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ABSTRACT

Over the past few years, several approaches utilizing score-based diffusion have
been proposed to sample from probability distributions, that is without having ac-
cess to exact samples and relying solely on evaluations of unnormalized densities.
The resulting samplers approximate the time-reversal of a noising diffusion pro-
cess, bridging the target distribution to an easy-to-sample base distribution. In
practice, the performance of these methods heavily depends on key hyperparam-
eters that require ground truth samples to be accurately tuned. Our work aims
to highlight and address this fundamental issue, focusing in particular on multi-
modal distributions, which pose significant challenges for existing sampling meth-
ods. Building on existing approaches, we introduce Learned Reference-based Dif-
fusion Sampler (LRDS), a methodology specifically designed to leverage prior
knowledge on the location of the target modes in order to bypass the obstacle of
hyperparameter tuning. LRDS proceeds in two steps by (i) learning a reference
diffusion model on samples located in high-density space regions and tailored
for multimodality, and (ii) using this reference model to foster the training of a
diffusion-based sampler. We experimentally demonstrate that LRDS best exploits
prior knowledge on the target distribution compared to competing algorithms on
a variety of challenging distributions.

1 INTRODUCTION

We consider the problem of sampling from a probability density known up to a normalizing constant.
More precisely, we consider a target distribution π ∈ P(Rd) with probability density given by
x 7→ γ(x)/Z , where γ : Rd → R+ can be pointwise evaluated and the normalizing constant
Z =

∫
Rd γ(x)dx is intractable. This problem appears in a wide variety of applications such as

Bayesian statistics (Liu & Liu, 2001; Kroese et al., 2011), statistical mechanics (Krauth, 2006) or
molecular dynamics (Stoltz et al., 2010). In particular, we are interested in sampling from multi-
modal distributions, i.e., distributions whose density admits multiple local maxima, called modes.
Finding the modes of such distributions is a notoriously hard problem, yet, maybe surprisingly, even
if the location of the modes is known, sampling π remains a very challenging problem (Noé et al.,
2019; Pompe et al., 2020; Grenioux et al., 2023). In this work, we aim to address this specific
issue and will assume that we have access to the location of the modes as prior information on π.
However, we do not assume to have access a priori to ground truth samples from π.

Annealed MCMC. Markov Chain Monte Carlo (MCMC) samplers are among the most popular
approaches for sampling. In particular, gradient-based methods based on discretizations of Langevin
or Hamiltonian dynamics (Roberts & Tweedie, 1996; Neal, 2012; Hoffman & Gelman, 2014) are
guaranteed to be efficient for high-dimensional target distributions that are log-concave or satisfy
or functional inequalities (Dalalyan, 2017; Durmus & Moulines, 2017). However, when applied to
multi-modal distributions, these MCMC methods suffer from high mixing time, that dramatically
increases with the magnitude of the energy barriers between the modes, see Appendix I.3 for an il-
lustration. To alleviate this issue, annealing strategies have been proposed. They consist in bridging
an easy-to-sample base distribution πbase to the target distribution π via intermediate distributions
{πk}Kk=0 with K ≥ 1, π0 = πbase and πK = π. This sequence should form a smooth path in the
distribution space, so that sampling from πk+1 starting from samples from πk is relatively simple.
Typically, up to normalizing constants again, the densities of these annealed distributions are chosen
as geometric interpolation between πbase and γ, and are sampled either sequentially (Neal, 2001;
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Del Moral et al., 2006) or in parallel (Swendsen & Wang, 1986). However, these approaches may be
prone to mode switching, i.e., the relative weight of the modes of the intermediate distributions may
vary dramatically along the prescribed path (Woodard et al., 2009; Tawn et al., 2020; Syed et al.,
2022). Hence, recovering the proportions of the different modes of π is hard in practice.

Alternatively, the bridging distributions {πk}Kk=0 can be implicitly defined as the marginals of a
diffusion process. A particular case of interest is the annealing path given by the time-reversal of
a noising process, which is at the foundation of diffusion-based generative models (Sohl-Dickstein
et al., 2015; Song et al., 2021; Ho et al., 2020), and has been proved to be robust to mode switching
(Phillips et al., 2024). Following this approach, several diffusion-based samplers relying exclusively
on Monte Carlo methods have recently shown promises for sampling from multi-modal distributions
(Huang et al., 2024a;b; Grenioux et al., 2024). However, these non-parametric approaches require
the repeated estimation of an intractable drift at each draw and at each annealing step.

Annealed VI. Due to their ability to amortize inference, Variational Inference (VI) techniques are
a popular alternative to MCMC methods. Given a class of parameterized (variational) distributions
that are easy to sample from, they aim to find the optimal parameters that minimize a fixed discrep-
ancy metric with respect to π. Standard VI settings involve mean-field approximations (Wainwright
& Jordan, 2008), mixture models (Arenz et al., 2023), and more recently normalizing flows (Rezende
et al., 2014; Papamakarios et al., 2021), that typically optimize a reverse Kullback-Leibler (KL) ob-
jective. However, these methods struggle with multi-modal target distributions as they suffer from
mode collapse (Jerfel et al., 2021; Blessing et al., 2024).

To tackle this issue, it has been proposed to follow the annealing paradigm by considering an ex-
tended target distribution with marginals corresponding to the {πk}Kk=0. This approach has been
explored following explicit bridging paths, i.e., {πk}Kk=0 admit tractable unnormalized densities
(Wu et al., 2020; Arbel et al., 2021; Geffner & Domke, 2021; Matthews et al., 2022; Doucet et al.,
2022; Geffner & Domke, 2023; Vargas et al., 2024), but the resulting samplers may suffer from
mode switching, as explained above. On the other hand, a recent class of annealed VI samplers
using implicit diffusion-based paths has emerged (Tzen & Raginsky, 2019; Holdijk et al., 2023;
Pavon, 2022; Zhang & Chen, 2022; Berner et al., 2023; Vargas et al., 2023a;b; Zhang & Chen, 2022;
Berner et al., 2023; Vargas et al., 2023b; Akhound-Sadegh et al., 2024; Phillips et al., 2024) and
seems well-suited for multi-modal target distributions. As we will further evidence in the present
work, the promising results obtained with the latter methods are nevertheless mitigated by the need
for careful tuning of their hyperparameters, which requires access to ground truth samples.

