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Abstract: Continual reinforcement learning aims to sequentially learn a variety1

of tasks, retaining the ability to perform previously encountered tasks while si-2

multaneously developing new policies for novel tasks. However, current contin-3

ual RL approaches overlook the fact that certain tasks are identical under basic4

group operations like rotations or translations, especially with visual inputs. They5

may unnecessarily learn and maintain a new policy for each similar task, lead-6

ing to poor sample efficiency and weak generalization capability. To address this,7

we introduce a unique Continual Vision-based Reinforcement Learning method8

that recognizes Group Symmetries, called COVERS, cultivating a policy for each9

group of equivalent tasks rather than an individual task. COVERS employs a10

proximal policy gradient-based (PPO-based) algorithm to train each policy, which11

contains an equivariant feature extractor and takes inputs with different modalities,12

including image observations and robot proprioceptive states. It also utilizes an13

unsupervised task clustering mechanism that relies on 1-Wasserstein distance on14

the extracted invariant features. We evaluate COVERS on a sequence of table-top15

manipulation tasks in simulation and on a real robot platform. Our results show16

that COVERS accurately assigns tasks to their respective groups and significantly17

outperforms baselines by generalizing to unseen but equivariant tasks in seen task18

groups. Demos are available on our project page1.19

Keywords: Continual Learning, Symmetry, Manipulation20

1 INTRODUCTION21

Quick adaptation to unseen tasks has been a key objective in the field of reinforcement learning22

(RL) [1, 2, 3]. RL algorithms are usually trained in simulated environments and then deployed23

in the real world. However, pre-trained RL agents are likely to encounter new tasks during their24

deployment due to the nonstationarity of the environment. Blindly reusing policies obtained during25

training can result in substantial performance drops and even catastrophic failures [4, 5].26

Continual RL (CRL), also referred to as lifelong RL, addresses this issue by sequentially learning27

a series of tasks. It achieves this by generating task-specific policies for the current task, while si-28

multaneously preserving the ability to solve previously encountered tasks [3, 6, 7, 8, 9]. Existing29

CRL works that rely on the task delineations to handle non-stationary initial states, dynamics or re-30

ward functions can greatly boost task performance, particularly when significant task changes occur31

[7]. However, in realistic task-agnostic settings, these delineations are unknown a prior and have to32

be identified by the agents. In this work, we explore how to define and detect task delineations to33

enhance robots’ learning capabilities in task-agnostic CRL.34

Our key insight is that robotic control tasks typically preserve certain desirable structures, such as35

group symmetries. Existing CRL approaches typically delineate task boundaries based on statistical36
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measures, such as maximum a posteriori estimates and likelihoods [7, 8]. However, these mea-37

sures overlook the geometric information inherent in task representations, which naturally emerge38

in robotic control tasks, as demonstrated in Figure 1. Consider the drawer-closing example: con-39

ventional CRL works using image inputs would treat each mirrored configuration as a new task and40

learn the task from scratch. Yet, we, as humans, understand that the mirrored task configuration can41

be easily resolved by correspondingly reflecting the actions. Learning the mirrored task from scratch42

hampers positive task interference and limits the agent’s adaptivity. To address this issue, our goal43

is to exploit the geometric similarity among tasks in the task-agnostic CRL setting to facilitate rapid44

adaptation to unseen but geometrically equivalent tasks.45
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Figure 1: This example illustrates how group
symmetry enhances adaptability. The robot is
instructed to close drawers situated in two dis-
tinct locations with top-down images as inputs.
Considering the symmetry of the drawers’ lo-
cations around the robot’s position, the optimal
control policies are equivalent but mirrored.

