essence, this means
that the conflict between expansivity and zeroth-order error can be fully encapsulated through the
gradient squared term. More importantly, when our attention is directed towards the gradient squared
term, we discover that in cases where the gradient estimation is unbiased, we obtain E|[g(") (§(")||3 =

Var|[g™ (00) |2 + || VF(0)]| ?_ which means that E||§) (6()||2 only related to the variance of
gradient estimation. This indicates that the conflict between the expansionary of hard-thresholding and
ZO0 error is actually between hard-thresholding and the variance of gradient estimation. In SZOHT,
we have §(7)(9(") = VF(0)). Then, the gradient squared term becomes n2aE||VF(0()||2. In
this scenario, to guarantee algorithm convergence, it becomes essential to ensure that the gradient
squared term remains within a reasonable upper bound. Due to the fact that « is already required
to satisfy certain conditions (which are generated by linear convergence terms and error terms),
therefore, the sampling method for ZO gradients must be restricted, which leads to a reduction in the
variance. However, due to the technique of sampling used to reduce the variance, the limitation on
the number ¢ of random directions is introduced into SZOHT.

Improvement plan. A natural idea is to use a more comprehensive variance reduction approach
instead of only using sampling technique to reduce ||§(") (6("))||3, which could effectively alleviate
the conflict between ZO estimation and hard-thresholding, ultimately enabling the design of algo-
rithms with fewer constraints, broader applicability, and enhanced convergence speed. Based on this
perspective, we have developed a generalized variance reduction ZO hard-thresholding algorithm
that leverages historical gradients. We will provide a detailed explanation of this algorithm in the
next section.

4 pM-SZHT ALGORITHM FRAMEWORK

This section mainly presents the pM-SZHT algorithm framework along with its convergence anal-
ysis. This framework encompasses the majority of unbiased stochastic variance-reduction ZO
hard-thresholding methods, providing a generalized result.Subsequently, we introduce the VR-SZHT
algorithm, a special case under this framework. Additionally, we extend our discussion by introducing
SARAH-ZHT (please note that the gradient estimate in this algorithm is biased) and providing its
convergence analysis in the appendix.

4.1 pM-SZHT

We now present our generalized algorithm to solve the target problem (I, which we name pM-SZHT
(p Memorization Stochastic Zeroth-Order Hard-Thresholding). Each iteration of our algorithm is
composed of two steps: (i) the gradient estimation step, and (ii) the hard thresholding step, where the
gradient estimation step includes the variance reduce estimation and zeroth-order estimation. We
give the full formal description of our algorithm in Algorithm ().

In the gradient estimation step, we are utilizing the p-Memorization framework, which was originally
proposed by Hofmann (Hofmann et al.| [2015)) to analyze the sequential stochastic gradient algorithm
for convex and smooth optimization problems. It’s worth noting that our gradient estimation can be
seen as its zeroth-order variant (the zeroth-order estimation is shown in Section 2.2). Here, we select
in each iteration a random index set J C [n] of memory locations to update according to:

Vjeln]: al = Vi), it E.J
/ a;,  otherwise
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such that any j has the same probability of p/n being update where p is the number of directions
updated each time (see (Hofmann et al., 2015)). The value of p set J, V7, ZJBJ‘ P{J} - L. Tts
probability is determined by some specific algorithm. For example, if P{J} = 1/ (2) if |J| = p, and
P{J} = 0 otherwise, we obtain the p-SAGA-ZHT algorithm. If P{()} = 1— 2 and P{[1 : n]} = 2,
we obtain a variant of the VR-SZHT algorithm from Section[d.2] Those are the ZO hard-thresholding
versions of the algorithms mentioned in [Hofmann et al.| (2015)); |Gu et al.| (2020)).

In the hard thresholding step, we only keep the k largest (in magnitude) components of the current
iterate #("). This ensures that all our iterates (including the last one) are k-sparse. This hard-
thresholding operator has been studied for instance in (Shen and Lil [2017), and possesses several
interesting properties. Firstly, it can be seen as a projection on the ¢y ball. Second, importantly, it
is not non-expansive, contrary to other operators like the soft-thresholding operator (Shen and Li,
2017).

Algorithm 1 Stochastic variance reduced zeroth-order Hard-Thresholding with p-Memorization
(pM-SZHT)

Input: Learning rate 77, maximum number of iterations 7, initial point #(°), number of random
directions ¢, and number of coordinates to keep at each iteration k.
Output: ().
1: forr=1,...,T do
2 Update a("—1)
3 Randomly sample i, € {1,2,...,n}
& GO0 =V fL (00 —al Y el
5 9r) = ’Hk(g(rfl) — ng(rfl)(g(rfl)))
6: end for

Convergence Analysis: We provide the convergence analysis of pM-SZHT, using the assumptions
from Section 2] and demonstrate the correctness of the conclusions made in Section 3 by assessing
whether the algorithm converges independently of g.

Theorem 2. Suppose F () satisfies the RSC condition and that the functions { f;(0)}!'_, satisfy the
RSS condition with s = 2k + k*. For Algorithm[I] suppose that we run SZOHT with random supports
of size so, q random directions, a learning rate of 1, and k coordinates kept at each iteration. We
have:

[EF(OUFD) — F(6*)] < y[EF(O)) — F(07)] + 2L, + L, (6)

here L, = aT’L - 6acapsfi® + 602 A, Ly = v/3||VF(07)||E|0T) — 672 + 1% (3a((dezs +
2) +eze(d — KDEIVf, (07)]%), v = (2 +48n2apfer - 2ma+1- 2),

Remark 2. (System error). This format of result is similar to the ones in (Yuan et al., 2017}
Nguyen et al.| 2017D; |de Vazelhes et all [2022)), the right of (23) contains a linear convergence term
YEF(0')) — F(6*)], and system error 2L,, + L,. We note that if F has a k* -sparse unconstrained
minimizer, which could happen in sparse reconstruction, or with overparameterized deep networks,
then we would have ||V F(0%)|« = 0 and ||V fi, (0%)||2, = 0, and hence that part of the system
error L.would vanish. In addition, we also have another system error L,, which depends on the
smoothing radius i, due to the error from the ZO estimate and the iterative method of a.

From this theorem, we know that if the algorithm converges, 7 needs to lie in some specific interval.
Corollary 1. If

;o VA
1 2(48czapd + ps)

@)

<n<max{n/+2 VA 1 }

(48szapd + ps ) 48ezpd

algorithmconverges. Heren = A =40 — 4(48zzapt + p; ) (1 — £ + p%)

D«
48ezapT +ps’

!Originally, p-Memorization is called g-Memorization. We change it to p to avoid conflicting with random
directions in zeroth order
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Remark 3. (Independence of q) When k > k*, for any q > 0 the necessary condition A > 0 for
(7) holds. We emphasize here that variance reduction can only make q unable to determine whether
to converge, but q can still affect the convergence speed. In other words, variance reduction can
mitigate the conflict, but cannot resolve it.

4.2 VR-SZHT

To offer a specific analysis, we introduce the VR-SZHT algorithm, which is the adaptation of the
original SVRG method Johnson and Zhang| (2013) to our ZO hard-thresholding setting. In addition
to the previously mentioned convergence analysis, we will also provide a complexity analysis to
demonstrate the advantages of this algorithm, which extend beyond existing algorithm.