Contributions Within this context, we propose the Learned Reference-based Diffusion Sampler
(LRDS), a variational diffusion-based sampler specifically designed for multi-modal distributions,
which extends works from Zhang & Chen (2022); Vargas et al. (2023a); Richter et al. (2023):
• In the multi-modal setting, we highlight the sensitivity of previous variational diffusion-based
methods with respect to their hyperparameters, which restrains their use in practice.
• To address this limitation, LRDS leverages the knowledge of the mode locations following two ap-
proaches: (a) GMM-LRDS relies on Gaussian Mixture Models and is well suited for a large variety
of target distributions while being relatively lightweight, and (b) EBM-LRDS, a more computa-
tionally intensive scheme, takes advantage of Energy-Based Models for harder sampling problems.
• We show that GMM-LRDS and EBM-LRDS outperform previous diffusion-based samplers on
challenging multi-modal settings.

Notation. For any measurable space (X,X ), we denote by P(X) the space of probability mea-
sures defined on (X,X ). Unless specified, if X is a topological space, X is defined as the Borel
σ-field of X. For any T > 0, we denote by CT = C([0, T ] ,Rd) the space of continuous functions
from [0, T ] to Rd endowed with the uniform topology; hence P(CT ) is the set of continuous-time
stochastic processes (or path measures) defined on [0, T ]. For any P ∈ P(CT ), we denote by PR

its time-reversal, defined such that if (Xt)t∈[0,T ] ∼ P, then (XT−t)t∈[0,T ] ∼ PR. For any t ∈ [0, T ],
we denote by Pt the marginal distribution of P at time t. The density of the Gaussian distribution
with mean m ∈ Rd and covariance Σ ∈ Rd×d is denoted by x 7→ N(x;m,Σ) and ∆J refers to the
J-dimensional simplex, i.e., ∆J = {(wj)

J
j=1 ∈ [0, 1]

J
:
∑J

j=1 wj = 1} where J ≥ 1. Finally,
for ease of understanding, we will denote any noising diffusion process by (Xt)t∈[0,T ], driven by
Brownian motion (Wt)t∈[0,T ], while (Yt)t∈[0,T ] will refer to denoising diffusion processes, driven
by Brownian motion (Bt)t∈[0,T ]. In this paper, Θ will refer to as the variational parameter space.
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2 REFERENCE-BASED DIFFUSION SAMPLING

2.1 THEORETICAL FRAMEWORK

We first recall the variational diffusion-based framework formulated by Richter et al. (2023) in con-
tinuous time, that generalizes the approaches from Zhang & Chen (2022) and Vargas et al. (2023a).

Time-reversed sampling process. Consider a general noising diffusion process defined on [0, T ]
by the linear SDE

dXt = f(t)Xtdt+
√

β(t)dWt , X0 ∼ π , (1)

where the horizon T > 0 is fixed, (Wt)t∈[0,T ] is a standard d-dimensional Brownian motion, β :
[0, T ] → (0,∞) and f : [0, T ] → R. We denote by P⋆ the path measure associated to the SDE
(1). With appropriate choices of f and β, this SDE admits explicit transition kernels and XT is
approximately, or exactly, distributed according to an easy-to-sample base distribution πbase.

In the case where P⋆
T = πbase, we refer to this setting as an ‘exact’ noising scheme. One particular

instance of this setting the Pinned Brownian Motion (PBM), considered by Tzen & Raginsky (2019);
Zhang & Chen (2022); Vargas et al. (2023b), where πbase = δ0. Otherwise, when we only have P⋆

T ≈
πbase, we define this setting as an ‘ergodic’ noising scheme. A well-known example is the Variance
Preserving (VP) noising process for which πbase = N(0, σ2 Id) with σ > 0, proposed by Song
et al. (2021) for score-based generative models and Vargas et al. (2023a) for sampling. Numerical
experiments presented in this paper focus on these two schemes to provide fair comparison with
previous methods, but the presented approach is applicable for an arbitrary noising scheme. We
refer to Appendix C for more details.

Denote by p⋆t the density of P⋆
t w.r.t. the Lebesgue measure. Under mild assumptions on π, f and

β, see e.g., Cattiaux et al. (2023), the time-reversal of the noising process P⋆, i.e., the distribution of
(XT−t)t∈[0,T ] and denoted by (P⋆)R, is associated to the SDE

dYt = −f(T − t)Ytdt+ β(T − t)∇ log p⋆T−t(Yt)dt+
√

β(T − t)dBt , Y0 ∼ P⋆
T , (2)

where (Bt)t∈[0,T ] is another standard d-dimensional Brownian motion. By definition of the time-
reversal, it holds that YT ∼ π. Therefore, if we were able to simulate this diffusion process, we
would obtain approximate samples from π. We therefore refer to (Yt)t∈[0,T ] as the target process.
However, the scores (∇ log p⋆t )t∈[0,T ] involved in the drift function of (2) are intractable in general.
In addition, these scores cannot be estimated via usual score matching techniques used in generative
modeling (Hyvärinen & Dayan, 2005; Vincent, 2011) since samples from π are not available a
priori in the setting at hand. This point has been addressed by Richter et al. (2023) who alternatively
proposed a general variational approach on path measure space, which requires the definition of a
reference process as described next.

Variational reference-based approach. This approach relies on a reference process that is so-
lution of SDE (1) with initial condition X0 ∼ πref, where πref ∈ P(Rd) is chosen such that the
marginal scores of the associated path measure Pref are tractable. Similarly to π, we assume that the
probability density of πref is known up to a multiplicative constant and is given by x 7→ γref(x)/Z ref,
where γref : Rd → R+ and Z ref =

∫
Rd γ

ref(x)dx is not necessarily tractable. Finally, for any
t ∈ [0, T ], we denote the marginal scores sref

t = ∇ log pref
t , with pref

t being the density of Pref
t w.r.t.

the Lebesgue measure. Based on the tractable reference scores, the SDE describing the target pro-
cess (2) can be rewritten as

dYt = −f(T − t)Ytdt+ β(T − t){sref
T−t(Yt) + gT−t(Yt)}dt+

√
β(T − t)dBt , Y0 ∼ P⋆

T , (3)

where gt = ∇ log p⋆t /p
ref
t is now the only intractable term.