In this work, we propose COVERS, a task-46

agnostic vision-based CRL algorithm with strong47

sample efficiency and generalization capability48

by encoding group symmetries in the state and ac-49

tion spaces. We define a task group as the set that50

contains equivalent tasks under the same group51

operation, such as rotations and reflections. We52

state our main contributions as follows:53

1. COVERS grows a PPO-based [10] pol-54

icy with an equivariant feature extrac-55

tor for each task group, instead of a sin-56

gle task, to solve unseen tasks in seen57

groups in a zero-shot manner.58

2. COVERS utilizes a novel unsupervised59

task grouping mechanism, which au-60

tomatically detects group boundaries61

based on 1-Wasserstein distance in the62

invariant feature space.63

3. In non-stationary table-top manipulation64

environments, COVERS performs better than baselines in terms of average rewards and65

success rates. Moreover, we show that (a) the group symmetric information from the equiv-66

ariant feature extractor promotes the adaptivity by maximizing the positive interference67

within each group, and (b) the task grouping mechanism recovers the ground truth group68

indexes, which helps minimize the negative interference among different groups.69

2 Related Work70

Task-Agnostic CRL. CRL has been a long-standing problem that aims to train RL agents adaptable71

to non-stationary environments with evolving world models [11, 12, 13, 14, 15, 5, 16, 17, 18, 19]. In72

task-agnostic CRL where task identifications are unrevealed, existing methods have addressed the73

problem through a range of techniques. These include hierarchical task modeling with stochastic74

processes [7, 8], meta-learning [3, 20], online system identification [21], learning a representation75

from experience [9, 22], and experience replay [14, 23]. Considering that in realistic situations, the76

new task may not belong to the same task distribution as past tasks, we develop an ensemble model of77

policy networks capable of handling diverse unseen tasks, rather than relying on a single network to78

model dynamics or latent representations. Moreover, prior work often depends on data distribution-79

wise similarity or distances between latent variables, implicitly modeling task relationships. In80

contrast, we aim to introduce beneficial inductive bias explicitly by developing policy networks81

with equivariant feature extractors to capture the geometric structures of tasks.82

Symmetries in RL. There has been a surge of interest in modeling symmetries in components of83

Markov Decision Processes (MDPs) to improve generalization and efficiency [24, 25, 26, 27, 28, 29,84

30, 31, 32, 33, 34, 35]. MDP homomorphic network [26] preserves equivariant under symmetries in85

the state-action spaces of an MDP by imposing an equivariance constraint on the policy and value86
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Figure 2: The continual learning environment setup involves four task groups, including Plate Slide,
Button Press, Drawer Close, and Goal Reach. Groups streamingly come in.

network. As a result, it reduces the RL agent’s solution space and increases sample efficiency. This87

single-agent MDP homomorphic network is then extended to the multi-agent domain by factorizing88

global symmetries into local symmetries [27]. SO(2)-Equivariant RL [28] extends the discrete sym-89

metry group to the group of continuous planar rotations, SO(2), to boost the performance in robotic90

manipulation tasks. In contrast, we seek to exploit the symmetric properties to improve the general-91

ization capability of task-agnostic CRL algorithms and handle inputs with multiple modalities.92

3 Preliminary93

Markov decision process. We consider a Markov decision process (MDP) as a 5-tuple94

(S,A, T,R, γ), where S and A are the state and action space, respectively. T : S × A → ∆(S)95

is the transition function, R : S × A → R is the reward function, and γ is the discount factor. We96

aim to find an optimal policy πθ : S → A parameterized by θ that maximizes the expected return97

Eτ∼πθ

[∑H−1
t=0 γtr (st, at)

]
, where H is the episode length.98

Invariance and equivariance. Let G be a mathematical group. f : X → Y is a mapping function.99

For a transformation Lg : X → X that satisfies f(x) = f(Lg[x]),∀g ∈ G, x ∈ X , we say f is100

invariant to Lg . Equivariance is closely related to invariance. If we can find another transformation101

Kg : Y → Y that fulfills Kg[f(x)] = f(Lg[x]),∀g ∈ G, x ∈ X then we say f is equivariant to102

transformation Lg . It’s worth noting that invariance is a special case of equivariance.103

MDP with group symmetries. In MDPs with symmetries [24, 25, 26], we can identify at least one104

mathematical group G of a transformation Lg : S → S and a state-dependent action transformation105

Ks
g : A → A, such that R(s, a) = R

(
Lg[s],K

s
g [a]

