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A Robust accuracy under defense

In this section we detail the definition of the RAUD and the involved tools we used to compute it.

A.1 Definition

From an attacker’s point of view, the goal is to create the adversarial attack that is the most harmful,
i.e., that fools the targeted classifier the most. Therefore, an adversarial attack maximizing the fooling
rate is sought. Conversely, from a defender’s perspective, the aim is to keep a high classification
accuracy even in presence of adversarial examples. Thus, the defender only considers adversarial
examples that are not classified as the true label, argmaxk fk(x

′) ̸= y, (see Yang et al. (2020) and
Wang et al. (2017) for more details).

From this, the robustness can be measured as the number of clean examples that are well classified and
for which no adversarial examples can be found in a δ-ball around them. This quantity is estimated by
the Robust Accuracy RA as the empirical counterpart of the astuteness Wang et al. (2017) and is
defined as

RA(f,D) =
1

N

N∑
i=1

1{A{(x(i),y(i))} = ∅}, (1)

with A{(x(i),y(i))} = {(x(i)′ , y(i))} being the set of adversarial examples associated to (x(i), y(i)).

Yet, this later metric is questioned by Lorenz et al. Lorenz et al. (2022) who emphasized on the
importance of taking into account the ability to easily detect adversarial examples. To this end,
to properly measure the dangerousness of an attack, it has been suggested to train an adversarial
example detector d to be used upstream of the classifier f . By doing so, they showed that Autoattack
adversarial examples can be easily detected, making the attack inefficient. From this observation, they
suggest to use another metric, the Robust Accuracy Under Defense (RAUD) which stands as a natural
robustness metric from both the attacker and defender point of view,

RAUD(f,D) =
1

N

N∑
i=1

1{∀x′ ∈ A{(x(i),y(i))}, d(x
′) = 0}, (2)

where d : RP 7→ {0, 1} is an adversarial example detector with 0 as the clean example’s label.

A.2 Details about the detector d

Regarding the design of a descent adversarial examples detector, we followed the guidelines proposed
by Lorenz et al. (2021) and Harder et al. (2021). In these two works, authors propose to use a random
forest binary classifier with at least 100 trees, in the Fourier domain either of the input images or of
the Fourier Features of Feature-Maps from the images. Authors showed that by using either one of
the inputs, the random forest binary classifier is able to discriminate with high precision adversarial
example computed from SOTA specific adversarial attacks on several complex datasets such as
CIFAR10, CIFAR100, ImageNet or Celeba. In order to lower as much as possible the bias introduced
by the detector, we chose to use a random forest binary classifier with 300 trees in the Fourier domain
of the input images. Our choice has been confirmed by extensive experiments and is highlighted in
Table 4.
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Table 4: Confusion matrices of the detectors used to computed the RAUD of Table 1. All detectors
have been trained on the same training dataset as the one used in the training of LIMANS and the
displayed values of computed over the validation dataset, such that fair performances are considered.
TN: True Negative, FP: False Positive, FN: False Negative, TP: True Positive.

Detectors d dFGSM dPGD dAutoattack dLIMANS10

Confusion Matrix TN FP
FN TP

863 57
0 920

814 106
0 920

790 130
0 920

846 74
95 825

Accuracy 96.9 % 94.2 % 92.9 % 90.8 %
Precision 94.1 % 89.6 % 87.6 % 91.7 %

Indeed Table 4 displays the confusion matrix of the detectors involved in the results presented in
Table 1 of the main paper.

The detectors have been trained on the same training dataset as the one used in the training of
LIMANS and the displayed values of computed over the validation dataset. Finally the RAUD metric
of the different adversarial attacks using the detector is performed on the test dataset, which none has
previously seen before making everything totally fair.

We empirically observe highly effective detectors discriminating almost perfectly real images than
adversarial images, without mistaking one or the other by producing low False-Positive and False-
Negative values. These performances gave use confidence in the use of these detectors as a tool of the
RAUD metric, evaluating both the harmfulness and the transferability of adversarial attacks, which
are essential to be measure when assessing the quality of an adversarial attack.