Algorithm 2 Stochastic variance reduced zeroth-order Hard-Thresholding (VR-SZHT)

Input: Learning rate 1, maximum number of iterations 7', initial point #°, SVRG update frequency
m, number of random directions ¢, and number of coordinates to keep at each iteration k.
Output: 67,
1: forr=1,...,T do

2 6(0) = 9’ 1,

3 ﬂ—lzllvf(ﬂ())

4: fort =0,1,. —1do

5: Randomly sample ir € {1,2,...,n}

6: Compute ZO estimate V f;, (0), V f;,(6©));

7 Ut = 00) —(V £;,(67) =V £;,(6©) + f));
8: O+ = 3, (O 1),

9: end for

10: 6" = 9+ random ¢’ € [m — 1];

11: end for

Theorem 3. Suppose F(0) satisfies the RSC condition and that the functions { f;(0)}1_, satisfy the

RSS condition with s = 2k + k* . Whenn = 2ase af§++ = we have:
Taps pa+ps

6 [F@) - F(6")] < VEIF@ED) - F(O")] + L, + L. ®)

Here 5 = (1—1—772 = )a §=1L8" 71(277 488177 Ps )Oé v = <2ﬁ + —48"2p5+21,a(5m_1)),
Ly, = 22 /5| VF(0") | E B1A )0, 87t o(degs 2) ez (d—R)EI[Y £ (6°) %+

3|V F(0)|3), and L' = B’”—l (T2n2e qpsi? + nleup’ ).

This theorem is similar to Theorem 2. And it is worth noting that g is also independent in VR-SZHT,
and can be found in the appendix due to space limitations.

Corollary 2. The ZO query complexity of the algorithm is O ([n = +1] log (1 )) And the hard-
thresholding query complexity is O (log(%)).

When comparing VR-SZHT with SZOHT, where the ZO query complexity of SZOHT is
@ ((k + %)/4:2 log (%)) and the hard-thresholding query complexity is O (x? 1og(%)) , it becomes

evident that the hard-thresholding query complexity of VR-SZHT is significantly reduced. Further-
more, as k becomes large, the ZO complexity is also reduced.

5 EXPERIMENTS

We now compare the performance of VR-SZHT, SAGA-SZHT, and SARAH-SZHT (an adaptation of
the SARAH variance reduction method (Nguyen et al.,|2017a) to our ZO hard-thresholding setting,
for which we provide the convergence analysis in Appendix [6) with that of the following algorithms,
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in terms of IZO (iterative zeroth-order oracle, i.e. number of calls to f;) and NHT (number of
hard-thresholding operations):

* SZOHT (de Vazelhes et al.,[2022): a vanilla stochastic ZO hard-thresholding algorithm.
* FGZOHT: the full gradient version of SZOHT.

Ridge Regression We first consider the following ridge regression problem, where malfunctions
f; are defined as follows: f;(6) = (z 6 — y;)? + 36||3, where X is some regularization parameter.
We generate each ; randomly from a unit norm ball in R?, and a true random model 6* from
a normal distribution A/ (0, I;x4). Each y; is defined as y; = ;vZT 0*. We set the constants of
the problem as such: n = 10,d = 5, A = 0.5. Before training, we preprocess each column by
subtracting its mean and dividing it by its empirical standard deviation. We run each algorithm with
k=3,q=200,u=10"%, sy = d = 5, and for the variance reduced algorithms, we choose m = 10.
For all algorithms, the learning rate 7 is found through grid-search in {0.005, 0.01, 0.05,0.1,0.5}:
we choose the learning rates giving the lowest function value (averaged over several runs) at the
end of training. We stop each algorithm once its number of IZO reaches 80,000. All curves are
averaged over 3 runs, and we plot their mean and standard deviation in Figure[2] As we can observe,
SZOHT converges to higher function values than other algorithms: this illustrates the advantage
of the variance reduction techniques, which can allow to attain smaller function values than plain
SZOHT, but at a cheaper cost than FGZOHT.

F(0)

#(6)

042
040
038

s

I

00 30000 40600 50000 60300 70000 80000 Mo 200 250 00 30
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Figure 2: #IZ0 and #NHT on the ridge regression task.
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Figure 3: #I1Z0O and #NHT on the few pixels adv. attacks (CIFAR-10), for the original class "airplane’.

Few Pixels Universal Adversarial Attacks Finally, we consider a few-pixel universal adversarial
attacks problem. Let some classifier be trained on a dataset of images. We assume that it can only be
accessed as a black box, i.e. it only returns the log probabilities of each estimated class, given an
input image. This is a typical real-life scenario, where for instance the model can only be accessed
through a provider’s API. We seek to find a single perturbation # € R?, to apply to several images at
once, (we denote those images by x;, s = {1, ..., n}, and their true label as y;) to make the predicted
class for those images different than their true class. Further discussion on universal perturbations
can be found in (Dezfooli et al.,[2017). In addition, we seek an adversarial perturbation that is sparse,
to preserve as much as possible the original image. As is usual in black-box adversarial attacks, we
maximize the following Carlini-Wagner loss (Carlini and Wagner, |2017; |Chen et al.| 2017), which
encourages the prediction from the model to be different from the true class:

fi(0) =max{F,, (clip(xz; + 0)) — r&ax F;(clip(z; +0)),0},
JIFYi

where x; is the original i-th image (rescaled to have values in [—0.5, 0.5]), of true class y;, clip denotes
the clipping operation into [—0.5, 0.5], 6 is the universal perturbation that we seek to optimize, and



Published as a conference paper at ICLR 2024

Table 1: Comparison of universal adversarial attacks on n = 10 images from the CIFAR-10 test-set,
from the "airplane’ class. For each algorithm, the leftmost image is the sparse adversarial perturbation
applied to each image in the row. (Cauto’ stands for "automobile’, and *plane’ for ’airplane’)

Image ID 3 27 44 90 97 98 111 116 125 153
= :
o ERNBEEXE !
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each function Fj, outputs the log-probability of image x; being of class k as predicted by the model,
for k € {1,.., K}, with K the number of classes (similarly to (Chen et al., 2017} LLiu et al., [2018;
Huang et al.| [2019)). Similarly to (2018) (Appendix A.11), we evaluate the algorithm on
a dataset of n = 10 images from the test-set of the CIFAR-10 dataset(Krizhevsky et al, 2009), of
dimensionality 32 x 32 x 3 = 3,072, from the same class airplane’, which we display in Table[I]
We take as model F' a fixed neural network, already trained on the train-set of CIFAR-10, obtained
from the supplementary material of (de Vazelhes et al., [2022). We set £ = 60, 1 = 0.001, g = 10,
s9 = d = 3,072, and the number of inner iterations of the variance reduced algorithms to m = 10.
We check at each iteration the number of IZO, and we stop training if it exceeds 600. Finally, for each
algorithm, we grid-search the learning rate 1 in {0.001, 0.005, 0.01,0.05}. The best learning rates
(giving the curve which obtained the smallest minimum function value), are respectively: FGZOHT:
0.05, SZOHT: 0.005, VR-SZHT: 0.01, SAGA-SZHT: 0.05, SARAH-SZHT: 0.05. Our experiments
are conducted on a workstation of 128 CPU cores. The training curves are presented in Figure [3}
SAGA-SZHT obtains the lowest function value at the end of the training, followed by SARAH-SZHT.
In terms of attack success rate, SARAH-SZHT presents the highest success rate, as it has successfully
attacked 7/10 images. We provide further results, on 3 more classes (ship’, *bird’, and ’dog’) in the
appendix, which demonstrate even further the advantage of variance reduction methods in our setting.

6 CONCLUSION

In this paper, we introduce a novel approach to address sparse zero-order optimization problems and
leverage it to enhance existing algorithms. We perform a comprehensive convergence analysis of
the generalized variance reduction algorithm, showcasing how variance reduction can effectively
mitigate the limitations inherent in existing algorithms. To substantiate our claims, we validate our
algorithm through experiments involving ridge regression and adversarial attacks.
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CONTENTS OF APPENDICES

1 RECALL ON VARIOUS VARIANCE REDUCTIONS ALGORITHMS

In this section, we provide a short overview of our introduced variance-reduced algorithms, as well
as the corresponding references in the first-order setting, with the corresponding space cost for an
epoch and time cost for an epoch, similar to the Table 2 in|Gu et al.| (2020) for improved clarity and
to make our paper self-contained. The computational complexity of each algorithm is indeed similar
to its first-order counterpart, when treating the sampling of the random directions at each iteration as
a fixed cost.