)
, T (s, a, s′) = T

(
Lg[s],K

s
g [a], Lg [s

′]
)

hold106

for all g ∈ G, s, s′ ∈ S, a ∈ A.107

Equivariant convolutional layer. Let G be a Euclidean group, with the special orthogonal group108

and reflection group as subgroups. We use the equivariant convolutional layer developed by Weiler109

and Cesa [36], where each layer consists of G-steerable kernels k : R2 → Rcout×cin that satisfies110

k(gx) = ρout (g)k(x)ρin
(
g−1

)
,∀g ∈ G, x ∈ R2. ρin and ρout are the types of input vector field111

fin : R2 → Rcin and output vector field fout : R2 → Rcout , respectively.112

Equivariant MLP. An equivariant multi-layer perceptron (MLP) consists of both equivariant linear113

layers and equivariant nonlinearities. An equivariant linear layer is a linear function W that maps114

from one vector space Vin with type ρin to another vector space with type ρout for a given group G.115

Formally ∀x ∈ Vin,∀g ∈ G : ρout(g)Wx = Wρin(g)x. Here we use the numerical method proposed116

by Finzi et al. [37] to parameterize MLPs that are equivariant to arbitrary groups.117

4 Methodology118

4.1 Problem Formulation119

We focus on continual learning in table-top manipulation environments, where various tasks are120

sequentially presented. We hypothesize that the streaming tasks can be partitioned into task groups,121

each containing tasks that share symmetry with one another. We adopt a realistic setting where a122

new task group may emerge at each episode, the total number of distinct groups remains unknown123

3



Algorithm 1 COVERS: Continual Vision-based RL with Group Symmetries
Input: Threshold dϵ, initial frame number k, update interval Nu, rollout step size Ns

Output: collection of policies Π
Initialization: Current policy πcur initialized as a random policy with a policy data buffer B ← ∅,
policy collection Π← {(πcur,B)}, number of episodes n← 0, online rollout buffer D ← ∅

1: while task not finish do
2: n← n+ 1
3: if n%Nu = 0 then
4: Rollout buffer O ← ∅ ▷ Unsupervised Policy Assignment
5: Rollout Ns steps with πcur and get trajectories τ = {(s0, a0, . . . , sH , aH)}
6: Append the first k frames of each episode to rollout buffer O ← {(s0, . . . , sk−1)}
7: Append the whole episode trajectories τ to the online rollout buffer D
8: Calculate the 1-Wasserstein distances dWi (O,Bi),∀{πi,Bi} ∈ Π (Equation 2)
9: Get the minimum distance dWj where j = argmini d

W
i (O,Bi)

10: if dj > dϵ then
11: Initialize a new random policy π as well as its policy data buffer B ← O
12: πcur ← π, Π← Π ∪ {{π,B}}
13: else
14: Assign the existing policy and buffer with πcur ← πj , Bj ← Bj ∪ O
15: Update πcur based on online rollout buffer D (Equation 1) ▷ Equivariant Policy Update
16: D ← ∅
17: else
18: Sample an episode and append to online rollout buffer D

and the group may arrive in random orders. The primary objective is to devise an online learning124

algorithm capable of achieving high performance across all tasks with strong data efficiency. We125

visualize our CRL setting with table-top manipulation environments in Figure 2.126

4.2 Algorithm127

We present the pseudocode for COVERS, a task-agnostic continual RL method with group sym-128

metries, in Algorithm 1. COVERS maintains a collection Π = {(π,B)}, each element of which129

comprising a pair of policy π and its respective data buffer B. Each policy π independently manages130

one group of tasks, with B storing the initial frames of the group it oversees. At fixed time intervals,131

COVERS collects Ns steps in parallel under the current policy πcur and stores the first k frames132

from each episode in the rollout buffer O. Based on O, the algorithm then either (a) creates a new133

policy for an unseen group and adds it to the collection Π, or (b) recalls an existing policy from134

the collection Π if the group has been previously encountered. It is worth noting that we assign135

policies based on initial frames of each episode rather than the full episode rollout. This is because136

frames corresponding to later timesteps are heavily influenced by the behavior policy and could eas-137

ily lead to unstable policy assignments. Only maintaining a subset of the rollout trajectories also138

helps alleviate memory usage.139

After the policy assignment, the selected policy πcur with parameters θ is updated based on an online140

rollout buffer D and Proximal Policy gradient (PPO) method [10] with loss in Equation 1. Ât is the141

estimated advantage, ρt = πθ(at|st)/πθold(at|st) is the importance ratio and ϵ is the clip range.142