B Visually interpretable adversarial perturbations

By modelling the adversarial noise space, we empirically observe that LIMANS’ parameters capture
the most meaningful information fooling the classifier. In some way it can be seen as capturing
the semantics of the objects within the classification space. Figure ?? highlights very interesting
atoms that indeed spotlight recurring patterns in classification such as edges and corners for the ℓ∞
atoms and local spots in the images for ℓ2 atoms. Along with Figure ?? we also show that the same
conclusions can be reached for simpler dataset such as MNIST with Figure 4,

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

(a) LIMANS-ℓ2
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

(b) LIMANS-ℓ∞

Figure 4: Visualization of the learned universal adversarial directions (atoms of the dictionary D)
when M = 10, on MNIST according to both the ℓ2 and ℓ∞ norm targetting a LeNet classifier achieving
more than 98.8% of test accuracy. All atoms have been rescaled for display.

In addition to these visually interesting universal parameters, this empirical observation is furthermore
proven when inspecting the LIMANS produced specific adversarial perturbations.

Figure 5 displays LIMANS specific adversarial perturbations on the MNIST dataset (purposely used
to ease the observations). It is clear that LIMANS produces much more interesting adversarial
perturbations than state-of-the-art specific adversarial perturbations that are absolutely random.
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LIMANS Noise Predicted: 0 Predicted: 7

(a) LIMANS adversarial perturbation and example

PGD Noise Predicted: 7 Predicted: 2

(b) PGD adversarial perturbation and example

Figure 5: Examples of ℓ2 adversarial perturbations produced by LIMANS and PGD on the MNIST
dataset for a LeNet classifier achieving more than 98.8% of test accuracy.

Figure 6: Performance of LIMANS (left) ℓ∞-attacks and (right) ℓ2-attacks on CIFAR-10 when
attacking VGG, under different settings of hyper-parameter in Regularized LIMANS λ, and different
number of atoms M.

LIMANS however target the most sensitive spots to fool the classifiers, which makes LIMANS
adversarial attack a much more realistic attack than state-of-the-art specific adversarial attacks.

C Experimental details

This section presents the details of the different implementations used in both the Regularized-LIMANS
and Simple-LIMANS experiments.

C.1 Regularized-LIMANS hyper-parameters and settings

Regularized-LIMANS hyper-parameters Figure 6 illustrates the impact of the hyper-parameter
λ and the number of atoms M on attacking performance. With appropriately increasing M, the
performance will be improved, which confirms the conclusion in the paper. In the experiments,
considering the trade-off between attacking performance and memory limit, we choose just M = 150
for CIFAR-10 and M = 100 for ImageNet, and do not go further. Additionally, when p = ∞, letting
λ = 1 provides the best performance, while λ = 0.1 is the suitable setting when p = 2. This
conclusion is valid when extending to other classifiers, as shown in Table 5.

Experimental settings in transferability estimation In order to quantify the transferability of
the adversarial noise space, we carried out experiments on CIFAR-10 with 5 vanilla DNNs and
2 robust DNNs, namely, MobileNet, Inception, ResNet, DenseNet, VGG, Robust ResNet18, and
Robust WideResNet-34-10, and their respective accuracy are 94.00%, 94.10%, 93.2%, 92.8%, 92.1%,
82.3%, and 85.1%. When on ImageNet, the Inception is not considered due to its different input
size, and all classifiers are off-the-shelf in pytorch model zoo and offer respectively the accuracy,
70.95%(MobileNet), 68.20%(ResNet), 73.65%(DenseNet), 67.60%(VGG), 51.25%(Robust ResNet18)
and 66.55%(Robust WideResNet-50-2). In the experiments, we used each DNN as the source classifier
to learn the adversarial noise space, then, crafted the adversarial perturbation in the learned space to
deceive the other classifiers that were regarded as the target classifiers.
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Table 5: Performance of LIMANS attacks on CIFAR-10, in terms of FR, when the number of atoms
M = 150. The best results are marked in red bold style.

