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Two-dimensional (2D) materials have garnered
significant attention due to their exceptional elec-
tronic, optical, and mechanical properties [1, 2].
For example, graphene’s well-defined hexagonal
lattice yields extraordinary electron mobility and
mechanical strength [3, 4], while transition metal
dichalcogenides (TMDs), such as NbSe2, exhibit dis-
tinct behaviors like superconductivity, charge den-
sity wave and spin-orbit coupling that induce emer-
gence of topological electronics and strong corre-
lated phenomena [5, 6, 7]. Although many 2D ma-
terials appear structurally simple, their subtle differ-
ences—such as variations in crystal symmetry, stack-
ing order, and defect structures—necessitate pre-
cise characterizationmethods. Effective encoding of
structural information is of much significance in de-
veloping machine learning approaches in the study
of 2D materials.
In this study, we present a self-supervised frame-

work that leverages message passing graph neural
networks (GNNs) to extract robust structural finger-
prints from two-dimensional (2D) materials [8, 9].
The pipeline of our method is shown in Figure 1.
Ourmethodmodels eachmaterial as a graph, where
atoms are represented as nodes characterized by rel-
ative Cartesian coordinates, and edges encode both
nearest and next-nearest neighbor interactions, in-
cluding periodic boundary conditions via supercell
construction (e.g., 3×3 or 4×4 grids). Additionally,
angular information is incorporated through hyper-
edges that connect triplets of atoms, thereby captur-
ing essential geometric features of the crystal struc-
ture [10].
We use random augmentation achieved by apply-

ing controlled random perturbations to atomic posi-
tions and varying the supercell dimensions to ensure
that the learned representations remain invariant to
minor structural fluctuations while preserving criti-
cal material properties. The core of our approach is
a contrastive learning scheme based on the InfoNCE
loss function [11], which drives the model to mini-
mize the distance between embeddings of perturbed
versions of the same structure whilemaximizing the
separation between embeddings of distinct struc-
tures. This strategy effectively mitigates trivial solu-
tions and enhances the discriminative power of the
resulting fingerprints.
Post-training, the extracted embeddings are sub-

jected to clustering analyses using techniques such
as t-SNE and HDBSCAN. The clusters that emerge
correlate strongly with key structural parameters,

including lattice symmetry, unit cell composition,
chemical elements and interatomic distances. Our
results indicate that theproposed self-supervised ap-
proach not only captures intrinsic geometric and
chemical features but also provides a scalable path-
way for high-throughput material screening and
property prediction.
Our method as a distinct alternative to traditional

supervised approaches such as those in CGCNN
[8] and ALIGNN [12] provides a notably stream-
lined model that significantly reduces computa-
tional overhead. Our model is around 2 orders of
magnitude quicker than CGCNN and nearly 4 orders
of magnitude faster than ALIGNN. This efficiency
gain demonstrates the potential of our approach for
scalable, high-throughput applications in materials
science.
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Fig. 1: Overall pipeline of the self-supervised framework.
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