Table 2: Exposition of the variance reduction algorithms in our paper. !: p-SAGA-SZHT, and SAGA-SZHT
(i.e. p-SAGA-SZHT, with p = 1) are both instantiations of pM-SZHT, as we mention in Section 2: The
pM-SZHT framework in Section[4.I]can also be specialized into a variant of SVRG, as described in Section[d.1}
However, since the original version of SVRG [Johnson and Zhang| (2013)) can often perform better than such
variant in practice, we still have provided an independent analysis for the original SVRG algorithm Johnson
and Zhang| (2013) (adapted to our ZO hard-thresholding setting), in Section 3:p-SAGA is originally called
q-SAGA in/Hofmann et al.| (2015), but we use p instead to avoid confusion with the number of random directions
q. *: by Original algorithm, we refer to the corresponding algorithm which was first introduced in the first-order
setting.

Algorithm Original algorithm ? | Space cost for an epoch | Time cost for an epoch
SAGA-SZHT! SAGA O(dn) 0(d)
p-SAGA-SZHT! p-SAGA3 O(dn) O(pd)
VR-SZHT? SVRG O(d) O(dn)
SARAH-SZHT SARAH 0O(d) O(dn)

Below we also sum-up the corresponding references of the original (i.e. first-order) versions of each
of the variance reduction algorithms above:

Table 3: Corresponding references for the first-order original versions of the variance reductions algorithms. *
HT: hard-thresholding version of SVRG.

Algorithm - ~ References B -
SAGA Defazio et al. (2014)); [Hofmann et al.[|(2015);|Gu et al. (2020)
p-SAGA Hofmann et al.|(2015)); |Gu et al.| (2020)

SARAH Nguyen et al|(2017a)

SVRG Johnson and Zhang| (2013)); Hofmann et al.[(2015)); Gu et al.| (2020), HT!: [Li et al. (2016)

2 ADDITION FOR SECTION 2

Lemma 1. (Proof in (Li et all|2016| Lemma 3.3), ) For k > k* and 6 € R%, we have:

. 2Vk* .
[H(6) — 67|13 < (1 + m) 16— 6*]]3. 9

Remark 4. In fact, through assumption 2, we can deduce another version of RSS conditions ((?,
Lemma 1.2.3) ), that is:

+
Ji(6) = 18 = (Vi(0).0 ') < T-]jo — /| (10)
Proof. Forall 0,0 € R™ we have

F60) = £(0) + / 'O+ (0 — 0)).0' — 0 dr

1
:f(9)+<f’(9),9’—9>+/ (f(O+7( —6))— f'(0),0 —0)dr

0
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Therefore

1
£0) = 10) = (700 =) = | | 70+ =)~ 1'0).0/ = 0)dr

1
< / [0+ (6" — 0)) — [(6),6' — 0) |dr
< / 1F6+ (8 —6) — F )| - 6 — blldr

oF
< [ rotle - olar = %o - o).
0

Lemma 2. (Proof in|de Vazelhes et al.|(2022)) Let us consider any support T C [d] of size s(|Z| = s).
For the ZO gradient estimator in (3), with q random directions, and random supports of size so, and

assuming that each f; is (Ls,, $2)-RSS, with V1 f(x) := Hr(V f(0)) on I, we have:
* [EVzfi(x) = Vifi(z)|? < eup.
* E|VLfi@)|? < ezl VL fiO)I? + eze | Ve f(O)]1* + cavsii®

* B|[Vzfi(0) = Vfi(@)[* < 2z + DIV2fi(O)|* + 2e2¢[|Vze fi(0)|* + 2eapop®, where

2 s—1)(s2—1 s(sa—1
en = pisd, e = q(sz(iz)(( (1)512 b 4 3) +2 ere = q(szzc—ls—2) ( (il )>’ Cabs =

2
2dpT*sso <(571d)£31271) + 1) +pj28d

q

3 PROOF OF SECTION 3

Here we prove the following inequality in Section 3:

r ~(7r r * -2 T * AT T T *
E[07) —na (00)) = 6*(13 < (1+ m2p3 HEN0D — 07|12 + n?E||gS” (07)]3 — 20 | F(67) — F(07)
n’e,

_2
Ps

_|_

13
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Proof. We denote v = (") — ngg)(é?(r)) and Z = 7* UZM U ZU+D), where T* = supp(0*),
T = supp(6)) and T+ = supp(6r+1))

Ello — 0°|13 = Bl|6) — 0% + 1Bl 3 (0 )| — 20 (0 — 6%, B (0))
= E)|0" — "1} + n7Bl|gS” (07) 13 — 20 (6) — 0", EVLF(0))
=E||6") —6*[13 + n?El[g2 (07))] 3
—an< T)—9*,VI]-'(0(T))—VI]-'(0(T))>—27)E<8 —*, VL F (O )>
<E|I6" - 6°3 + Bl (0“3 - 20E (6) — 0*, V2 F(0)) — V2 F(8) )
— 2 [F(O0) ~ F(6")]
= E||o") = 67113 + n°El|g <e“">>\|2

—2771E<f Py (0 = 67), ——(V2F(0") — vzf(9<">>)> — 2y [F(6)) - F(6")]

\/ﬁpa
< (L4020 )EIOY) = 0713 + 0Bl gy (0713 — 20 | F(0) = F(0)|

12 .
+— E|(VZF(0) = VZF(0))][3.

ps
(1n
For E||(VZF(6")) — V2 F(0())]|2, we have:
E[|(VzF(OT) = VZF @)} = ||Eu VIZfL 6™ VIZfz DIE
=1

- R (12)
<n Y Ea(VZfi(0T)) = V2 fi(0))]13

=1
< nPe.p’.

By constraining E||(VzF(0()) — V7 F())||3, we can turn (11 into:
E[I6) —ngy” (67)) = %[5 < (14 0°ps JENO) — 07113 + *Elag” (0) 13 — 20 | F(6)) — F(6)

n2e, 1

ps

+
(13)

4 PROOF OF pM-SZHT

4.1 PROOF OF THEOREM 1

Before providing the proof of Theorem 1, we need the following lemma:

Lemma 3. Suppose that the functions f;(x) satisfies the RSS condition with s = 2k + k*, For
gM-SZHT, we can get:

Elg (0] < 225 30— Lyt (g) - F(0%)] + 2405 (1 - Ly [F(00) - F0)

n
u=1

+ 48K||F (") — F(6")||* + 3((4ezs + 2) +eze(d — k))E||Vfi, (%)% + 6eapsp® + 6A,..
(14)
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Proof. we first get the upper bound of E||g(") (4(")]|?
~ . A~ (r r 1 n o
E|lg" (0P = EIIVA (00) —a + = > al"|?

- r r r * ~ r 1 - ~(7r * *
=E[[VFD00) VD 0%) - al + VD0 + =3l — VF(0*) + VF ()|

j=1

3

< 3E[ja{” — V7 (6%) - ( Za<” vm*)) 12+ 3BV £ (00) = V£ (672 + 3||VF(67)|?

< 3E[[a{” — V09|12 + 3BV 00) = V£ (67)]2 + 3V E(67)]]2

< 6E[la” — V7 (6)|? + 6E||al") — a{”)|2 + 3E||V £V (00)) — v £ (072 + 3|V F(67)] .
(15)

From Lemma 3 we get
E|Vzfi(0) = Vfi(@)* < 2(ez + DIIVZfi(0)I* + 222 (| Vze fi(0) | + 22 apsis®.