ℓ∞-attack ℓ2-attack

λ
Classifiers VGG MobileNet R-R18 VGG MobileNet R-R18

0.1 73.2 85.3 15.8 71.7 95.4 17.6
1.0 91.0 97.3 25.3 45.4 49.6 12.8
10 46.1 91.7 19.9 13.6 24.4 10.3
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Figure 7: Evolution of LIMANS10 training loss according to (left) different optimizers and (right)
different batch sizes B using the Simple-LIMANS algorithm on the standard classifier under the ℓ∞
norm.

The other parameters used in the experiments are: In the training phase, the number of iterations
is MAXEPOCH=1000. The learning rate ρ is fixed to 0.001. The value of δ is that used in
RobustBench??. In the validation and the test phase, MAXEPOCH is 150 when p = 2 and 300 when
p = ∞.

The state-of-the-art attacks for transferability comparisons We presented in our paper the
comparison with the specific ℓ∞-attack AutoAttack and three state-of-the-art transferable ℓ∞-attacks
VNI-FGSM, NAA, and RAP. Besides, we consider also Translation-Invariant Attack (TI-FGSM),
VMI-FGSM, and universal ℓ∞-attacks UAP and UAPPGD (The well-known DI-FGSM, MI-FGSM,
or NI-FGSM was not selected to compare, as all these processing are already integrated into the
attack such as RAP). The LIMANS ℓ2-attack was compared with the ℓ2 version of AutoAttack, UAP,
UAPPGD, and RAP, and the classical ℓ2-attack, CW method.

C.2 Simple-LIMANS hyper-parameters

The main idea behind Simple-LIMANS is to optimize the LIMANS parameters the simplest way
possible, with the least hyper-parameter tuning and optimization details possible.

Modeling details The Simple-LIMANS algorithms operates a relaxation on the definition of the
adversarial noise. Given the original example x(i), Simple-LIMANS consider its adversarial noise
as ϵ(i) = Dv(i) + b the product of the universal adversarial noise model D with its corresponding
coding vector v(i), to which is added the offset b universal to all LIMANS adversarial noises.

Learning rate. No regularization parameter tuning is needed, furthermore, the learning rate is
automatically taken care of, by using the scheduler ReduceLROnPlateau, which aims at reducing
the learning rate when the loss plateaus. The optimization simply needs to start with a pretty high
learning rate which will avoid bad random initialisation local minima, and then will decrease as the
optimization proceeds, allowing the parameters to reach a better minimum. The parameters of the
used ReduceLROnPlateau are: patience=40, factor=0.1 and threshold=1e-1.
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Table 6: Robustness performance of the LIMANS ℓ∞-attack (δ∞ = 8/255) in terms of RAUD on
the CIFAR-10 test data and against the attack detectors plugged in both standard classifier (S.C.) and
robust classifier (R.C.). The smaller the RAUD, the more robust the adversarial attack is. The
best performances are marked in bold red.

Detectors d dPGD dAutoattack dLIMANS10

Classifiers f S.C. R.C S.C. R.C S.C. R.C
SA 91.1 85.1 91.1 85.1 91.1 85.1
FGSM 91.1 ± 0.0 85.1 ± 0.0 91.1 ± 0 85.1 ± 0.0 89.3 ± 0.0 79.5 ± 0.0
PGD 91.0 ± 0.0 84.9 ± 0.1 91.0 ± 0.0 85.0 ± 0.0 80.7 ± 0.5 73.3 ± 0.3
Autoattack 91.0 ± 0.0 85.0 ± 0.0 91.1 ± 0.0 85.0 ± 0.0 78.2 ± 0.3 71.5 ± 0.3
LIMANS10 78.3 ± 2.4 79.6 ± 0.0 81.7 ± 2.0 8.0 ± 0.0 86.4 ± 1.6 79.5 ± 0.1
LIMANS500 26.3 ± 0.3 71.3 ± 0.1 32.1 ± 0.4 73.2 ± 0.2 36.5 ± 3.1 69.4 ± 0.2
LIMANS1000 24.7 ± 0.9 70.4 ± 0.2 31.6 ± 1.1 72.4 ± 0.1 36.9 ± 4.6 68.5 ± 0.2
LIMANS4000 23.7 ± 0.5 69.8 ± 0.0 30.8 ± 0.9 72.9 ± 0.3 35.6 ± 2.2 68.2 ± 0.1