This formulation of the time-reversed SDE has already been largely used in the diffusion model
literature, especially for conditional generative models; see e.g., Dhariwal & Nichol (2021). In this
specific context, gt is called a guidance term. From a probabilistic perspective, gt can be interpreted
as a Doob-h transform control, see Appendix I.1. Exploiting the reference-based formulation given
by (3), Richter et al. (2023) propose to estimate the guidance terms (gt)t∈[0,T ] rather than the target
scores (∇ log p⋆t )t∈[0,T ].
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Table 1: Connection to prior works. Here, Eφ : [0, T ]× Rd → R refers to a neural network.

Method Noising γref(x) Z ref sref
t (x) Reference parameters

PIS (Zhang & Chen, 2022) PBM(σ) N(x; 0, σ2T Id) 1 −x/σ2(T − t) σ (tuned)

DDS (Vargas et al., 2023a) VP(σ) N(x; 0, σ2Id) 1 −x/σ2 σ (tuned)

GMM-LRDS (Section 3.2) arbitrary
∑J

j=1 wjN(x;mj ,Σj) 1 analytical {wj ,mj ,Σj}Jj=1 (learned)

EBM-LRDS (Section 3.3) arbitrary exp(−Eφ(t = 0, x)) unknown −∇xE
φ(t, x) φ (learned)

To this end, the authors consider the class of variational path measures (Pθ)θ∈Θ ⊂ P(CT ) where
for any θ ∈ Θ, Pθ is associated to the diffusion process

dY θ
t = −f(T − t)Y θ

t dt+ β(T − t){sref
T−t(Y

θ
t ) + gθT−t(Y

θ
t )}dt+

√
β(T − t)dBt , Y

θ
0 ∼ πbase , (4)

where gθ : [0, T ]×Rd → Rd is typically a neural network. In particular, choosing πref as a Gaussian
distribution recovers exactly the previous VI methods Path Integral Sampler (PIS) (Zhang & Chen,
2022) and Denoising Diffusion Sampler (DDS) (Vargas et al., 2023a), see Table 1. Furthermore,
Richter et al. (2023) propose to minimize the following LV-based objective

LLV(θ) = Var
[
log{(dPθ/d(P⋆)R)(Y θ̂

[0,T ])}
]
, Y θ̂

[0,T ] ∼ Pθ̂ , (5)

where θ̂ is a detached version of θ, meaning that gradients with respect to θ will not see θ̂. In contrast
to the reverse KL divergence (previously used in PIS and DDS), which is notably known to suffer
from mode collapse (Midgley et al., 2023), the LV divergence (Nüsken & Richter, 2021) has the
benefits to improve mode exploration, to avoid costly computations of the loss gradients and to have
zero variance at the optimal solution (Richter et al., 2023, Section 2.3). Finally, the LV loss (5) can
be further explicited, as detailed in the following proposition.

Proposition 1. Assume that P⋆
T = Pref

T = πbase and there exists θ⋆ ∈ Θ such that gθ
⋆

t = gt. Then,
the loss defined in (5) achieves optimal solution at θ⋆ and, setting ϱ = log(γ/γref), it simplifies as

LLV(θ) = Var

[∫ T

0

β(T − t)

2

∥∥∥gθT−t(Y
θ̂
t )

∥∥∥2

dt+

∫ T

0

√
β(T − t)gθT−t(Y

θ̂
t )

⊤dBt + ϱ(Y θ̂
T )

]
. (6)

This result is an adaptation of (Richter et al., 2023, Lemma 3.1), which proof is restated in Ap-
pendix D.1 for completeness. We also emphasize that the assumption made in Proposition 1 is only
needed for ergodic noising schemes. In practice, Richter et al. (2023) only consider two specific ver-
sions of this continuous-time variational loss, where πref is determined by the PIS and DDS settings.
In the following, we will refer to these extensions of PIS and DDS as LV-PIS and LV-DDS. In con-
trast, we keep a general perspective, by letting πref completely arbitrary, and describe our proposition
of practical implementation of a Reference-based Diffusion Sampler (RDS) in this context.

2.2 REFERENCE-BASED DIFFUSION SAMPLING IN PRACTICE

Discrete-time setting. In practice, the parameterized process (Y θ̂
t )t∈[0,T ] cannot be simulated ex-

actly and SDE (4) can only be numerically solved with a small step-size using, for example, the
Euler-Maruyama (EM) or Exponential Integration (EI) (Durmus & Moulines, 2015) discretization
schemes, see Appendix B for additional details. Consider a time discretization of the interval [0, T ]
given by an increasing sequence of timesteps {tk}Kk=0 such that t0 = 0, tK = T and K ≥ 1. Given
an arbitrary reference distribution πref, we propose to approximate the continuous-time objective
defined in (6) by the following discrete time RDS objective

LRDS(θ) = Var

[
K−1∑
k=0

wkg
θ
T−tk

(Yk)
⊤
{
gθ̂T−tk

(Yk)−
1

2
gθT−tk

(Yk)

}
+

K−1∑
k=0

√
wkg

θ
T−tk

(Yk)
⊤Zk + ϱ(Yk)

]
,

(7)
where {Zk}K−1

k=0 are independently distributed according to N(0, Id), {Yk}Kk=0 is recursively defined
by Y0 ∼ πbase and for any k ∈ {0, . . . ,K − 1},

Yk+1 = akYk + bk{sref
T−tk

(Yk) + gθ̂T−tk
(Yk)}+

√
ckZk , (8)
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with θ̂ being a detached version of θ and {wk, ak, bk, ck}K−1
k=0 being tractable coefficients that de-

pend on the choice of discretization and noising schemes. In particular, if K is sufficiently large,
{Yk}Kk=0 has approximately the same distribution as {Y θ̂

tk
}Kk=0. We refer to Appendix D.2 for a

detailed explanation on the computation of our loss and explicit values of the coefficients. We
emphasize that this variational objective can be implemented with any reference distribution. In
comparison, the practical loss functions1 exhibited by Richter et al. (2023) are only designed for
LV-PIS and LV-DDS, and may be seen as particular instances of (7).

