Appendix

A Theoretical Derivation of P-VAE

This section details the derivation from Eq.[I|to Eq.
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B Experimental Details

B.1 Network Details and Training Schemes

Based on Sec. [3] our PointNet++ [3]-like scene encoder fs..n has four set abstraction layers that
downsample input points to 2048, 1024, 512, and 256 with an increasing radius of 0.2, 0.4, 0.8, and
1.2, and three feature propagation layers that upsample points to 512, 1024, and 2048.

For both GP-VAE and CP-VAE, the number of attention heads is empirically set to 4. We customize
a fixed weight 0.2 to the KL divergence such that we can bias more towards the reconstruction
loss in Eq. (3)) and Eq. (7). We set the smoothness coefficient, denoted as « in Eq. {@) and Eq. )
for updating cls and geo, to 0.999. Particularly for GP-VAE, the number of geometric-informative
prototypes N, is set to 128, following the statistics in [[1]]; the number of parameter sets IV, is set
to 2048; the number of each reconstructed point cloud N, is 49 (i.e., a 7 x 7 grid in FoldNet). For
CP-VAE, the number of class-specific prototypes N.;s depends on the dataset class statistics; the
number of parameter sets IV;, is set to 256; the point number of each reconstructed object is 128. For
VAE evidence lower bound, we multiply 0.1 to KL divergences to bias more towards reconstruction
loss.

The network is fed with 40K points for FS-ScanNet and 20K points for FS-SUNRGBD, followed
by a set of data augmentation techniques including random flipping, random rotation, and random
scaling as proposed in [4]. For network training, we adopt the AdamW [5]] optimizer to run 36 epochs
with a weight decay of 0.01. The initial learning rate is set as 0.008 and 0.001 for FS-ScaneNet
and FS-SUNRGBD respectively. For fast convergence, we do not predict ¢ and set o to O for the
posterior distributions of both GP-VAE and CP-VAE in the first 20 epochs (in Eq. (3) and Eq. (7).

11



B.2 Point-Feature Mapping

For CP-VAE (please refer to Sec. [3.4), we mention that we will reversely map each object-level
feature w; to a set of original points. This part may bring doubts for readers so next we will introduce
it in detail.

Gathering and grouping are widely-used operations for feature extraction in PointNet++-based
networks. This is the basis for our point-feature mapping. Illustrated in Fig. [/, in GP-VAE, we
downsample the input points and group them to extract {z}. Then in CP-VAE, we cluster {z'} to
obtain {w} by voting. Reversely, we can map {w} to {z}, and then map {z} to the corresponding
points in x. By the above procedures, for each object-level feature w; we obtain a point set, in which
each point has a category label. To assign one label for w; among a bunch of different labels, there
can be various principles to find the closest object instance, e.g., by 3D box overlap ratio, by CD
distance, and by center Euclidean distance. In CP-VAE we choose the center Euclidean distance, and
we also conduct an ablation experiment for principle choosing. Please refer to Tab.[7] the experiment
is conducted on FS-ScanNet Split-1 5-shot. Although the result shows only marginal improvements,
we practically find that using center Euclidean distance can help the network converge much faster.
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Inverse Mapping

Reverse Mapping
Figure 7: Forward data flow of extracting features from the input scene.

Principles APy APsg
Overlap Ratio | 32.62 21.45
CD Dis 32.67 2198
Center Dis 32.84 2239

Table 7: Ablation for different principles to find the closest instance for class label assignment.

The above mapping operation is also used for the coloring scheme in Fig. [5]and Fig.[0] In these
figures, each color represents a unique geometric-informative prototype. Here we will give a brief
introduction since readers may have questions about how to paint points with prototype-specific
colors. Please refer to Fig.[2] In GP-VAE, the N, sampled features reconstruct a point cloud scene,
meanwhile are used to cluster object-level features to reconstruct multiple objects. As for object
coloring (Fig. E] and Fig. top), we can reversely map each reconstructed object to features {z; }, then
map each z; to points in . We use the Euclidean distance to obtain the nearest prototype geo, for
each z;, then paint its related points with different colors. Scene coloring (Fig. [5] bottom) follows the
same procedures.