LCLIP = Eτ∼D

[ H∑
t=1

min[ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât]
]
. (1)

4.3 Policy Network Architecture143

COVERS utilizes an equivariant policy network that comprises a policy network for predicting ac-144

tions, a value network approximating values, and an equivariant feature extractor taking multiple145

modalities. We show the policy architecture in Figure 3 and additional details in Figure 10.146
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Figure 3: Equivariant policy network architecture.

Equivariant feature extractor. In real manipulation tasks, the observations typically comprise147

multiple modalities, such as image observations, robot proprioceptive states, and goal positions148

represented in vector form. To accommodate these diverse modalities, we designed an equivariant149

feature extractor hequi, that employs an equivariant convolutional network heConv [36] for image150

processing, coupled with an equivariant linear network heMLP [38] to handle vector inputs. The151

resulting equivariant features from these two pathways are concatenated to form the output of the152

feature extractor. Formally, hequi(s) = Concat(heConv(s), heMLP (s)).153

Invariant value and equivariant policy. In the context of MDPs involving robotic manipulation154

tasks with group symmetries, it is known that the optimal value function maintains group invari-155

ance, while the optimal policy displays group equivariance [28]. To attain this, both the policy and156

value networks utilize a shared equivariant feature extractor, designed to distill equivariant features157

from observations. Subsequently, the value network leverages a group pooling layer to transform158

these equivariant features into invariant ones, before employing a fully connected layer to generate159

values. Formally, hinv(s) = GroupMaxPooling(hequi(s)). The policy network, on the other hand,160

processes the equivariant features with an additional equivariant MLP network to output actions.161

4.4 Unsupervised Dynamic Policy Assignment162
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Figure 4: Calculation of 1-
Wasserstein distance and update
of selected policy πj , whose data
buffer has minimal distance to O.

In COVERS, we propose to detect different groups of tasks163

based on distances in the invariant feature space. Such a164

mechanism facilitates knowledge transfer between tasks in165

each group. At a fixed episode interval, COVERS selects the166

policy of the group, whose data buffer B has the minimal dis-167

tance in the invariant feature space to the rollout buffer O col-168

lected in the current environment. Note that the invariant fea-169

tures of both O and B are obtained through the feature extrac-170

tor of π as shown in Figure 4. Considering that O and B may171

have a different number of data pairs, we take a probablistic172

perspective by treating those data buffers as sample-based rep-173

resentations of two distributions and use the Wasserstein distance to measure the distance between174

those two feature distributions. The invariant features are obtained from the equivariant feature175

extractor via a group max-pooling operation as shown in Figure 3.176

Wasserstein distance on invariant feature space. Let X and Y be a matrix constructed by invari-177

ant features extracted from the state buffer B of size n and the buffer O of size m. Concretly,178

X = (X1, X2, ..., Xn)
T, Xi = hinv(si), i ∈ [n], si ∈ B, and Y = (Y1, Y2, ..., Ym)T, Yl =179

hinv(sl), l ∈ [m], sl ∈ O. We use the 1-Wasserstein distance [39] to measure the distance between180

two empirical distributions X and Y. Hence the distance between O and B is181

dW (O,B) = W1(X,Y) = min
γ
⟨γ,M⟩F s.t. γ1 = a, γT1 = b, γ ≥ 0, (2)

where Mi,l = ∥Xi − Yl∥2, a = [1/n, . . . , 1/n], b = [1/m, . . . , 1/m]. M is the metric cost matrix.182
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5 Simulation Experiments183

We validate COVERS’s performance in robot manipulation [40] tasks with nonstationary environ-184

ments containing different objects or following different reward functions. We aim to investigate185

whether our method can (1) recall stored policy when facing a seen group, as well as automatically186

initialize a new policy when encountering an unseen group, (2) achieve similar or better performance187

compared to baselines, and (3) understand the significance of key components of COVERS.188

5.1 Environment189

RealSim

Environment Setup

Original Top-down Image

Processed Top-down Image

Camera

Figure 5: Image preprocessing to
narrow down the sim-to-real gap.