Training and sampling with RDS. The training stage of RDS consists in running N iterations of
Stochastic Gradient Descent (SGD) to minimize the discrete-time objective (7), for some N ≥ 1.
Like other variational diffusion-based objectives, the RDS loss is simulation-based, meaning that,
the whole process {Yk}Kk=0 defined in (8) must be simulated at each SGD step. The complete
training procedure of RDS is summarized in Algorithm 2, stated in Appendix A. After training, the
final parameter θ⋆ is fixed, and approximate samples from π are obtained by simulating {Yk}Kk=0

from gθ
⋆

, using (8), and taking YK .

3 LEARNED RDS FOR MULTI-MODAL DISTRIBUTIONS

In this section, we highlight the crucial role played by the reference distribution πref in RDS when
targeting multi-modal distributions. We first show in Section 3.1 the limitations of previous vari-
ational reference-based methods and give intuition on how πref should be chosen. Based on this
observation, we introduce Learned Reference-based Diffusion Sampler (LRDS), a novel diffusion-
based sampler defined as a practical instance of RDS, where πref is learned from prior knowledge
on π, namely the location of their modes. We present two approaches based on Gaussian Mixture
Models (GMM-LRDS), see Section 3.2, and Energy-Based Models (EBM-LRDS), see Section 3.3.

3.1 ON THE IMPORTANCE OF THE REFERENCE DISTRIBUTION

Choosing a Gaussian distribution for πref ensures that the entire reference process is Gaussian.
Therefore, the scores (sref

t )t∈[0,T ] can be analytically computed. We will refer to this case as Gaus-
sian RDS (G-RDS). In this setting, previous variational reference-based methods (PIS, DDS and
their log-variance version) focused on using isotropic centered Gaussian distributions as reference
distributions (see Table 1), i.e., πref = N(0, σ2Id) where the hyperparameter is σ ∈ (0,∞). This
parameter is fixed before running the optimization over θ and a priori disconnected from the target
distribution. To assess the sensitivity of the algorithms with respect to the hyperparameter σ, we run
LV-DDS and LV-PIS on a simple multi-modal distribution – a 16-dimensional bi-modal Gaussian
mixture with two distinct weights – and examine the accuracy of estimation of these weights (see
Figure 1, left). We observe that the performance is highly dependent on the value of σ, with an
optimal accuracy achieved when the isotropic variance is directly related to statistics of the target
distribution; see Appendix I.2 for details. However, it is hard to estimate this quantity without access
to ground truth samples.

Towards a multi-modal reference distribution. The previous experiment suggests that choosing
a reference distribution that is close to the target distribution improves the performance of the VI
sampler. To validate this intuition, we target the same Gaussian mixture as above using RDS with
PBM and VP noising schemes, setting πref as a Gaussian mixture with the same components as
the target with their relative weights as hyperparameter (see Figure 1, right). We find that this
design of πref, with a well adjusted Gaussian mixture reference, enables RDS to robustly recover the
information of the relative weight of the target modes. These observations motivate us to adopt the
following paradigm for RDS: given a multi-modal target distribution π, we aim to design πref close
to π, sharing the same multi-modality characteristics. Below, we present Learned Reference-based
Diffusion Sampler (LRDS), a complete sampling methodology relying on the RDS framework that
leverages prior knowledge on the target modes to learn a well-suited reference distribution.

1Although the authors do not provide any expression of a discrete-time version of (6) in their paper, a
discrete-time loss is implemented for LV-PIS and LV-DDS in their official codebase available at https:
//github.com/juliusberner/sde sampler.
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Figure 1: Illustration of the decisive role of the reference distribution. Here, we target a 16-
dimensional Gaussian mixture with two modes, that have respective weights w = 2/3 and 1−w =
1/3, and display the estimation error of w with different methods. (Left): Results for LV-PIS and
LV-DDS when varying the value of their hyperparameter σ (which directly determines πref as shown
in Table 1). The green dotted line represents the optimal variance for Gaussian approximation of π,
see Appendix I.2 for related computations. (Right) Results for RDS in PBM and VP settings when
setting πref as a Gaussian mixture with the same modes as π, but w is replaced by wref. Details on
the design of this experiment are given in Appendix H.1.

LRDS pipeline. Our algorithm LRDS proceeds in three main steps:

(a) Obtain reference samples. Given a standard MCMC sampler which targets π, such as the
Metropolis-Adjusted Langevin Algorithm (MALA) (Roberts & Tweedie, 1996), we simulate multi-
ple Markov chains that are initialized in the target mode locations. We refer to the obtained samples
as the reference samples and denote by π̂ref the corresponding empirical distribution. As recalled
in Appendix I.3, in presence of high energy barriers between the modes, π̂ref fails at estimating the
global energy landscape. Moreover, π̂ref does not admit a density w.r.t. the Lebesgue measure.

(b) Define the reference process. In this stage, we aim at (i) learning πref as a continuous approxi-
mation of π̂ref, and (ii) computing the marginal scores at times {T−tk}K−1

k=0 of the induced reference
process Pref, i.e., the noising process defined by SDE (1), where X0 ∼ πref. In practice, we set πref

either as a Gaussian Mixture Model, which relies on a light parameterization, or as an Energy-Based
Model, which is more expressive at the cost of higher computational budget.

(c) Run the RDS variational optimization. Once the reference distribution is learned and the
reference scores are computed, we run the RDS procedure described in Section 2.2.

In the next sections, we describe two practical implementations of stage (b) in LRDS using different
parameterizations of the reference distribution.