Then we get:

r—1
AT T 1 r—u— u u
Ellaf” - al” | < =37 (1= 27712 ((ez + DIIVZAO") P + ezel[ Ve (6]

u=1
+ eabsi?) + (1 - %)“12((51 +DIVLi(0) + ezel[Vze fi 0] + capspi®) = Apr.
(16)

For E||Vzf;, (0) — Vzfi (0*)]3.and Gu et al|(2020) we have:

E([Vzfi,(8) = Vi, (67)I5 < 4ezE[V f;, (6") — V fi, (67|

17
+ ((4ezs + 2) +eze(d — k))EIV £, (0)]1% + 2eabspt”. )

From |Gu et al.| (2020), we know:

. gz < 2408 S IS .
6l]a") — V10|12 + 12:2EI|[V LD (6) = 50 07| < 2237 (1 - Dyt ) - Fior))
u=1

+24p (1= ) [F(6) = F(6)] + 48=7E[F(0) - F(6")]
(18)

Taking (T6),(T8) into (T3),

Bl 002 < 2530 - Dyt (9 - For) + 2401 (1 - Ly (FOO) - F 0

+ 48keE[F(0)) — F(6*)] + 3((4ezs + 2) + ez (d — k))E||V fi. (0%)||% + 6capsp® + 6A;.

Here we get the conclusion. O

Then we can prove Theorem 1:
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Proof. We denote v = (") — ngg)(é?(r)) and Z = 7* UZM U ZU+D), where T* = supp(0*),
T = supp(6)) and T+ = supp(6r+1))
Ell — 0*|13 = BII6) — 6% + 3Bl 3¢ (0 )]} — 20 (6 - 0", B (0))
= EJlo") — 6|13 + n?EllgY” (0) 13 - 20 (61 — 6" EVZF(6¢))
=E|0C) — 0*|3 + n?El|57 (0)] 13
— 2 (0 — 6", V2 F(6")) — V2 F(0)) — 2 (61 — 0, V2 F(6)))
<EJI0”) — 0*[13 + n*Ellgt (0)|13 - 20E (07) — 0%, V2 F(07)) — V2 F(0))
— 20 [F(0) = F(0")|
=E|jo™ —0*||2+n2E\|g<”< 0)|13

— 2nE <\/ﬁp§(9(r) -0,

\/ﬁps (V2F(O") - VI}'(G(T)))> — 2 |[F(00) - F ()|

< (1120 N0 — 0°13 + nPEllg (01 — 20 [F(01) — F(6")]

12 .
+ — E[[(VZF (") — VF(0™))][3.

(19)

The first inequality follows from N-dimensional mean inequality and the second inequality follows
from Assumption 2. For E||(VzF(0) — VzF(6))||3, we have:

E||(V2F(07) = VIFO)IE = Ba(V2 3 Fi0") = V2D fi(6T)I13

i=1
" . ; ., (20)
<) Eu(VZfi(07) = V2 fi(0D))]13
§n25u,u2.
By constraining E||(VzF(0)) — V2 F(0())]|2, we can turn (19) into:
E[l6) —ngy (07) 613 < (140 p; " )EIl0" —e*||2+n2E||g<’”><9<’ Il
2D
o [FO0) - For)] + T
Ps
Leta =1+ % Using Lemma 1, we have:
B[l — 6|13 < (1+ 120, )aBlI0") — 6*|[3 + a" " — 2na [F(6)) - F(6)]
ps
24/) t—1
2 “xPs t u— 1 e(u) _F o*
- UZ::I [F(01) — F(07)] 22)
q

+ 24apt (1 ﬁ)t[ (0 — F(6*)] + 48akezE[F(0M)) — F(6*)]
+ 3a((4ezs +2) + eze(d — k) E||V £, (07)]|% + 6acapsp? + 6aA).
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Let I, = oznpi“ + 2 (3a((4ezs + 2) + eze(d — k)E[V i (09|12 + 6acapsi® + 6ady), B =
(1+ nzp;Q)a, then:

E[[07 D = 6°[3 < (14 12p; )aE|0) — 0°|I3 + L — 2na | F(61") — F(6%)

S

(025 Dy ) - F 6]+ 210t (- L) - Fo)
u=1

+ 48ap e E[F (0 — F(6*)].
(23)

Here, we use RSC and RSS condition, we have:

FOO) — F(o) < (zﬁ +asyaker — ) [FOU) - F(67)] + L
r—1
(022 30 - Dy (p00) - ()] 4 20pF (1 - DYF(O0) - F8)
u=1
- %E <VI(9*),5* - 9<T+1>> + Z?E <V]-"(9*),5* - 9<T>>
2

< (== +48n’akez — 200) |[F(O) = F(0°)| + L + V5l VF(6) || E[I6) — 67|

S

t—1
T T 2 SR ST [FOU) = F(6")] + 210pf (1 = L)t [F00) - F (6] .

n n

(24)

From Gu et al.| (2020)[Lemmall], we have:

2
BFE0) = 0] < (2 + dsiPapter - 2+ 1- £ )EFOD) - 7]
Ps
”25/LN2 2 2 * (r) *
420" | G i + 6770 A,) + (VEIVFE) IO — 07
ps
12 (3a((tezs +2) +2r(d — K)EIV S, (6°)]2.)
(25)
O

5 VR-SZHT

5.1 ALGORITHM

Since the p-M algorithm is difficult to provide specific parameter analysis, we present a special case
of the p-M algorithm, named VR-SZHT, for analysis. In the stochastic variance reduced gradient
part, different from the stochastic gradient, we use V f; (6()) —V f; (8©)) + i to replace V f;(6(").
Through this iteration, we reduce the variance and stabilize the algorithm.

5.2 CONVERGENCE

In this section, we will provide a convergence analysis for VR-SZHT. Recall that the unknown sparse
vector of interest is denoted as §* € R?, where [|6*||o > k*, and the hard-thresholding operator
Hi : R? — R? keeps the largest k entries (in magnitude) and the rest is set to zero. For ease of
notation, we use E(-) = E,, ; (-), and we denote the full gradient and the stochastic variance reduced

17
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Algorithm 3 Stochastic variance reduced zeroth-order Hard-Thresholding (VR-SZHT)

Input: Learning rate 1, maximum number of iterations 7', initial point #°, SVRG update frequency
m, number of random directions ¢, and number of coordinates to keep at each iteration k.
Output: 67,
forr=1,...,T do
9(0) — er—l;
o= %Z:‘l:l Vfi(ﬁ(o));
fort=0,1,. —1do
Randomly sample ir €{1,2,...,n}
Compute ZO estimate V fz ( ), Vi (0©);
Ut =6 —p(Vf;, (00)) = V£, (60) + 1);
plr+1) — Hk(§(7‘+1));
end for
6" = 0", random t' € [m — 1]
end for

gradient by:

u() = ZVfl 7(6")
= Vi, (0") = Vi, (6) ZVf (6);
i A(? 0(7 )

= V£ (0") =V, (6) Zsz (0©);

26
j(0) - .

3\>—‘

dM O =V (0)) —EVF; (0) + i(0).