Simulation setup. Our manipulation setup is composed of190

four groups of tasks. Each group contains four tasks, and all191

tasks within the same group exhibit rotational or reflectional192

symmetry with respect to each other. We build environments193

based on the Meta-World benchmark [40]. Meta-World fea-194

tures a variety of table-top manipulation tasks that require in-195

teraction with diverse objects using a Sawyer robot. We show196

the four groups of tasks in Figure 2 including Goal Reach for197

reaching a goal position, Button Press for pressing the button198

with gripper, Drawer Close for closing drawer with gripper,199

and Plate Slide for sliding the plate to a goal position. The200

goal positions and object locations of tasks in each group are201

symmetrically arranged around the center of the table.202

States and actions. The agent receives four kinds of observa-203

tions: an RGB image captured by a top-down camera centered204

over the table at each timestep, an RGB image captured by the205

same camera at the beginning of the episode, the robot state in-206

cluding gripper’s 3D coordinates and opening angle, and aux-207

iliary information. The RGB image at the initial step helps al-208

leviate the occlusion problem caused by the movement of the209

robot. The auxiliary information contains 3D goal positions which are only revealed to the agent in210

Goal Reach since the goal locations are not visualized in the captured image, and are masked out for211

other groups. To close the sim-to-real gap, we prepossess the RGB images by inpainting robot arms212

motivated by [41], with details deferred to Section B.1. A comparison of the original and processed213

images is visualized in Figure 5. The action is a four-dimensional vector containing the gripper’s 3D214

positions and its opening angle. Considering that we utilize two distinct robots: Sawyer in the sim-215

ulation and Kinova in the real-world, such an action space and the image preprocessing mechanism216

help improve transferability between different robot morphologies.217

5.2 Baselines and Ablations218

We compare COVERS with different methods detailed as follows. 3RL [22], an acronym for219

Replay-based Recurrent RL, is a state-of-the-art method in CRL with Meta-World tasks that in-220

tegrates experience replay [14] and recurrent neural networks [42]. Note that we augment 3RL with221

a convolutional neural network (CNN) to handle image inputs. In contrast, CLEAR [14], a com-222

mon baseline of CRL, only utilize the experience replay by maintaining a memory buffer to store223

the experience of the past tasks and oversamples the current tasks to boost the performance in the224

current one. Equi utilizes a single policy with an equivariant feature extractor to solve all tasks.225

CNN utilizes a single policy with a CNN-based feature extractor as a vanilla baseline. We provide226

the detailed implementation of baselines and hyperparameters in Section B.227

We compare with two ablation methods. COVERS-GT uses ground truth group labels to assign228

policies to different groups, which helps ablate the performance of our proposed policy assignment229

mechanism. COVERS-CNN utilizes a vanilla CNN block as the image feature extractor to help230

ablate the effect of using equivariant feature extractors.231
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Figure 6: Training curves for COVERS and other methods. Each background color corresponds to
one task group. COVERS shows similar performance with COVERS-GT, which utilizes additional
ground truth group indices, and substantially outperforms other baselines.

Figure 7: The selected policies at each episode of COVERS. Each background color corresponds to
one task group. The assigned policy indexes remain in alignment with the ground truth ones.

6 Simulation Results and Ablations232

6.1 Results233

Dynamic policy assignments. Figure 7 shows that when the environment switches to a new group,234

COVERS quickly detects changes and initializes a new policy for the group. Our method also235

recalls the corresponding policy from the collection when facing the same group again. Overall, the236

dynamic policy assignments generated by COVERS align well with the ground truth group labels.237

However, we observe some instances where the policy assignment does not match the ground truth.238

This could potentially be attributed to the fact that the feature extractor of each policy may not be239

able to capture representative features for each group during the early stages of training. Notably,240

the rate of such misclassifications significantly reduces as the number of training episodes increases.241