3.2 GAUSSIAN MIXTURE MODEL LRDS

We first propose to set πref as a Gaussian mixture to integrate multi-modality in RDS. In particular,
we have Z ref = 1 and any reference density is parameterized as γref(·) =

∑J
j=1 wjN(·;mj ,Σj)

where J ≥ 1 is the number of reference modes, {wj}Jj=1 ∈ ∆J are the reference weights, mj ∈ Rd

and Σj ∈ Rd×d are respectively the mean and the covariance of the j-th reference mode. In this set-
ting, each marginal of Pref is also a Gaussian mixture whose parameters can be simply deduced from
γref, making their score fully tractable, see Appendix B. Therefore, the only difficulty at stage (b)
lies in the estimation of the reference parameters φ = {wj ,mj ,Σj}Jj=1 for some J ≥ 1 fixed in ad-
vance. If J > 1, we refer to this version of the algorithm as Gaussian Mixture Model LRDS (GMM-
LRDS). In this case, we learn φ by running the Expectation Minimization (EM) algorithm (Dempster
et al., 1977) with samples from π̂ref. If J = 1, LRDS reduces to Gaussian LRDS (G-LRDS), and we
learn parameters (m1,Σ1) by Maximum Likelihood (ML) estimation. In practice, we observe that
setting J equal or larger to the number of target modes can lead to better performance. We summa-
rize the whole GMM-LRDS methodology in Algorithm 3, provided in Appendix A, and illustrate in
Figure 2 the behaviours of GMM-LRDS and G-LRDS for a bi-modal target distribution. Our results
show that choosing a Gaussian reference distribution leads to mode collapse, while defining πref as
in GMM-LDRS enables RDS to recover the relative weights accurately.
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Figure 2: Comparison between G-LRDS and GMM-LRDS. Here, the target distribution is the
same 16-dimensional Gaussian mixture as in Figure 1 (top left), see Appendix H.1 for more details.
For illustration purpose, projections along the first two coordinates are used. In each cell, the value
of ’Mode weight’ refers to the effective weight of the left mode. Reference samples (bottom left)
are obtained by running MALA sampler initialized in both target modes: each color (orange/purple)
depicts one MALA Markov chain. In particular, none of them mixes between the modes. Running
G-LRDS with an ML-estimated Gaussian reference (top middle) leads to mode collapse (bottom
middle). Conversely, GMM-LRDS with an EM-estimated Gaussian mixture reference (top right)
appropriately recovers the target distribution and the true mode proportions (bottom right).

3.3 ENERGY-BASED MODEL LRDS

Although GMM-LRDS efficiently introduces multi-modality in the reference distribution while con-
serving the tractability of the reference scores, we anticipate that in some cases, a Gaussian mixture
may not provide a correct approximation of π̂ref, regardless of the number of reference modes J ,
see Appendix I.4 for illustrations. To provide more flexibility, we propose a second version of
LRDS where the reference distribution is parameterized by an Energy-Based Model (EBM), i.e.,
γref(x) = exp(−Eφ(x)) where Eφ : Rd → R is a neural network with parameters φ and the
normalizing constant Z ref =

∫
Rd exp(−Eφ(x))dx is intractable. In contrast to GMM-LRDS, the

corresponding reference scores cannot be computed in analytically anymore; hence, we suggest to
estimate them with neural networks. In the following, we will denote πref by pφ to insist on its
parametric nature.

At first sight, it seems natural to learn the density γref and the scores (sref
t )t∈[0,T ] independently from

each other. Indeed, following the diffusion model literature (Song et al., 2021; Karras et al., 2022),
the reference scores could be easily learned using a Score Matching (SM) objective with samples
from π̂ref (Hyvärinen & Dayan, 2005; Vincent, 2011). On the other hand, one could learn pφ by
maximizing the standard Maximum Likelihood (ML) objective LML : φ 7→ E [log pφ(X)], where
X ∼ π̂ref, with corresponding gradient given by φ 7→ E[∇φE

φ(X−)] − E[∇φE
φ(X+)], where

X− ∼ pφ and X+ ∼ π̂ref. Nevertheless, computing gradients of objective LML requires to sample
from pφ (negative sampling), which is a well known hurdle in EBM training since pφ is expected to
be as multi-modal as π̂ref, and thus π.

Therefore, we rather suggest to learn a path of parametric distributions (pφt )t∈[0,T ] as the marginal
distributions of (X̂ ref

t )t∈[0,T ], defined as the noising process induced by SDE (1), starting at
X̂ ref

0 ∼ π̂ref. To do so, we set (pφt )t∈[0,T ] as a multi-level EBM, i.e., pφt (x) = exp(−Eφ(t, x))/Zφ
t ,

where Eφ : [0, T ] × Rd → R is now a time-dependent neural network with parameters φ and the
normalizing constants Zφ

t =
∫
Rd exp(−Eφ(t, x))dx are still intractable. In the RDS framework,

this amounts to consider γref(x) = exp(−Eφ(0, x)) and sref
t (x) = −∇xE

φ(t, x). To learn this
multi-level EBM, we propose to maximize the integrated ML objective φ 7→

∫ T

0
E[log pφt (X̂ ref

t )]dt.
In this case, we can leverage the correlations between the single-level EBMs to alleviate their in-
dividual issue of negative sampling, a strategy that has already been investigated in several works
(Gao et al., 2021; Zhu et al., 2024; Zhang et al., 2023).
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Figure 3: Comparison between GMM-LRDS
and EBM-LRDS in a multi-modal setting.
Here, we target the 2-dimensional Rings distri-
bution, which has 3 unbalanced modes repre-
sented by the rings. (Left): Target density (top)
and exact samples (bottom). (Middle): 16-
component GMM reference distribution (top)
and resulting GMM-LRDS samples (bottom).
(Right): EBM reference distribution (top) and
resulting EBM-LRDS samples (bottom).

Here, since (X̂ ref
t )t∈[0,T ] defines a path of increas-

ingly simpler distributions, annealed MCMC sam-
plers can be conveniently used to sample from
the multi-level EBM densities. This allows us to
kill two birds in one stone: (i) we obtain nega-
tive samples for each single-level EBM, which is
needed to compute the gradient of the ML objec-
tive, and (ii) we overcome the individual sampling
issues at every level thanks to annealing. This
method is completely detailed in Algorithm 11 of
Appendix F together with previous literature on
multi-level EBMs. Morever, Appendix E provides
details on annealed MCMC samplers.

This version of LRDS called Energy-Based Model
LRDS (EBM-LRDS) is summarized in Algo-
rithm 4 of Appendix A. In Figure 3, we illustrate
the superiority of EBM-LRDS over GMM-LRDS
for a target distribution π that exhibits complex ge-
ometry. While the GMM fails at capturing the lo-
cal energy landscape of π, which results in a poor
performance of GMM-LRDS, EBM-LRDS cap-
tures well the target distribution since the reference
EBM recovers the complex geometry of the target.