Table 7: Robustness performance of the LIMANS ℓ2-attack (δ2 = 0.5) in terms of RAUD on the
CIFAR-10 test data and against the attack detectors plugged in both standard classifier (S.C.) and
robust classifier (R.C.). The smaller the RAUD, the more robust the adversarial attack is. The
best performance is marked in red bold font.

Detectors d dPGD dAutoattack dLIMANS10

Classifiers f S.C. R.C S.C. R.C S.C. R.C
SA 91.1 85.1 91.1 85.1 91.1 85.1
PGD 64.0 ± 1.2 82.4 ± 0.0 65.3 ± 0.6 81.8 ± 0.1 42.9 ± 0.6 80.1 ± 0.0
Autoattack 63.1 ± 1.1 82.19 ± 0.1 65.8 ± 0.6 81.1 ± 0.2 42.1 ± 0.3 79.4 ± 0.0
LIMANS10 83.5 ± 0.5 87.4 ± 0.1 82.9 ± 0.4 88.1 ± 0.0 86.9 ± 0.9 87.6 ± 0.1
LIMANS500 62.9 ± 0.2 84.0 ± 0.4 64.7 ± 1.0 83.8 ± 0.3 51.7 ± 1.3 81.7 ± 0.1
LIMANS1000 63.7 ± 0.6 82.7 ± 0.3 63.6 ± 0.9 82.6 ± 0.2 46.8 ± 0.7 80.1 ± 0.1
LIMANS4000 62.6 ± 1.2 82.16 ± 0.2 62.2 ± 0.6 82.6 ± 0.3 46.9 ± 0.2 80.0 ± 0.2

Optimizer. All the Simple-LIMANS experiments’ optimization were performed with the Adam
optimizer. We found the Adam optimizer to be the best among several ones, as shown in Figure 7.
Indeed similar performances can be reached with a different optimizer such as the RMSProp optimizer,
but overall the Adam optimizer or one of its variant seems to be a relevant optimization choice.

Batch-size. As Figure 7 shows, when using Simple-LIMANS, the batch size B is not a sensitive
hyper-parameter. We found that different batch-sizes could end up to similar performances, the only
difference reside in the time consumption, higher batch size yield faster computations. During our
experiments, the batch size B was set to B = 256 during training and B = 64 during inference.

D Additional results

D.1 Training and test fooling rates on CIFAR-10 on both ℓ2 and ℓ∞ norm

We provide here the performance of the LIMANS attacks with increasing the number of atoms M
from 1 to 4000. Noting that both the performance on training data, as shown in Figure 9, and on test
data, as shown in Figure 8 show that LIMANS attacks can bridge the gap of universal attacks and
specific attacks.

D.2 RAUD Tables with standard deviation for both ℓ2 and ℓ∞ norm

Table 6 and table 7 present the RAUD of Simple-LIMANS and the specific baselines for the ℓ∞ and
ℓ2 norm with different adversarial example detectors d. Along the RAUD is presented its standard
deviation over 5 different random seeds. Performances are shown for both the standard and robust
classifier on the CIFAR-10 dataset.
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D.3 Additional results on transferability

In this section, we report complementary results about the transferability of the adversarial noise
space. As is stated in our paper, the learned space under LIMANS ℓ∞-attack possesses powerful
transferability across different classifiers, which is further confirmed by results in Table 9 (part 1)
and Table 8 (part 2) and Table 11. Besides, the adversarial noise space obtained using the LIMANS
ℓ2-attack gains also the transferable property as shown in Table 10.