B.3 Dataset Details

Please the detailed statistics in Tab. [§|and Tab.[0] where we count per-category instance numbers in
both training and testing sets of the two benchmarks. We use ‘K’ to denote the novel-class samples.
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Class Splitl Train | Split2 Train | Test
Cabinet 1427 1427 372
Bed 307 K 81
Chair 4357 4357 1368
Sofa K 406 97
Table 1271 K 350
Door 2026 K 467
Window K 928 282
Bookshelf K 300 77
Picture 661 661 222
Counter 216 K 52
Desk 551 K 127
Curtain 292 292 67
Refrigerator 186 186 57
Showercurtain | 116 K 28
Toilet K 201 58
Sink 390 390 98
Bathtub K 113 31
Garbagebin K 1985 530

Table 8: Data statistics of FS-ScanNet.

Class Train | Test
Bed K 515
Table K 2348
Sofa 706 627
Chair 9278 | 10016
Toilet K 145
Desk 933 1882
Dresser 182 218
Night Stand | K 255
Bookshelf 204 282
Bathtub 67 49

Table 9: Data statistics of FS-ScanNet.

C Supplementary Results

C.1 Visual Comparisons on FS-SUNRGBD Benchmark

Mlustrated in Fig. [8] comparing with SOTA [1l}, our results are more accurate on both box center
locations and box dimensions. Our predictions gain better overlap w.r.t. ground truths, and meanwhile,
we achieve higher recall value with little false positive.

Prototypical
Votenet

Ours

Figure 8: Exampled detection results by our method
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and Prototypical VoteNet (SOTA) on FS-
SUNRGBD with K = 5. The red bounding boxes are the ground truths, while the green bounding
boxes are the predictions.



C.2 Comparison Results on Imbalanced Dataset Splits

To further challenge the FS3D task, an intuitive point is the imbalanced problem, i.e., imitating the
long-tail settings to see how existing methods perform on higher levels of training data imbalance.
Thanks to [6l [1]], we can evaluate the imbalance factor of a dataset by: (i) Sort the categories by
the sample counts in descending order; (ii) Reduce the training sample of each class to N; x u',
where ¢ is the descending index and [V; is the original data number of category ¢; and (iii) Divide the
number of training samples in the smallest class into the largest. For ScanNet v2 Benchmark [7]], we
first calculate the base imbalance factor P, then follow the above procedures to produce challenging
long-tail ScanNet v2 datasets with higher imbalance rates of 10P, 20P and 50P.

Tab.|10|summarizes the quantitative comparison results. From P to S0P, our results show consistent
precision improvements, and for the most challenging S0P we achieve an +3% outperformance over
SOTA [1]] on the AP25 metric. These preliminary results demonstrate that although our method
suffers from unsurprising performance drops when the data imbalance factor increases, the overall
performance is tolerable and in accord with our expectation for an FS3D approach.

Method P 10P 25P 50P
APys  APsq | APys  APso | APos  APsg | APys APy
VoteNet 62.34 40.82 | 52.06 35.64 | 43.12 27.13 | 40.01 26.77
Prototypical VoteNet | 62.59 41.25 | 52.60 36.87 | 44.53 29.17 | 41.99 29.01
Ours 62.75 42.54 | 53.32 37.46 | 4475 29.95 | 45.14 30.65

Table 10: Comparison results under different imbalanced splits of ScanNet v2.

C.3 Comparison Results with 2DFSL-enhanced Detection Networks

2DFSL has been widely studied on various image vision tasks, in this case, incorporating the related
techniques for 3D point cloud detection is worth trying. We implement three most recent 2DFSL
methods (DeFRCN [8]] and FSCE [2]]) on two SOTA fully-supervised point cloud detection methods
(CAGroup3D [9] and FCAF3D [10])), such that the original detection networks can adapt the FS3D
task. Tab.|11|shows the results for FS-ScaneNet Split-1.

3-shot 5-shot
Method APys  AP5p | APys APy
CAGroup3D + DeFRCN | 3.25 1.08 4.76 2.31

CAGroup3D + FSCE 4.01 1.57 | 495 332
FCAF3D + DeFRCN 5.51 312 | 824 393
FCAF3D + FSCE 6.13 431 855 4.89
Ours 31.60 1937 | 32.84 22.39

Table 11: Comparison results with 2DFSL-enhanced 3D point cloud detection networks.