4 RELATED WORKS

In the past years, numerous parametric methods have been proposed to approximate a diffusion
process (Yt)t∈[0,T ] ∼ P induced by an SDE with intractable drift, such as (2), bridging an easy-to-
sample distribution πbase to a target distribution π. Based on deep learning techniques, they suggest
to learn a path measure Pθ, induced by a neural SDE that admits a neural network (parameterized
by θ ∈ Θ to be optimized) as drift function. Below, we review two main classes of such algorithms.

Variational diffusion-based methods. To optimize θ, several approaches have adopted a varia-
tional formulation on path measure space, which consists in minimizing a divergence-based loss
with samples from Pθ. We adopt the same perspective in the present work. For instance, a recent
line of works has defined P as the time-reversal of a noising diffusion process, such as PIS (Zhang &
Chen, 2022), DDS (Vargas et al., 2023a) and Time-reversed Diffusion Sampler (DIS) (Berner et al.,
2023). In these methods, the neural network used in Pθ is crucially required to be target-informed,
i.e., it is parameterized with the score of the target distribution. For a large number of variational
training steps, this may result in a costly procedure, since each training step requires a full simula-
tion of Pθ. While those algorithms were originally implemented with the largely used reverse KL
divergence, Richter et al. (2023) demonstrate the benefits of using the Log-Variance (LV) divergence
to avoid mode collapse in the variational optimization stage. However, even combined with a LV-
based loss, these variational methods still require a target-informed parameterization. On the other
hand, Vargas et al. (2024) propose a different perspective by defining P as a controlled version of an
annealed Langevin diffusion, that is expected to follow a prescribed path of tractable marginal den-
sities. Here, both P and Pθ are induced by neural SDEs. The authors present two versions of their
algorithm, Controlled Monte Carlo Diffusion (CMCD), using either reverse KL or LV divergence.
For clear comparison with the RDS discrete-time setting presented in Section 2.2, we describe all of
these approaches (PIS, DDS, DIS, CMCD) under the discrete time scope in Appendix D.2.

Adaptive diffusion-based approaches. To alleviate the computational difficulties of divergence-
based losses, recent works have proposed to learn Pθ with an adaptive procedure (Phillips et al.,
2024; Akhound-Sadegh et al., 2024). These methods iterate two steps which consist of (a) ob-
taining approximate target samples by sampling from Pθ and (b) optimizing θ using those samples
via learning techniques usually restricted to generative modeling. In particular, Akhound-Sadegh
et al. (2024) present Iterated Denoising Energy Matching (iDEM), where P corresponds to the time-
reversal of a Variance-Exploding noising diffusion process (Song et al., 2021). In their setting, stage
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(a) is conducted by running the SDE induced by Pθ and stage (b) relies on a novel energy-matching
loss which directly depends on π. On the other hand, the Particle Denoising Diffusion Sampler
(PDDS) (Phillips et al., 2024) (a) introduces a SMC-based scheme when sampling from Pθ, see
Appendix E for more details, and (b) implements an extension of the Target Score Matching loss
(De Bortoli et al., 2024). When it comes to practice, we find that both of these algorithms face
significant limitations: while PDDS performance is highly sensitive to the choice of the initial Pθ,
the iDEM energy-matching loss suffers from very high variance.

5 NUMERICAL EVALUATION OF RDS

To validate our approach, we compare GMM-LRDS and EBM-LRDS on a variety of multi-modal
distributions against the following annealed methods: (a) annealed MCMC methods – Sequential
Monte Carlo (SMC) (Del Moral et al., 2006) and Replica Exchange (RE) (Swendsen & Wang,
1986); (b) variational diffusion-based methods, implemented with the LV loss – LV-PIS (Zhang
& Chen, 2022), LV-DDS (Vargas et al., 2023a), LV-DIS (Berner et al., 2023) and LV-CMCD (Vargas
et al., 2024); (c) adaptive diffusion-based approaches – iDEM (Akhound-Sadegh et al., 2024) and
PDDS (Phillips et al., 2024). To assess the performance of each sampler in multi-modal settings, we
will evaluate how well the obtained samples are able to recover the weights of the target modes2.
The details of each target distribution can be found in Appendix H.1.

General experimental setting. To ensure fair comparison with previous approaches, we make
sure that all competing methods are as informed as LRDS of prior knowledge on the target distri-
bution. More specifically: we set πbase as a Gaussian approximation of π̂ref in SMC, RE or CMCD;
we choose σ based on a Gaussian isotropic approximation of π̂ref for PIS, DDS or DIS (see Sec-
tion 3.1); we standardize the target distributions using the empirical mean and variances of π̂ref for
iDEM and PDDS. Additionally, we pre-fill iDEM’s training buffer with samples from π̂ref. Note
that all competing methods use the score of the target distribution, either in their training procedure
when computing the loss (iDEM, PDDS and CMCD) or in the sampling procedure (through the
target-informed neural network parameterization in PIS, DDS and DIS, or through the MCMC steps
in SMC or RE). In contrast, LRDS only requires evaluations of the target density, which makes it an
interesting alternative in settings where the score is expensive to compute. We refer to Appendix H.3
for complete details of the implementation of all of these methods.

High-dimensional Gaussian mixtures. We first consider a synthetic but challenging setting,
where π is a bi-modal Gaussian mixture whose modes are N(−1d,Σ1), with weight w1 = 2/3,
and N(1d,Σ2), with weight w2 = 1/3, where 1d is the d-dimensional vector with all components
equal to 1, and for i ∈ {1, 2}, Σi ∈ Rd×d is a diagonal positive matrix with conditioning number
equal to 100. For each method, the ground truth weight w1 is estimated by a Monte Carlo estimator
ŵ1. We report the estimation error |w1 − ŵ1| for increasing values of d in Table 2. Note that mode
collapse occurs when ŵ1 ∈ {0, 1}. We observe that GMM-LRDS outperforms competing meth-
ods in all the considered dimensions. In Appendix I.5, we provide further experiments with target
Gaussian mixtures with lower condition numbers and in lower dimention and notice that compet-
ing algorithms are able to perform on par with LRDS in these simpler settings. Here, we did not
consider running EBM-LRDS as the power of approximation of a GMM is sufficent.