Table 8: Transferability performance of the LIMANS ℓ∞-attacks on Cifar10 (ϵ = 8/255), in terms
of fooling rates (FR). The best transferable results are marked in red bold font and the best specific
attacking results are marked in black bold font: Part 2.

MobileNet Inception ResNet50 DenseNet VGG R-r18 R-wrn-34-10
AutoAttack 17.6 17.9 18.0 18.5 19.1 27.7 39.4

UAP 12.4 9.9 6.6 5.3 4.4 1.7 1.3
UAPPGD 27.0 21.5 12.9 11.7 13.1 2.5 2.6
TI-FGSM 7.9 6.6 6.8 7.7 8.3 17.2 21.2

VMI-FGSM 26.8 25.2 26.1 24.3 26 26.3 32.3
R-wrn-34-10 VNI-FGSM 30.0 27.7 28.6 26.3 27.4 26.7 32.1

NAA 13.7 11.3 10.1 10.5 11.4 9.7 15.5
RAP 11.5 9.4 7.7 7.7 8.4 1.5 19.5
Ours 84.9 76.6 72.8 68.9 64.0 23.2 21.6
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Figure 8: Evolution of LIMANS’ test fooling rate according to the number of atoms M. Both specific
and universal adversarial attack baselines are shown. The problem is solved under the ℓ2 norm
constraint (first line) and ℓ∞ norm constraint (second line) on the standard classifier (left figure) and
the robust classifier (right figure) on CIFAR-10 using Simple-LIMANS. On average over 5 random
seeds the fooling rates vary around 0.4% of FR for the standard model and around 0.1% of FR for the
robust model, errorbars are plotted but so tiny, are invisible.
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Figure 9: Evolution of LIMANS’ training fooling rate according to the number of atoms M. Both
specific and universal adversarial attack baselines are shown. The problem is solved under the ℓ2 norm
constraint (first line) and ℓ∞ norm constraint (second line) on the standard classifier (left figure) and
the robust classifier (right figure) on CIFAR-10 using Simple-LIMANS. On average over 5 random
seeds the fooling rates vary around 0.4% of FR for the standard model and around 0.1% of FR for the
robust model, error bars are plotted but so tiny, are invisible.
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Table 9: Transferability performance of the LIMANS ℓ∞-attacks on Cifar10 (ϵ = 8/255), in terms
of fooling rates (FR). The best transferable results are marked in red bold font and the best specific
attacking results are marked in black bold font: Part 1.

MobileNet Inception ResNet50 DenseNet VGG R-r18 R-wrn-34-10
AutoAttack 100 87.1 37.2 32.8 22.4 1.7 1.5

UAP 47.3 36.1 9.3 8.3 8.7 1.3 0.8
UAPPGD 86.2 56.1 20.5 19 21.3 1.6 1.5
TI-FGSM 87.2 25.2 25.9 29.1 16.1 2.1 2.0

VMI-FGSM 100 87.3 53.1 49.8 38.9 2.2 2.5
MobileNet VNI-FGSM 100 88.1 54.8 53.1 40.7 2.4 2.9

NAA 72.2 25.3 6.8 5.9 6.4 1.3 1.0
RAP 86.7 60.3 38.5 35.7 25.8 3.0 1.6
Ours 97.3 92.2 73.6 66.4 67.7 10.2 10.7

AutoAttack 54.7 100 14.7 12.9 12.0 1.2 1.1
UAP 39.2 32.9 9.3 9.7 9.4 1.5 1.1

UAPPGD 73.9 75.5 26.3 23.8 27.3 2.2 1.5
TI-FGSM 19.7 60.2 19.8 21 11.4 2.2 1.5

VMI-FGSM 69.8 86.1 40.8 38.3 31.3 2.6 1.6
Inception VNI-FGSM 75.5 89.5 44.4 42.4 36.3 3.2 2.3