Training performance. We show the training curves of all methods in Figure 6 and the quantitative242

performance in Table 2, including the average success rates and mean rewards. COVERS achieves243

a much higher episode reward and success rate consistently in different groups than baselines. It is244

worth noting that although 3RL performs worse than COVERS, it achieves better performance than245

baselines with implicit task representations, including Equi, CLEAR, and CNN. This indicates that246

the explicit task representation used by 3RL, which maps transition pairs to latent variables using247

an RNN, facilitates the revelation of partial task identifications, thereby enhancing performance. It248

underscores the significance of task-specific representations in CRL.249

In the early stages of training, there isn’t a significant performance difference between COVERS250

and Equi. However, as training progresses, COVERS begins to outperform Equi. This is because251

COVERS avoids the problem of forgetting through the retraining of policies for each previously en-252

countered task group. A comparison between CNN and Equi reveals that incorporating group sym-253

metries as inductive bias within the equivariant network significantly enhances sample efficiency.254

This is achieved by only optimizing the policy for the abstracted MDP of each task group.255

6.2 Ablation Study256

The effect of group symmetric information. COVERS-CNN devoid of the invariant feature ex-257

tractor demonstrates lower episodic rewards and success rates when compared with COVERS as258
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Table 1: Quantitative results showing performances at convergence for different methods.
Methods COVERS 3RL CLEAR CNN Equi COVERS-GT COVERS-CNN

Plate Slide Success Rate 0.97± 0.02 0.28± 0.06 0.06± 0.03 0.03± 0.02 0.02± 0.02 0.91± 0.03 0.62± 0.05
Ave. Reward 344.04± 12.89 101.20± 7.35 65.65± 2.23 23.44± 1.14 64.02± 5.85 337.44± 13.87 232.25± 14.24

Button Press Success Rate 0.87± 0.04 0.52± 0.06 0.31± 0.06 0.09± 0.03 0.01± 0.01 0.87± 0.04 0.26± 0.05
Ave. Reward 323.41± 3.48 260.80± 6.86 138.78± 12.23 91.34± 9.34 121.13± 7.02 330.56± 2.63 181.21± 10.83

Drawer Close Success Rate 0.82± 0.04 0.40± 0.06 0.27± 0.05 0.16± 0.04 0.40± 0.05 0.98± 0.02 0.56± 0.05
Ave. Reward 400.09± 6.18 280.62± 6.39 216.08± 7.68 116.33± 10.1 273.26± 9.67 417.38± 5.6 227.3± 13.0

Goal Reach Success Rate 0.98± 0.02 0.60± 0.06 0.58± 0.06 0.14± 0.04 0.47± 0.05 0.97± 0.02 0.97± 0.02
Ave. Reward 483.53± 1.35 322.23± 17.33 293.5± 16.16 151.24± 14.31 306.72± 20.34 488.02± 0.35 480.96± 1.05

Average Success Rate 0.91± 0.02 0.44± 0.03 0.30± 0.03 0.1± 0.02 0.22± 0.02 0.93± 0.01 0.60± 0.03
Ave. Reward 387.77± 5.02 241.21± 7.39 178.5± 7.58 95.59± 5.59 191.28± 8.23 393.35± 5.19 280.43± 8.49

shown in Table 1 and Figure 6. From these results, we conclude that the equivariant feature extrac-259

tor significantly enhances performance by modeling group symmetry information by introducing260

beneficial inductive bias through its model architecture.261

The effect of the dynamic policy assignment module In Figure 6, COVERS’s training curve is262

similar to COVERS-GT, which uses ground truth group indexes as extra prior knowledge. Table 1263

shows that the performance drop due to misclassification is minor considering the small standard264

deviation and COVERS’s performance is within one or two standard deviations of COVERS-GT.265

7 Real-world Validation266

Real-world setup. Our real-world experiment setup
utilizes a Kinova GEN3 robotic arm with a Robotiq 2F-
85 gripper. The top-down RGB image is captured with
an Intel RealSense D345f. Gripper’s coordinates and
opening angle are obtained through the robot’s internal
sensors. The real robot setups are demonstrated in Fig-
ure 8. We directly deploy the trained policies in simu-
lation to the real world. Table 2 shows average success
rates across 20 trials and shows that our trained policies
have strong generalization capability to real-world sce-
narios. The performance drop compared with simula-
tion experiments may be due to the inconsistent visual
features and different scales of robots’ action spaces.