Field system ϕ4 from statistical mechanics. Next, we sample from the 1D ϕ4 model, previously
studied (Gabrié et al., 2022; Grenioux et al., 2024). At the chosen temperature, the distribution has
two well distinct modes with respective weights w− and w+ such that the relative weight w−/w+

can be adjusted through a ‘local-field’ parameter h. We discretize this continuous model with a grid
size of 32 (i.e., d = 32). For each method, we compute a Monte Carlo estimation of w−/w+ and
compare the results with a Laplace approximation (0-th and 2-nd orders), see Appendix H.1 for the
computations. In this setting, all competing approaches suffer from mode collapse while GMM-
LRDS is close to the ground truth as shown by Figure 4. Complete results showing the failure of
the competing methods are provided in Appendix I.5. Given the satisfying results obtained with the
lightweight GMM-LRDS sampler, we did not run EBM-LRDS for this target distribution.

2In Appendix G, we give expressions of additional variational metrics proposed by Blessing et al. (2024) to
quantify mode collapse in the specific case of RDS.
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Table 2: Absolute mode weight estimation error for a bi-
modal Gaussian mixture with growing d, averaged over 16
sampling runs. Bold font indicates best result, orange cells
refer to settings with uninformative mode weight estimation
(i.e., uniform mixture), red cells denote mode collapse. N/A
denotes settings where results could not be obtained due to
numerical issues.

Algorithm d = 16 ↓ d = 32 ↓ d = 64 ↓
SMC 11.4%±9.1% 15.8%±8.5% 15.2%±7.5%

RE 16.5%±1.3% 15.9%±1.4% 17.0%±1.4%

LV-PIS 6.0%±3.4% 33.2%±0.1% 33.0%±0.1%

LV-DDS 11.8%±9.3% 31.5%±2.9% 33.1%±0.1%

LV-DIS 14.6%±1.0% 16.9%±1.1% 16.7%±0.7%

LV-CMCD 36.8%±18.9% 42.3%±24.4% 27.7%±22.6%

iDEM 33.3%±0.0% 66.7%±0.0% 11.7%±0.4%

PDDS 0.8%±0.6% 66.7%±0.0% N/A

GMM-LRDS 1.7%±0.6% 2.7%±0.8% 4.1%±0.6%

0.000 0.001 0.002 0.003

h

1.0

1.5

2.0

2.5

3.0

w
−
/
w

+

Laplace approx.
Laplace approx.
(2nd order)
GMM-LRDS

Figure 4: Estimation of the relative
weight of ϕ4 modes with increasing
h, averaged over 16 sampling runs.

Figure 5: Samples obtained for Rings distribution. Reasonable results could not be obtained with
PDDS due to numerical issues.

Figure 6: Samples obtained
for Checkerboard distribu-
tion. All sampling methods
except LRDS fail to provide
accurate samples.

Compactly supported multi-modal distributions. Lastly, we
aim to sample from 2-dimensional multi-modal distributions with
complex geometries. We consider (a) Rings distribution, which
has 3 ring-shaped modes, and (b) Checkerboard distribution, which
has 8 square-shaped modes. In both cases, the modes are not
evenly weighted. In this setting, we consider J = 64 compo-
nents for GMM-LRDS and leverage the Replica Exchange algo-
rithm as backbone annealed MCMC sampler in the EBM-LRDS
training algorithm. Apart from adaptive methods, the structure of
Rings modes are well recovered by all approaches, see Figure 5.
However, we observe that non diffusion-based approaches fail to
recover the ground truth mode weights. On the other hand, LRDS
is the only sampling method to obtain samples that are close to ex-
act for the Checkerboard distribution, see Figure 6, while being able
to correctly estimate the ground truth mode weights.

6 DISCUSSION

Building on the class of recently developed annealed VI methods, this paper presents the Learned
Reference-based Diffusion Sampler (LRDS), which specifically addresses the challenging case of
multi-modal target distributions. In essence, LRDS aims at learning a reference process – based
on GMMs or multi-level EBMs – adapted to the target distribution by using samples obtained via
local MCMC samplers initialized in the modes. Our numerical experiments show that GMM-LRDS
accurately recovers the global information of the relative weights of the modes in several tens of
dimensions, unlike competing methods, and that EBM-LRDS can help tackling distributions with
non-Gaussian properties such as sharp supports. However this advantage of LRDS comes at the
computational cost of the necessary pre-training of the reference process model. Concerning future
work, we note in particular that EBM-LRDS is a promising tool for real-world sampling tasks on
non-euclidean spaces which may benefit from the flexible definition of the reference process as an
EBM. An interesting test case of this kind that shall be considered is the sampling of the Boltzmann
distribution of proteins in internal coordinates.
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José Miguel Hernández-Lobato. Flow annealed importance sampling bootstrap. In The
Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=XCTVFJwS9LJ.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

Radford M Neal. Mcmc using hamiltonian dynamics. arXiv preprint arXiv:1206.1901, 2012.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.
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ORGANIZATION OF THE SUPPLEMENTARY

The appendix is organized as follows. In Appendix A, we provide the pseudo-codes of every RDS
instance presented in the main part of this paper (standard RDS, GMM-LRDS & EBM-LRDS).
Appendix B summarizes general facts that will be useful for proofs and corresponding computa-
tions. In Appendix C, we describe the noising diffusion schemes considered in this work, namely
the Pinned Brownian Motion and the Variance-Preserving setting, and propose novel schemes. For
RDS and related variational diffusion-based methods, we dispense details on their continuous-time
and corresponding discrete-time variational objectives in Appendix D. We respectively provide an
overview of existing annealed MCMC methods and multi-level Energy-Based models in Appendix E
and Appendix F. In Appendix G, we provide expressions of additional variational metrics proposed
by Blessing et al. (2024) in the RDS setting. Details on our experimental settings, our implementa-
tion of RDS and other competing methods are given in Appendix H. Finally, we present additional
theoretical and experimental results in Appendix I.

The code to reproduce the experiments is available on the supplementary material.