NAA 38.7 70.5 8.4 8.1 9.2 1.1 1.5
RAP 61.9 90.2 42.0 41.7 30.3 2.3 2.7
Ours 98 95.1 79.6 73.9 75.8 10.7 10.8

AutoAttack 63.3 52.6 100 54.6 25.1 1.2 2.4
UAP 31.4 23.6 12.1 12.5 11.2 1.3 1.7

UAPPGD 63.3 49.4 39.4 35.1 26.1 1.1 2.3
TI-FGSM 18.4 17.1 74.0 38.5 20.4 2.2 3.0

VMI-FGSM 74.9 75.3 96.0 78.1 53.5 2.1 3.2
ResNet50 VNI-FGSM 78.3 76.9 95.9 80.3 57.2 2.7 2.1

NAA 50.7 38.6 64.7 22.9 18.4 1.4 2.1
RAP 49.0 45.7 75.1 52.5 35.4 1.6 2.8
Ours 96.0 92.9 91.3 81.8 82.1 11.7 13.2

AutoAttack 56.9 51.6 48.8 100 21.8 2.1 2.0
UAP 27.6 20.6 10.6 12.8 11.4 1.6 1.4

UAPPGD 61.1 49.9 29.3 47.4 27.3 2.7 2.1
TI-FGSM 17.4 15.8 26.3 65.2 17 2.9 2.3

VMI-FGSM 73.7 71.8 77.2 93.1 47.9 3.3 3.7
DenseNet VNI-FGSM 78.1 76.2 79.5 94.0 53.3 3.5 4.2

NAA 37.2 31.1 23.7 74.9 12.5 1.2 1.5
RAP 47.8 43.5 48.7 75.9 35.6 3.2 3.5
Ours 96.7 93.5 88.4 85.5 82.7 12.3 13.4

AutoAttack 62.5 58.0 43.0 44.0 100 2.7 2.7
UAP 22.0 18.4 10.2 10.2 10.0 1.1 1.3

UAPPGD 63.6 55.9 27.6 29.4 41.9 3.1 2.1
TI-FGSM 19.7 16.7 25.6 27.6 74.4 3.7 2.2

VMI-FGSM 66.2 64.2 57.5 56.9 96.5 3.0 2.6
VGG VNI-FGSM 69.3 68 62.6 61.4 96.5 3.0 2.6

NAA 42.3 38.3 14.5 1.8 71.6 1.6 1.2
RAP 46.5 44.5 39.5 40.9 73.8. 3.3 3.4
Ours 97.4 95.1 87.5 81.5 91.0 11.5 12.6

AutoAttack 17.5 15.7 17.2 15.6 17.5 44.3 23.4
UAP 14.5 9.5 7.1 6.4 7.6 1.9 2.6

UAPPGD 18.6 13.3 9.7 8.6 10.5 3.1 3.5
TI-FGSM 8.4 5.5 8.2 7.8 8.6 26.2 13.1

VMI-FGSM 24 22.9 24.2 21.9 24.8 38 22.7
R-r18 VNI-FGSM 27.1 23.1 25.4 23.8 25.6 38.1 22.9

NAA 16.2 11.5 11.2 10.4 10.4 18.7 7.2
RAP 10.9 8.4 7.9 8.9 9.7 23.8 12.2
Ours 81.3 73.2 71.7 68.3 61.7 25.3 21.6
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Table 10: Transferability performance of the LIMANS ℓ2-attacks on Cifar10 (ϵ = 0.5), in terms of
fooling rates (FR). The best transferable results are marked in red bold font and the best specific
attacking results are marked in black bold font.