Task Groups Success Rate

Plate Slide 0.45± 0.15
Button Press 0.60± 0.15
Drawer Close 0.65± 0.15
Goal Reach 0.95± 0.07

Table 2: Real-world validation results.

Figure 8: The real Kinova GEN3 setup with
four task groups. The goal point marked in
the figure is only disclosed to the agent in
Goal Reach as auxiliary information.

267

8 Conclusion268

We propose COVERS, a novel Vision-based CRL framework that leverages group symmetries to269

facilitate generalization to unseen but equivalent tasks under the same group operations. COVERS270

detects group boundaries in an unsupervised manner based on invariant features and grows policies271

for each group of equivalent tasks instead of a single task. We show that COVERS assigns tasks to272

different groups with high accuracy and has a strong generalization capability, outperforming base-273

lines by a large margin. One limitation of COVERS is that the memory it occupies grows linearly274

with the number of task groups. However, it is worth noting that COVERS still occupies less mem-275

ory than maintaining a policy buffer for each task by only storing representative data frames such276

as the initial frames for each task group. Another limitation is that although assuming a top-down277

camera with a fixed base is widely adopted in existing works, it is hard to fulfill outside of labs. It278

would be interesting to incorporate more general group operations, such as affine transformation and279

domain randomization techniques, to handle deformed images. Another interesting future direction280

is extending our work to continual multi-agent RL settings.281
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A Brief Introduction to Group and Representation Theory385

In this section, we briefly introduce Group and Representation Theory [43] to help understand the386

policy structure in Section B.2.387

Linear group representations describe abstract groups in terms of linear transformations on some388

vector spaces. In particular, they can be used to represent group elements as linear transformations389

(matrices) on that space. A representation of a group G on a vector space V is a group homomor-390

phism from G to GL(V ), the general linear group on V. That is, a representation is a map391

ρ : G→ GL (V ) , such that ρ(g1g2) = ρ(g1)ρ(g2), ∀g1, g2 ∈ G. (3)

Here V is the representation space, and the dimension of V is the dimension of the representation.392

A.1 Trivial Representation393

Trivial representation maps any group element to the identity, i.e.394

∀g ∈ G, ρ(g) = 1. (4)

A.2 Irreducible Representations395

A representation of a group G is said to be irreducible (shorthand as irrep) if it has no non-trivial396

invariant subspaces. For example, given a group G acting on a vector space V , V is said to be397

irreducible if the only subspaces of V preserved under the action of every group element are the zero398

subspace and V itself. The trivial representation is an irreducible representation and is common to399

all groups.400

A.3 Regular Representation401

Given a group G, the regular representation is a representation over a vector space V which has a402

basis indexed by the elements of G. In other words, if G has n elements (if G is finite), then the403

regular representation is a representation on a vector space of dimension n. An important fact about404

the regular representation is that it can be decomposed into irreducible representations in a very405

structured way.406

A.4 Dihedral Group407

The dihedral group Dn is the group of symmetries of a regular n-sided polygon, including n rotations408

and n reflections. Thus, Dn has 2n elements. For example, the dihedral group of a square (D4)409

includes 4 rotations and 4 reflections, giving 8 transformations in total.410

B Additional Experiment Details411

B.1 Image Inpainting412

To close the sim-to-real gap, we employ a pre-processing technique on camera images, which in-413

volves in-painting robotic arms. The process begins by capturing a background image in which414

the robotic arm is absent from the camera’s view. For every time step, a mask that represents the415

position of each robotic limb is generated, leveraging the 3D locations of individual joints and the416

projection matrix of the camera. With this mask, we can select all areas devoid of the robotic arm,417

and subsequently update the background image accordingly. The images are subjected to a color418

correction process to mitigate any potential color deviations attributable to lighting or reflection.419

Lastly, a distinct blue circle is overlaid at the gripper’s position on the background image to indicate420

the gripper’s location. The entire image in-painting process is shown in Figure 9.421
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Figure 9: Image inpainting process.