Theorem 4. Suppose F(0) satisfies the RSC condition and that the functions { f;(0)}!_, satisfy the
RSS condition with s = 2k + k*. Let T* = supp(6*) denote the support of 0*. Let 6") be a sparse
vector with |0 ||o < k and support T = supp(0)).
T = supp(Hax(VF(0%)) U supp(6”).
Then, we have:
BnL -1
5-1
28™  A8n*pfera(B™ — 1)
(—+
Ps B -1
25"’

(20 — 48ezn*pf ) | F(OU) = F(07)] <

JE[F(OTY) — F(67)] 27)

gm
g—1
Before presenting the proof of convergence, it is necessary to examine the boundary of the (ZO)
SVRG gradient g; 5\ (0(’”)). For this purpose, we first derive the following three lemmas.
Lemma 4. Under the condition of Theorem forany T D (Z* UZ™)), we have E[g() ()] =
E.VF(0") and
Ellgy”(6))|3 < 12e2E(|V £, (6") = V £, (6]

+ V£, (0°) = V£, (07)1)

+6((dezs +2) +eze(d — k)E|Vf;, (0I5

+ 122apst” + 3| VZF(07)]I5.

fIIVf( 0") 071 — 0%l + Sl

(28)
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Proof. 1t is straightforward that the stochastic variance reduced gradient satisfies:
Eg(0M) = EVfi (07)) —EV f;, (0) + () = E,VF(O)

Thus §(") (6(")) is a unbiased estimator of V.F(#(")). The form of an inapplicable zero order gradient
is the same. As a result, the first claim is verified.

For the second claim, we have:

E|lg”(67))3 =EV.F(6))

23E||@qu(9(r)) = Vzfi, (0913 + 3[IVZF ()3
+ 3BV fi, (0©) =V fi, (67)] = VZF(0) + VZF (67|13
=3E|Vzfi, (07)) = Vzfi, (6713 + 3|V F(6")]3
+ BBu[Ei, [V fi, (0) = V1 fi, (6%)] = VZF () + VZF(6)[3] (29

3BV 2, (0)) — Tz fi (672 + 3| V2F(07)]
+ 3EL[E;, [V fi, (0) =V fi, (093]

=3E(|Vzf;, (0")) = Vzfi, (07)]15 + 3| VZF(07)|I3
+3E||Vzf;, (6) — Vi, (63

The inequality @ follows from the power mean inequality||a+b+c||3 < 3||al|3 + 3]|b]|3 + 3]|c||3, and
@ is follows from E||z — Ez||3 < E||z||%. Now we focus on E||Vzf; (0) — Vzfi (0%)]3. Actually,
the boundary of E||Vzf;, (6) — V£ (6%)|3 is available in Lemma 3, that is

E(Vzfi, (0) = Vzfi, (07)]3 < 4ezB|V fi, (6") — V fi, (0]

30
+((dezs +2) +eze(d — k)E| Vi, (0712 + 22apss® o

Taking (30) into (29):

|3 (003 < 12e2E(|[V £i,.(07) = V £ (091> + |V £, (6°) = V £, (69)]1)
+6((dezs +2) + e2e(d — k)E||V fi, (0%)]|% + 122apss® + 3|V F (07|12

The unbiasedness of SVRG implies that E[§(") (8(")] = E,, VF(8(") is obvious. As for inequality
(@9), we first use the mean inequality to divide it into three parts, and then prove it using Lemma 1.
Now we provide the proof for Theorem 3:
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Proof. We denote v = (") — ngg)(é?(r)) and Z = 7* UZM U ZU+D), where T* = supp(0*),
T = supp(6)) and T+ = supp(6r+1))

Ello - 6°|3 = E|I6) — 612 + 1Ellay” (6|13 — 2n (6 - 0% Eg (6)))
= E)|0" — "1} + n7Bl|gS" (07) 13 — 20 (6) — 0", EVLF(6))
= EJ[0") — 07|13 + n’Ellgg” (0)]13
— mE <9<T> — 0",V F(OD) — VI]-"(Q(T))> — MmE <9(T> — 0",V F(O" )>
<E||6" - 0°3 + n*Ellg (03 - 20E (6) — 0*, V2 F(00)) — VL F(6) )

— 2 [f(e(’")) - f(e*)}

ﬁps (VZF(0")) — VI}—(G(T)))>

= E[|6T) - 6"[3 + n’El|5” (0"))|I3 — 2nE <\/ﬁp§(9(” —07),

— 20 [F(0) - F(0")|

< (1+ 120, JEI6) — %3 + 1Bl 3 (013 — 20 [ F(6) - F(6")

+ LR (92 F09) - vaFEW)) 2

Ps
31
For E||(VzF(0")) — VzF(6))]|3, we have:
E[[(VZF(0") = V2F (0I5 = [Eu(Vz Y fi(67) = Vz Z £:(0UN13
=1
" - (32)
<n Y |[Bu(Vzfi(0T) =V fi(07))]]3
=1
< n25uu2

from Assumption 2. By constraining E||(VzF () — VzF(0())|[3, we can turn (46) into:
B[00 — ng(00)) — 07113 < (1+ 0?07 JEIOC) — 0°[13 + 1Bl 9 ()] 3 — 20 [ F(0) — F(0")

The first inequality follows from N-dimensional mean inequality and the second ineity follows

n?e,, pi
_32
Ps

(33)

Leta =1+ % Using Lemma 2, we have:

BJ0TH) — 678 < (1+ 720, *)aBl|0") — 6°]3 + 068 (673 — 200 [F(6) — F(0")]

2
n-e
+a ”Qu

ps
< (141207 )10 — 0°[3 + 0 15— 2ma [F(60)) - F(0")

ps’

+n*a(12ezE(||V fi (x") = Vfi, (0| + IV £, (6°) = V£, (07)]7)

+6((4ezs +2) +eze(d — k))E||V i, (07)[1% + 12apsps” + 3] V2 F(07)]]3)
(34)

For ||V £;,.(0%) — V £; (0*)||?, we can easily get
E||Vf;,(0%) =V fi, (0)|* = %vai,.(@t) = Vi, (09)]1* < 4pt[F(6) — F(6")]
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by RSS condition. As a reasult, we have:

2. 2
ne,p
altn

T * -2 r * r *
E[J0+) — 0|3 < (1 + 125, )]0 — 03 + ~ a(2n - a8ezrPol) [FO0) - F(07)]

Ps
+ 4802 pF e E[F(0°) — F(67)]
+6°a((4ezs +2) + eze(d — K))E||V fi, (0[5 + 12ap51® + 3||VZF(67)][3)
(35)
Let L = 61°((4ezs + 2) + ezc(d — k)E||V fi, (0|2 + 12eaps® + 3||VZF(0%)]]3) + n E“ 2,
B = (1+n2p7")a, then:
E[67 D — 67|13 + a(2n — 48e°pf) | F(61)) — F(6%)| < BEI0T) — 67|13
+ 4802 pFezaR[F(0°) — F(6*)] + oL

(36)
By summing (31)) over t = 0,...,m — 1, we have:
B0 - 001+ S o0 — aserpa [FEO) - F0)] < 57BN — 00|

+ 4810°pteza Bﬁ __

(37
Through RSC condition and the definition of 7, it further follows from that:

g™ —1 ~ . 28™  A8n*preza(Bf™ —1 i .
o n = asepa [FI0) - ()] < (2 + BT D e ) - £
L 28" - m_ ]
b <v7(9*) gr=1 —9*> + ﬁﬁ —aL
Ps -
26™ 487 pfera(f™ —1) A(r—1) %
< £ _
< (24 et ELF(E ) - F(6")
26771 * r— * ﬁm -
VI VFE) B0 — 072 + 5 Ll
Ps B -
(38)
Here ¢, = pi’sd, ez = q(sziQ)((S_ld)sz_l) +3) + 2, ezc = q(szcig) (S(Sffl)>, €abs =
2dp{ ey ((s‘lj‘ff‘” + 1) +psd 0

5.3 RELATIONSHIP BETWEEN PARAMETERS

Upon completing the proof, we can conclude that the convergence of the algorithm is contingent on
the coefficient of []-'(5(’")) — .7-'(9*)} , [F(6(r=1) — F(6*)], which is determined by the values of m,