MobileNet Inception ResNet50 DenseNet VGG R-r18 R-wrn-34-10
AutoAttack 100 50.20 14.20 13.30 8.20 0.90 0.50

UAP 7.50 5.20 3.00 2.50 2.40 0.30 0.40
UAPPGD 37.90 15.20 2.00 1.10 0.90 0.30 0.20

CW 97.50 11.00 4.20 3.20 2.40 0.30 0.00
MobileNet RAP 67.30 11.20 4.20 3.90 2.60 0.50 0.10

Ours 95.40 91.50 61.70 59.30 51.50 4.60 5.00
AutoAttack 32.80 100 6.60 7.90 5.50 0.50 0.50

UAP 9.80 7.50 2.50 3.50 2.90 0.20 0.10
UAPPGD 26.90 16.70 1.30 2.30 2.00 0.30 0.10

CW 16.30 82.80 5.00 5.20 3.70 0.30 0.00
Inception RAP 13.60 43.50 3.50 3.60 2.70 0.40 0.30

Ours 94.60 94.10 64.30 63.90 57.20 5.10 5.20
AutoAttack 31.00 23.40 99.70 26.10 10.00 1.20 0.70

UAP 5.10 3.80 2.40 1.90 2.80 0.50 0.30
UAPPGD 4.10 3.20 2.20 2.30 2.20 0.40 0.20

CW 13.50 9.80 82.40 13.10 6.10 0.50 0.40
ResNet50 RAP 10.20 8.60 33.00 8.60 4.90 0.40 0.30

Ours 92.60 87.50 78.10 71.70 61.70 7.90 7.50
AutoAttack 32.60 25.20 27.30 99.50 10.20 0.50 0.50

UAP 4.90 3.70 2.60 3.30 1.90 0.20 0.20
UAPPGD 5.00 4.50 3.20 3.70 2.10 0.20 0.20

CW 14.60 13.70 14.80 80.00 6.40 0.40 0.30
DenseNet RAP 8.00 7.30 7.70 29.00 4.50 0.30 0.30

Ours 91.10 87.60 74.00 74.10 62.70 8.40 7.70
AutoAttack 32.00 28.20 19.50 21.10 98.90 0.80 0.60

UAP 4.70 3.80 2.20 2.70 2.00 0.50 0.40
UAPPGD 4.80 5.60 2.00 2.70 2.80 0.40 0.40

CW 10.00 8.20 5.70 7.40 79.10 0.60 0.30
VGG RAP 8.80 7.10 5.20 6.50 32.10 0.30 0.50

Ours 94.20 89.00 74.80 71.00 71.70 8.00 7.10
AutoAttack 6.70 8.30 8.00 8.50 9.60 24.60 11.00

UAP 3.40 3.10 2.50 2.30 1.80 0.50 0.40
UAPPGD 2.70 2.10 2.00 1.70 2.60 0.30 0.10

CW 9.50 11.60 10.60 10.00 11.60 22.90 3.90
R-r18 RAP 8.70 7.70 7.60 8.10 9.60 10.70 4.50

Ours 58.70 53.80 50.30 50.70 41.80 17.60 14.60
AutoAttack 7.70 7.80 8.20 7.80 8.90 15.20 22.50

UAP 3.00 3.10 2.40 2.90 2.60 0.90 0.40
UAPPGD 2.90 2.80 2.20 1.00 1.60 0.70 0.60

CW 10.30 9.10 13.00 10.60 10.40 8.80 21.20
R-wrn-34-10 RAP 8.10 7.30 8.10 7.60 7.70 7.10 9.90

Ours 59.10 54.80 51.80 50.00 42.50 17.00 14.70
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Table 11: Transferability performance of the LIMANS ℓ∞-attacks on ImageNet (ϵ = 4/255), in
terms of fooling rates. The best transferable results are marked in red bold font, and the best specific
attacking results are marked in black bold font.