C.4 Ablation Studies on Different Numbers of Geometric-informative Prototypes

We ablate different numbers of geometric-informative prototypes, which is Ny, in the main paper.
Please refer to Tab. [I2]and Fig.[9] the experiments are conducted on FS-ScaneNet Split-1 5-shot.
When the number is very small, e.g., 16, the quantitative performance suffers drastic drops. This
can be visually proved in the figure (the first column), we fail to construct an object by prototypes
combination. It is infeasible to use only 16 prototypes to conclude all the 3D physics structures in
the real world, insufficient prototype numbers can lead to severe geometric information loss of the
learned prototypes. In Fig. [0 from left to right, with increasing prototype numbers, an object can be
more detailed described with diverse prototypes that each specifies a unique geometric component.
For indoor scenes, 128 is an appropriate number for geometric-information prototypes, this is also in
accord with the discovery by Zhao et. al [1]]. Simply adding more prototypes will not further improve
the network performance, but rather brings redundant memory and calculation costs.

C.5 Results on Detection Networks with Plug-in P-VAE
A good technique for FS3D should easily adapt to other point cloud detection networks for broader
usages. Our P-VAE can be a simple plug-in module to construct a probabilistic latent space, it can be
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Num. of Geo-Proto | APy; AP5g
Ngeo =16 22.19 648
Nyeo = 32 28.59 14.52
Nyeo = 64 31.78 18.51
Ngeo = 128 32.84 22.39
Nyeo = 256 32.06 20.30
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Figure 9: Visualize how geometric-informative prototypes can construct objects with different
prototype numbers.

implemented on various networks with different architectures. In the main paper, our P-VAE is built
upon VoteNet []. Here, we utilize P-VAE as a prototype-learning feature regulator on three recent
networks designed for indoor scenes: (i) transformer-based 3DETR [11]]; (ii) two-stage coarse-to-fine
CAGroup3D [9]; and (iii) anchor-free FCAF3D [10].

Compared with CAGroup3D which has explicit voting operations such that we can similarly adopt
GP- and CP-VAE, 3DETR, and FCAF3D have no clustering module, but they still have the basic
encoder-decoder architectures to apply P-VAE. In Tab.[T3] equipped with P-VAE, all the methods gain
consistent precision improvements on all the few-shot settings of FS-ScanNet Split-1, demonstrating
that P-VAE is a general solution for FS3D and has wide prospects for further usages.

1-shot 3-shot 5-shot
Method APys  AP5o | APy AP5g | APys  APjy
3DETR 756  3.16 | 1099 529 | 18.06 898
3DETR + P-VAE 791 322 | 1847 9.64 | 24.16 10.98
CAGroup3D 1.19 0.16 3.22 0.96 4.33 2.06
CAGroup3D + P-VAE | 3.12 1.45 5.97 2.33 7.08 3.49
FCAF3D 4.12 2.09 6.05 3.30 | 12.78 5.85
FCAF3D + P-VAE 468 2.15 6.96 3.88 | 13.72 593

Table 13: Enhance recent point cloud detection networks with our pluggable P-VAE.

C.6 Class-specific Results

Tab. summarizes the precision values of each class on three benchmarks. As we discussed
before, the results have a large variance between different classes. We can observe that objects of
irregular shapes and less geometric distinctiveness can have severe performance drops, e.g., windows
and garbage bins. For these challenging classes, their original 3D inputs essentially lack geometric
characteristics. In this case, dedicated design on point cloud networks can still result in unsatisfactory
results. A feasible solution is to incorporate corresponding 2D images, for example, to adopt a
teacher-student knowledge distillation framework.
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Figure 10: Complete set of 128 geometric-informative prototypes.

Category | AP5q  APy;

Bathtub 50.92  66.36

Toilet 44.01 55.70
Bookshelf 1.14  2.48
Sofa 37.53 59.57
Window 0.56 194
Garbagebin | 1.66  3.64

(a) Statistics of per-category results
on FS-ScanNet Split-1 5-shot.

Category | AP5p APy
Table 243 1485
Bed 16.09 54.57
Night Stand | 0.10 1.57
Toilet 20.00 56.91

(c) Statistics of per-category results
on FS-SUNRGBD 5-shot.

Category | AP5; APy
Showercurtain | 2.31  30.37
Counter 0.22 8.81
Bed 64.60 73.68
Desk 12.89 27.54
Table 891 25.85
Door 2.11 8.37

(b) Statistics of per-category results

on FS-ScanNet Split-2 5-shot.

Table 14: Statistics of per-category results on three benchmarks.

C.7 Complete Geometric-Prototypes Visuaization

Mlustrated in Fig. we show all the 128 geometric-informative prototypes screen-shoot of the same

camera pose.
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