7, €z and a. In the subsequent section, we will investigate the relationship among these parameters.
Recall (53), we have

gm -1 o W] 2™ 48nPptera(pm — 1 Hir— .
51 G asemPpl)a [FO0) - FOO)| < (S =+ =1 ;fl DEF@) - F6°)
~ m _
* E (r—1) _ p* ﬁ I
(0"l El0 %12 + 1
Actually, if the algorithm converges, we have:
_ m 2+ m _
B—1 . 267 L 48 eza(B 1)) <1,
a(fm —1)(2n — 48ezn?ps)  ps B—1
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which is:
24eznp? (B-1)B™
(1—24eznpd)  naps (8™ —1)(1 — 24eznpd) ~
(39) provides us with a more detailed understanding of the relationship between the zeroth-order
gradient estimator, the stochastic variance reduced gradient estimator, and the hard-thresholding

operator when the algorithm converges. Based on this equation, we can derive two corollaries as
follows:

(39)

Corollary 3. When the learning rate 1) € [Nmin, Min{Nmax, ﬁ}], there always exists an m such
ZPs

that the algorithm converges.Here

ap; + \/(aps‘)2 — 4(48ezaps pi +p3 )(a — 1)

Thmax = ;
2(48czaps pi + p;z)
aps —\/(aps )2 — 4(48ezaps pt + p7 ) — 1)
Tlmin = .
2(48ezaps pt + ps”)
Remark 5. This corollary reveals that there is a range of values for n. When n < 7,#, we have
1—48 + L — (-1
B—m < ( ETTPs )nai)s (76 ) (40)
(1 — 48eznps )naps
This means that if
(1 —48znpi)nap; — (6 —-1) >0, (41)

holds, there is always a suitable value of m that makes the algorithm converge. We recall § =
(1+ 772;);2)01 and becomes:

(48czap; pl +p3 WP —apin+a—1<0. (42)

If we solve (@) , we will obtain Nyin < N < Mmax- 10 achieve optimal convergence, we suggest
apg
2(48ezaps pi+p5°)
Remark 6. The value of k in equation [{2)) is subject to a limitation. For the algorithm to converge,
we require that o® > 4(48czaks + 1)(av — 1), which is a polynomial of k. Therefore, we can obtain
the boundary of k by solving this inequality. Note that SARAH-SZHT can be proven in the same way

as VR-SZHT, so it will not be repeated in this paper.

setting n = We will revisit this recommendation later on in Remark 6.

C: 1
Proof. letn < EI;: < " < Tads +,then
24ernpt 24C}5 - 1
1—24emnpd ~1-24C3 ~ 2
If k > O1k2k*, n > <2 with Cy < O3 < C3ez,and A = \/T + 4; + % Then we
have a <1+ \/71% B<1—|——and
m A
gm(B-1) ks
= + S 2C A
nps ol = 24eznps)(B™ —1) = 52 (1= (1+2)™™)
B 3A
205(1— (1+ 2)=™)
B (B— 1)

It is guaranteed < 1 if we have

nps a(1—24eznpd )(B™—1)

C.-
m >log;, a G2 _ log 7,52
R Cy =34 log(l+ A)
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Using the fact that In(1 + z) > §

c
log %57 < log Cy 2K
log(1 + %) - Cy—3A\ A
Then BT (A1) < £ holds if m satisfies

nps a(1—24eznpd)(Bm—1)
02 2/‘65
> 1 —_—
w0 %50) (%)

o log ( 02 ) 2%32

02*314 \/C7K2+4K/s+

K3
= O _—

</<52 + 1)

if we want to contorl the error below ¢, we need O (1og(%)) outer iterations. And for each outer
iterations, we need to calculate a full (ZO) gradient and m stochastic variance reduced (ZO) gradients.

o3
2y/C1—1

So the query complexity of the algorithm is [n + — +1] log (1). When & is large, the complexity

will tend to [n + x]log (1). When &, is small, the complexity will tend to [n + %] log (1). Thus
VR-SZHT yields a significant improvement over SZOHT. O

Corollary 4. The query complexity of the algorithm is O([n + -5 +1] log (1)).

If we want the error to be below &, we need O (log(%)) outer iteration. For each outer iteration, we
need to calculate a full (ZO) gradient and m stochastic variance reduced (ZO) gradients. So the query

complexity of the algorithm is O([n + -5 H} log (1)). When £ is large, the complexity will tend

to O([n + k]log (2)). When &, is small, the complexity will tend to O([n + «*]log (1)). Thus,
VR-SZHT yields a significant improvement over SZOHT. See the appendix for the specific proof.

6 SARAH-SZHT

Algorithm: With the development of variance reduction theory, an iterative form of gradient descent
algorithm has emerged, such as SARAH [Nguyen et al.|(2017a), etc. Such algorithms are similar to
SVRG, in that they utilize both inner and outer loops. Unfortunately, the p-Memorization framework
is not applicable to such algorithms. Therefore, in this section, we will attempt to apply the iterative
form of variance descent algorithm to gradient simulation.

Algorithm 4 Stochastic variance reduced zeroth-order Hard-Thresholding with SARAH (SARAH-
SZHT)

Input: Learning rate n, maximum number of iterations 7', initial point 69, number of random
directions ¢, maximum error &, and number of coordinates to keep at each iteration k.
Output: 67,
1: forr=1,...,T do
2 90 =401
30 g9 =330 Viibo)
4 01 = 90 — g0
5 fort=1,....,m—1do
6: Sample K uniformly at random from [n]
7
8
9
10
11:

g =V £, (0¢ ) Vf (0071) + gt
9(t+1) _ H(t)
end for
Set (") = 9(?) with d chosen uniformly at random from {0,1,...,m}.
end for
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Convergence Analysis: In this section, we will provide a convergence analysis for SARAH-SZHT.
using the assumptions from section 2, and discussing the relationship between parameters, providing
a positive answer to the question from the section. Following the analysis in section 3, we first obtain

the boundary of E[|g%” (6())|2.
Lemma 5. Suppose that the Assumption 1 and 3, forn < 2/pT we can get:
Ellgs” (09)|3 < 12e7E(|V £, (00) = V £i, (07> + |V £, (04~D) = V £, (6")]]?)

(43)
+6((4ezs +2) + eze(d = k))E[V £, (07) |5 + 122apss® + 3] VZF ()3

Therefore, we derive the following conclusion.
Theorem 5. Suppose the same assumption as Theorem 1. For Algorithm[] we have:

'E [f(ém)—f(e*)} <( 26m + 480 ezaf™ 2) E[F(OUY) - F(6%)]

5771 S1 Brn 1 _
51

VEIIVF6) B8 — %o + o ——aL,

m—1_ m—1_ m—2_
here v = (5571 “2n — (5[371 -+ 55 1 )485177 P )

Based on the coefficient of E [}"(5(’")) - .7-'(9*)} and E [.7:(5(“1)) - }'(0*)} , we derive the bound-
ary of 1 when the algorithm converges.
Corollary 5. If

a— \/a2 — 4(48¢zapy + aps )(a —1) o+ \/a2 4(48e7aps + aps )(a — 1)
<n<
- 2(48z7apd + aps )

)

2(48ezaps + aps)
there always exists an m such that the algorithm converges.

Remark 7. Like pM-SZHT, from corollary [5] we know that q does not play a decisive role in
convergence. This indicates that it is feasible to use variance reduction algorithms instead of
restricting q to make the algorithm converge.

Remark 8. Unfortunately, in the SARAH-SZHT algorithm, the gradient estimation g will accumulate
errors during the inner loop process. This will cause the algorithm to not converge when m is large.

Corollary 6. The query complexity of the algorithm is O([n + KQ_H] log ( )).

6.1 PROOF OF LEMMA 2

Proof. 1t is straightforward that the stochastic variance reduced gradient satisfies:
EgM(0)) = EV S, (07)) —EVf;, (07Y) + gD 00Dy = EVf;, (0M).