MobileNet ResNet18 DenseNet VGG R-r18 R-50-2
AutoAttack 100 26.38 20.44 26.94 1.64 1.24

UAP 48.48 11.5 10.46 17.28 1.8 0.84
UAPPGD 69.94 18.04 14.34 22.34 2.72 1.56
TI-FGSM 99.74 36.98 31.66 31.24 3.2 2.56

VMI-FGSM 100 44.84 37.92 42.92 2.92 2.04
MobileNet VNI-FGSM 99.98 44.64 36.54 43.62 2.88 2.00

NAA 84.56 15.1 11.72 16.88 2.1 1.2
RAP 96.52 54.58 47.24 49.16 3.72 3.16
Ours 75.24 50.06 46.94 44.34 10.02 5.62

AutoAttack 40.3 100 35.76 34.9 1.8 1.34
UAP 13.34 11.3 9.00 11.72 1.36 0.86

UAPPGD 25.3 47.22 18.44 23.26 2.5 1.44
TI-FGSM 32.06 99.84 31.38 31.66 2.98 2.8

VMI-FGSM 56.5 100 51.78 50.2 2.9 2.04
ResNet18 VNI-FGSM 56.74 99.98 51.4 51.42 2.84 2.04

NAA 22.54 97.94 14.84 19.3 2.12 1.2
RAP 53.36 96.74 51.30 50.60 3.80 3.14
Ours 59.16 59.16 53.14 48.28 10.48 6.62

AutoAttack 37.72 40.4 100 30.22 1.8 1.3
UAP 12.76 9.94 9.8 11.42 1.24 0.92

UAPPGD 22.72 20.7 40.04 20.18 2.48 1.28
TI-FGSM 30.1 35.56 99.66 27 3.12 2.32

VMI-FGSM 52.22 55.44 99.98 44.82 2.9 2.06
DenseNet VNI-FGSM 53.88 56.9 99.98 46.16 2.64 2.1

NAA 24.22 25.68 98.34 21.38 1.34 1.42
RAP 48.16 54.12 96.76 42.00 3.12 3.30
Ours 58.86 56.9 57.26 47.74 11.3 7.32

AutoAttack 47.94 40.06 32.62 100 2.34 1.42
UAP 13.34 9.8 8.82 13.6 1.34 0.78

UAPPGD 24.42 23.16 18.12 46.26 2.54 1.6
TI-FGSM 33.2 38.26 29.3 99.4 2.96 2.28

VMI-FGSM 57.52 53.46 43.76 99.86 2.9 2.2
VGG VNI-FGSM 57.98 53.96 42.88 99.84 2.76 2.24

NAA 19.62 14.92 12.18 79.96 2.18 1.4
RAP 53.14 53.12 42.68 95.68 3.48 2.84
Ours 57.68 54.14 50.04 51.62 10.68 6.24

AutoAttack 13.7 15.8 10.82 14.6 71.74 10.78
UAP 11.52 9.32 8.46 10.90 1.44 1.16

UAPPGD 14.00 12.34 11.20 13.56 3.14 1.66
TI-FGSM 11.88 13.42 10.08 11.02 54.46 10.14

VMI-FGSM 17.00 17.80 12.12 16.08 64.98 11.94
R-r18 VNI-FGSM 16.14 17.66 12.48 16.08 63.22 11.74

NAA 11.46 10.86 9.34 11.42 21.48 4.9
RAP 11.32 10.80 8.16 10.32 45.80 7.94
Ours 37.14 33.2 33.76 29.90 29.84 12.94

AutoAttack 20.14 22.76 17.36 19.44 15.42 59.02
UAP 9.88 7.60 6.96 8.62 1.84 1.24

UAPPGD 14.54 12.56 10.92 14.36 2.16 1.38
TI-FGSM 14.16 16.34 12.68 13.68 17.16 43.66

VMI-FGSM 24.22 26.66 20.12 23.86 17.82 54.56
R-50-2 VNI-FGSM 23.88 26.22 19.68 23.28 18.00 52.28

NAA 14.08 13.12 10.20 14.04 9.82 12.58
RAP 13.82 14.06 10.52 13.5 15.54 34.1
Ours 42.18 42.5 42.46 34.22 23.7 18.02
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