B.2 Detailed Policy Architecture422

In this section, we present the detailed model architecture including the model sizes and the types of423

each layer in Figure 10.424

In order to make our policy network equivariant under transformations from the finite group D2,425

we need to choose the appropriate representation for both the network input and output, while also426

ensuring that the network architecture and operations preserve this equivariance.427

The image input is encoded using the trivial representation. The robot state, on the other hand, is428

encoded with a mixture of different representations: the gripper’s position on the z-axis and the429

gripper’s open angle are encoded with the trivial representation since they are invariant to group430

actions in D2. The gripper’s location on the x and y-axes, however, are encoded with two different431

non-trivial irreducible representations because their values are equivariant to group actions in D2.432

The value output is encoded with the trivial representation since the optimal value function should433

be invariant to group actions [28]. Finally, the action output is encoded with a mixture of different434

representations. For actions, the gripper movement along the z-axis and the gripper’s opening angle435

are encoded with the trivial representation, while the gripper’s location on the x and y-axes are436

encoded with two different non-trivial irreducible representations, aligning with the input encoding.437

The distance metric is encoded with trivial representation through the group pooling operation.438

Figure 10: Detailed equivariant policy network architecture. ReLU nonlinearity is omitted in the
figure. A layer with a suffix of R indicates the layer output is in the regular representation. A layer
with a suffix of T indicates the layer output is in the trivial representation. A layer with a suffix of
’mix’ means the layer output combines different representations.
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B.3 Implementation of CLEAR439

The CLEAR algorithm [14] addresses the challenge of continual learning by putting data from440

preceding tasks in a buffer, utilized subsequently for retraining. This method effectively decelerates441

the rate of forgetting by emulating a continuous learning setting. The specific network architecture442

for CLEAR is illustrated in Figure 11.443

To make CLEAR able to process both images and robot state as input, we introduce a feature extrac-444

tor, which harmoniously integrates a CNN and an MLP network. This composite feature extractor445

is carefully designed to contain a similar quantity of learnable parameters to our Equivariant feature446

extractor.447

Figure 11: Network architecture for CLEAR. In (a) we show the network architecture of the actor
network and the critic network. In (b) we show the structure of the feature extractor, which consists
of both a CNN network and an MLP network. ReLU nonlinearity is omitted in the figure.

B.4 Implementation of 3RL448

The 3RL algorithm [22] can be seen as an improved version of CLEAR, wherein additional historical449

data is provided to the actor and critic from a dedicated context encoder. This historical data includes450

(si, ai, ri), and the context encoder extracted task specificities from the history data with an RNN451

network. The specific network architecture for 3RL is illustrated in Figure 12.452

B.5 Hyperparameters453

We show the hyperparameters of our proposed COVERS in Table 3. Moreover, we show the hyper-454

parameters of baselines in Table 4.455
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Figure 12: Network architecture for 3RL. In (a), we illustrate the structure of both the actor and critic
networks, whereas (b) highlights the configuration of the context encoder, comprising a feature
extractor and GRUs. It’s noteworthy that the feature extractor has the same architecture as the
CLEAR algorithm, as shown in Figure 11.

Table 3: COVERS Hyperparameter
Hyperparameters Value

Wasserstein distance threshold dϵ 1.0
Initial frame number k 4
Update interval Nu 1000
Rollout buffer size Ns 1000
Batch size 64
Number of epochs 8
Discount factor 0.99
Optimizer learning rate 0.0003
Likelihood ratio clip range ϵ 0.2
Advantage estimation λ 0.95
Entropy coefficient 0.001
Max KL divergence 0.05

Table 4: CLEAR and 3RL Hyperparameter
Hyperparameters Value

Common hyperparameter

Replay buffer size 200000
Discount factor 0.95
Burn in period 20000
Warm up period 1000
Batch size 512
Gradient clipping range (−1.0,+1.0)
Learning rate 0.0003
Entropy regularization coefficient 0.005

3RL Specific Hyperparameters

RNN’s number of layers 1
RNN’s context size 30
RNN’s context length 5
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