Thus ¢ (6(")) is a unbiased estimator of V.F(#(")). The form of inapplicable zero order gradient is
the same. As a result, the first claim is verified.

For the second claim, we have:

E[lg%) (60|13 <3E|V i, (07) — Vfo (073 + 3Hvzf< I3
+3E[[Vzfi, (007D) = Vrfi (0] — 55V (007V) + VZF(0")|13
=3E[Vzfi, (0")) — Vi, (67|13 + 3Hvzf< i3
+ 3By [Ey, [V fi, (007D) = Vi fi (0%)] — V2F(OU D) + V2 F(67)[13]

@ A

<3E|Vzfi,(07)) = Vi, (6")3 + 3|V F(6")II3
+3Eu[Ei, |V fi, (00 7Y) = Vi, (67)]3]

=3E(Vzf;, (67)) = Vzfi, (673 + 3| VzF(67)II3

+ 3E||@Ifi,,,(9(r_l)) - VIfzr(9*>||§
(44)
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The inequality @ follows from the power mean inequality|la+ b+ c||2 < 3al|3+3||b]|3 +3||c||3, and
@ is follows from E||z — Ez||3 < E||z||3. Now we focus on E||Vzf;, (0) — Vzfi (6%)])3. Actually,
the boundary of E[|Vzf;, () — Vzf;, (6%)|3 is available in Lemma 2, that is

E|[Vzfi, (0) — Vzfi, (07)]3 < 4ezE|V fi, (6") — V fi,.(07)]|

45
F((ders +2) 4 ere(d— KBV S (02 + 2. )

Taking (@3) into (@4):
EllgS (003 < 1262E(|V £, (07)) = V£, (09)]2 + IV £, (07~ D) = V£, (6%)])
+6((dezs + 2) + eze(d — k)E|V fi, (0|2 + 12eapspi + 3| VZF(67)|3-
O

6.2 PROOF OF THEOREM 2

Proof. We denote v = (") — ng (9(7")) and Z = 7* UZM U T+, where 75 = supp(0*),
T = supp(6() and I(T‘H) = supp(Ar+1))

Ello — 0*|13 = BII6) — 6% + 3Bl 3¢ (0 )]} — 20 (0 - 0", B (0))
= EJlo") — 6|13 + n*EllgY” (0) 13 - 20 (6 — 6" EVZF(6¢))
= B[ — 0*[3 + n*El[5¢ (07)|13
— 2 (0 — 6", V2 F(6")) - V2 F(0)) — 2 (61 — 0, V2 F(6)))
<EJI0”) — 0*[13 + n*Ellg (0)13 — 20 (07) — 0%, V2 F(07)) - V2 F(0))

— 20 [F(0) = F(0")|

(VZF(0")) - VI]:(9(T)))>

= E|[60) — 0*|2 + 12| |65 (0)3 — 20E { iy (00 — 6%), ——
\/ﬁps

— 29 [F(0") - F(60")]

_2 r * T r i *
< (1412 N0 — 0°13 + n*Ellg (0 - 20 |F(0) — F(6)

12 . .
+ e E||(VzF(OT) — VZF(0))|]3-

(46)
For E||(VzF(6")) — VzF(0™))]|2, we have:
E[|(VzF(0T)) = V2F O3 = [[Bu(Vz > £:(67) = Vz Y £:(67)]]5
=1 =1
n N 47
<0 S NEMT2O) - Voo
=1
< nPe,p’.

The first inequality follows from N-dimensional mean inequality and the second inequality follows
from Assumption 2. By constraining E||(VzF () — VzF(0()))|[3, we can turn (46) into:

EJI07) =g (07) = 07113 < (11207 EIOT) — 0713+ n*El|g5) (0|13 — 20 | F(0) = F(0°)
n? 5M,u

_2
Ps

(48)
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Leta=1+ W Using Lemma 2, we have:

T * _2 T * T T T *
EJI6C ) — 6713 < (1+ 720, )aBI|0™ — 07|13 + 1PaE |5 (0) |13 — 2na [F(6)) — F(6)]

2 2
n-e
+a7‘“u'

Ps
< (14 72p; )aE||0") — 6%|3 +

2€7MM2 B 27704 [f(G(r)) o ]_—(9*)]
Ps
+n?a(12ezE(||V fi, (") = V fi, (09| + ||V £, (07 D) = V £, (6%)] )

+6((4ez5 +2) +eze(d = k))E||V i, (0715 + 12apsps” + 3] VZF(07)]]3).
(49)

For ||V £;,.(0') — V£ (0*)||?, we can easily get

E|V fi,(8°) = Vi, (0°)* = %Ilvﬁr(e’f) = Vi, (0 < 4p7[F(0) — F(67)]

by RSS condition. As a reasult, we have:

1 2 2 2 2 ”25MM2 2
E||00D — 07|12 < (1 +12p; )aE[0") — 07| + a2 — (2 — 48e7n?p}) []—‘(9(”")) - f(&*)}
Ps
+48n%p aEIE[]—'(H(T_l)) — F(6%)]

+6°a((4ezs +2) + eze(d — K))E||V £, (07)|[5 + 12eapsp” + 3]V F(67)]]3)-
(50)

Let L = 67 ((dezs +2) + ez:(d — K)E|IVfi, (9°)]|% + 122anep® + 3| V2F(0°)]3) + 224,
B=(14n%p;")a, then:
B[l D - 6|13 + a2y — 48exn®p} JE [F(6) - F(6*)] < BEI0T) - 6|1

+48n°ptezaB[F(0Y) — F(6*)] + aL.
(51)
By summing over t = 1,...,m — 1, Let G = E||#™ — 0*|]3 + ,3";3—_11,1(277 _
48e7n*pT ) []-"(5(’”)) - .7-"(0*)} we have:

m—2 __ 1 .
G < B™EI0N) — 673 + 48772;);51@%1@[1?(9@) — F(6")]
(52)
- m—1 __ 1
+ 4802 pterafm2E[F OV — F(6*)] + %QL.
That is
m—1 m— m—2 __
(m) _ p*(|2 ﬂ -1 7ﬁ 6 a(r)y *
B0 — 0" + ("2 — (T + F o asemniola [F@) - 7o)
. m—1 __ 1
< BE(600) — 6713 + 48n*plezaf™ 2E[]-'(9(T*1))7}'(0*)]+%QL.
Through RSC condition and the definition of I. , it further follows from that:
m—1 m—1 m—2
m) _pep2 ., BT —1 g -1 g1 2 4 A _ T+
6 6713 + (g2~ (g + gyl [FO0) - F0°)]
m—1 . 2 m—1 . m—1 -1
( 20" | asPoterapm 2) E[F(@"—D) - F(6%)] + ﬂ_ E<V]—‘(0*),9*—9(“1)>+7ﬁﬁ_1 oL
ﬁm ! m—2 ~(T—l) * Bm 1 * N(r—l) * Bm_l _1
+48n*pleza E[F(O") = F(0")] + Vs||[VF(O")[|E|0" ™ — 0 H2+ﬁab

(53)
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Here £, = pt’sd, e7 = q(szliz)((371d)£81271) +3) + 2, ez = q(#(ig) (S(Sfiflv Eabs =
2
2dp:; 582 ((s—ld)gslg—l) + 1) +p2—28d 0

6.3 PROOF OF COROLLARY 2

If the algorithm converges, we have:

28m=1 — 1 o BMTE—1 —
T + 4851772ij 2 < ﬂ277 — ﬂ 24851772/)2-.
which is:
-1 4 2pH(B—1 1
aps 1

If there is a m € N* that holds (54)), then there must be:

-1 48 2 (B -1
B _ + EIN Pg (ﬁ )S]-
apsn B

Recall B = a(1 + n?p; )?, we have:
(48srapt + ap;)n* —an+ (a—1) <0.

This is a quadratic inequality about 7, and a conclusion can be obtained through discriminant.

7 EXTRA EXPERIMENTS

7.1 RIDGE REGRESSION

In this section we provide additional curves for the first problem described in section 5] which we
recall here for sake of completeness. We consider a ridge regression problem, where each function f;
is defined as follows:

A
Fi(0) = (20 = y:)* + 110113,

where )\ is some regularization parameter.

7.2 SYNTHETIC EXPERIMENT

Experimental Setting First, as in the main paper, we consider a synthetic dataset: we generate each
x; randomly from a unit norm ball in R, and a true random model 6* from a normal distribution
N(0,I4xq). Each y; is defined as y; = z] 0*. We set the constants of the problem as such:
n = 10,d = 5, A = 0.5. Before training, we pre-process each column by subtracting its mean and
dividing it by its empirical standard deviation. We run each algorithm with . = 1074, 55 = d = 5,
and for the variance reduced algorithms, we choose m = 10. For all algorithms, the learning rate
7 is found through grid-search in {0.005, 0.01, 0.05,0.1, 0.5}, and we keep the 1 giving the lowest
function value (averaged over 3 runs) at the end of training. We stop each algorithm once its number
of IZO reaches 80,000. We plot in Figures[d} [5] and [6]the mean and standard deviation of the curves
for a value of k = 2, 3, and 4 respectively.

Results and Discussion We can observe the several phenomena on the Figures ] [5] and [6] First,
we can observe that for larger k, the algorithms converge to lower function values (which is natural
because optimization is then over a larger set), but also, the algorithms are more stable (for example,
SARAH-SZHT converges more easily with & = 4 than with & = 2), which is due to the hard-
thresholding operator being more non-expansive. Then, although a larger number of random directions
q may slow down the query complexity (IZO), we observe that it can also stabilize some algorithms
that would otherwise be less unstable, such as SARAH-SZHT (which converges better for ¢ = 200
than for ¢ = 50).
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Figure 4: #IZO (up) and #NHT (down) on the ridge regression task, synthetic example (k=2).
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Figure 5: #IZO (up) and #NHT (down) on the ridge regression task, synthetic example (k=3).
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Figure 6: #IZ0O (up) and #NHT (down) on the ridge regression task, synthetic example (k=4).

7.3 REAL-LIFE DATASETS

Experimental Setting Second, we now compare the above algorithms on the following open source
real-life datasets (obtained from OpenML Vanschoren et al.|(2014]))), of which a summary is presented
in Table ] We take A = 0.5. Similarly as above, before training, we pre-process each column by
subtracting its mean and dividing it by its empirical standard deviation. We run each algorithm with
p = 10"%, 55 = d (where d depends on the dataset), and for the variance reduced algorithms with an
inner and outer loop (VR-SZHT and SARAH-SZHT), we choose m = L%ZJ For all algorithms, the
learning rate 7 is found through grid-search in {107, i € {1,...,7}}, and we choose the one giving
the lowest function value (averaged over 5 runs) at the end of training. We stop each algorithm once
its number of IZO reaches 100,000. We plot the optimization curves (averaged over the 5 runs) for
several values of g and k, to study their impact on the convergence.

Table 4: Datasets used in the comparison. Reference: |Dua and Graff] (2017), Source{Vanschoren et al.
(2014), downloaded with scikit—-learn |Pedreg0sa et a1.| (]201 1[).

DATASET d n

BODYFAT(? 14 252
AUTO-PRICE® 15 159

Results and Discussion We present our results in Figures[7|and[8] Those results are consistent with
preliminary results on the synthetic dataset from Section (/.1 namely, that overall, although taking a
larger ¢ may worsen the IZO complexity, it can help some algorithms to converge more smoothly, by
reducing the error of the zeroth-order estimator. Additionally, we can observe that taking a larger k
often helps to achieve smoother convergence. Finally, consistently across experiments, we observe
that SARAH-SZHT has difficulties converging: this seems to indicate that SARAH-SZHT may
be highly impacted by the errors introduced by the zeroth-order estimator. SARAH-SZHT could
potentially be improved by a more careful choice of the number of inner iterations, and/or by running
SARAH+, which is an adaptive version of SARAH Nguyen et al.| (2017b), which we leave for future
work.
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Figure 7: #1ZO (up) and #NHT (down) on the ridge regression task, bodyfat dataset.
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7.4 ADDITIONAL RESULTS FOR UNIVERSAL ADVERSARIAL ATTACKS

In this section , we provide additional results for the universal adversarial attacks setting from our
Experiments Section, for the 3 additional classes: ’ship’, *bird’, and ’dog’. As we can observe in
Figures[T0], 0] and[TT]below respectively, in most of such cases, there is a variance-reduced algorithm
which can achieve better performance than the vanilla zeroth-order hard-thresholding algorithms, (for
instance, SARAH-ZHT in Figure[9] and SAGA-ZHT in Figure[I0) which demonstrates the applicabil-
ity of such algorithms. Correspondingly, this can also be verified by observing the misclassification
success in Table[6] [5]and[7} even if a smaller value for the cost does not necessarily imply a strictly
higher attack success rate, still, overall, more successful universal attacks also have a higher success
rate of attack.
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Figure 9: #IZO and #NHT on the few pixels adversarial attacks task (CIFAR-10), for the original
class ’ship’.

Table 5: Comparison of universal adversarial attacks on n = 10 images from the CIFAR-10 test-set,
from the ’ship’ class. For each algorithm, the leftmost image is the sparse adversarial perturbation
applied to each image in the row. ("auto’ stands for "automobile’, and ’plane’ for ’airplane’)

Image ID 1 15 18 51 54
oo g 0 et O 3
FGZOHT )
ship . frog  ship ship
SZOHT _
ship » frog  ship ship

B 2w & 22

ship frog truck plane ship

-i'—"ﬁ-. “ k- .'A.-' -
R e
ship frog truck ship plane
SARAH-SZHT

= 00 B

ship frog auto auto ship
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Figure 10: #IZO and #NHT on the few pixels adversarial attacks task (CIFAR-10), for the original

class ’bird’.

Table 6: Comparison of universal adversarial attacks on n = 10 images from the CIFAR-10 test-set,
from the "bird’ class. For each algorithm, the leftmost image is the sparse adversarial perturbation
applied to each image in the row.

Image ID 65 67 70 75 86 113 123 129 138 149
wees (9] 0 1 0 [
FGZOHT - _
H B CNHEe = E D
frog bird deer dog deer bird bird deer frog bird
SZOHT — B _
H 8- -b qbae > HL
frog bird bird bird bird bird bird ship bird bird
VR-SZHT I _
B v =B HEe ¥
frog bird bird bird bird frog bird ship bird bird
SAGA-SZHT — .
& T ERENHEL
frog bird deer dog bird bird cat deer frog bird
SARAH-SZHT o . _
H 8- -bL 40 »HKA
frog bird frog bird bird frog bird bird frog bird
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Figure 11: #IZO and #NHT on the few pixels adversarial attacks task (CIFAR-10), for the original

class ’dog’.

Table 7: Comparison of universal adversarial attacks on n = 10 images from the CIFAR-10 test-set,
from the ’dog’ class. For each algorithm, the leftmost image is the sparse adversarial perturbation

applied to each image in the row.

Image ID 12 16 31 33 39 42 101 128 141 148
s EEEBERETAN
R VA i ®
FGZOHT _
- PEVENTWON
bird dog deer dog dog cat cat cat dog dog
SZOHT
H E2E92 R FTWON
frog dog blrd dog dog cat dog cat dog dog
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rge— : —
| AEVERETPON
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