Notation. Let P ∈ P(CT ) and t ∈ [0, T ]. For any xt ∈ Rd, we denote by Pxt

|t ∈ P(CT ) the path
measure associated to the stochastic process (Xt)t∈[0,T ] ∼ P conditioned on Xt = xt. Furthermore,
for any π ∈ P(Rd), π ⊗ Pxt

|t ∈ CT stands for the path measure
∫
Rd Pxt

|t dπ(xt). For any K ≥ 1,
we denote the set of joint distributions P((Rd)K+1) by P(K+1). Finally, we adopt the following
notation to design sample batches: for any L̄ ≥ L ≥ 0 and K̄ ≥ K ≥ 0, we denote by X

L:L̄

K:K̄
the

sequence of samples {Xℓ
k}

K̄,L̄
k=K,ℓ=L.

A PSEUDO-CODES OF RDS-BASED ALGORITHMS

We respectively give sampling procedures and training procedures of a general version of RDS in
Algorithm 1 and Algorithm 2. Relying on this, we derive the complete training schemes for GMM-
LRDS (Algorithm 3) and EBM-LRDS (Algorithm 4).

Algorithm 1: Reference-based Diffusion Sampling (RDS) : sampling stage
Input: Time discretization {tk}Kk=0 of [0, T ], reference scores {sref

T−tk
}K−1
k=0 , neural network

gθ : [0, T ]× Rd → Rd, variational coefficients {ak, bk, ck}K−1
k=0 defined in Appendix D.2

▷ Initialization
Y0 ∼ πbase

(Zk)
K−1
k=0

i.i.d.∼ N(0, Id)
for k = 0, . . . ,K − 1 do

▷ Compute the k-th diffusion step
Yk+1 = akYk + bk{sref

T−tk
(Yk) + gθ̂T−tk

(Yk)}+
√
ckZk

Output: Discrete time process Y0:K approximating (Y θ̂
tk )

K
k=0

Algorithm 2: Reference-based Diffusion Sampling (RDS) : training stage
Input: Time discretization {tk}Kk=0 of [0, T ], target density γ, reference density γref and scores

{sref
T−tk

}K−1
k=0 , neural network gθ : [0, T ]× Rd → Rd initialized such that gθ0 = 0, number of

training iterations N , batch size B, variational coefficients {wk, ak, bk, ck}K−1
k=0 defined in

Appendix D.2
for n = 0, . . . , N − 1 do

▷ Simulate B trajectories of the process (Y θ̂
t )t∈[0,T ]

Y 1:B
0:K

i.i.d.∼ SamplingRDS(gθn), see Algorithm 1
▷ Apply a stochastic gradient descent step on θn
Compute a MC estimator L̂RDS(θn) of the loss LRDS(θn) defined in (7) with samples Y 1:B

0:K

Compute the gradient ∇θL̂RDS(θn) and update θn to θn+1 with Adam optimizer

Output: Learned guidance gθN
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Algorithm 3: Gaussian Mixture Model LRDS (GMM-LRDS) : training stage
Input: Time discretization {tk}Kk=0 of [0, T ], target density γ, location of the target modes {xi}Ii=1,

number of Markov chains per target mode M ≥ 1, size of Markov chains Ntot ≥ 1, effective size
of Markov chains Neff ∈ J1, NtotK, number of reference modes J ≥ I

▷ (a) Obtain reference samples
For each i ∈ {1, . . . , I}, build via MALA M Markov chains {Xi,m

0:Ntot
}Mm=1 of size Ntot starting at xi

Keep the last Neff samples of each Markov chain to define π̂ref ∼= {Xi,m
Ntot−Neff+1:Ntot

}I,Mi=1,m=1

▷ (b) Define the reference process
if J = 1 then

Fit on π̂ref a Gaussian model with parameterized density γφ (Maximum Likelihood estimation)
else

Fit on π̂ref a J-component Gaussian Mixture Model with parameterized density γφ (EM algorithm)

Set γref = γφ and compute {sref
T−tk

}K−1
k=0 analytically, see Appendix B

▷ (c) Run the RDS variational optimization
Run Algorithm 2
Output: Trained GMM-LRDS sampler

Algorithm 4: Energy-Based Model LRDS (EBM-LRDS) : training stage
Input: Time discretization {tk}Kk=0 of [0, T ], target density γ, location of the target modes {xi}Ii=1,

number of Markov chains per target mode M ≥ 1, size of Markov chains Ntot ≥ 1, effective size
of Markov chains Neff ∈ J1, NtotK

▷ (a) Obtain reference samples
For each i ∈ {1, . . . , I}, build via MALA M Markov chains {Xi,m

0:Ntot
}Mm=1 of size Ntot starting at xi

Keep the last Neff samples of each Markov chain to define π̂ref ∼= {Xi,m
Ntot−Neff+1:Ntot

}I,Mi=1,m=1

▷ (b) Define the reference process
Based on π̂ref, fit a multi-level EBM Eφ using Algorithm 11
Set γref(x) = exp(−Eφ(0, x)) and sref

T−tk
(x) = −∇xE

φ(T − tk, x) for any k ∈ {0, . . . ,K − 1}
▷ (c) Run the RDS variational optimization
Run Algorithm 2
Output: Trained EBM-RDS sampler

B PRELIMINARIES

Linear SDE integration. We first dispense a useful lemma to compute exact integration in SDEs
with linear drift.
A0 (Integrability conditions on f and β). Coefficients f : [0, T ] → R and β : [0, T ] → (0,∞) are
such that (a) f is integrable on (0, T ) and (b) β is integrable on (0, T ).
Lemma 2. Let T > 0 and b ∈ Rd. Consider the SDE defined on [0, T ] by dYt = f(t)(Yt + b)dt+√

β(t)dBt, where coefficients f and β verify A0. Then, for any pair of time-steps (s, t) such that
T ≥ t > s ≥ 0, the conditional distribution of Yt given Ys = ys ∈ Rd, denoted by pt|s(·|ys),
verifies

pt|s(·|ys) = N
(
exp(

∫ t

s
f(u)du)ys +

(
exp(

∫ t

s
f(u)du)− 1

)
b,
∫ t

s
β(u) exp(2

∫ t

u
f(r)dr)du Id

)
.

Proof. Assume A0. Define the function ζ : t ∈ [0, T ] → exp(−
∫ t

0
f(u)du) and consider the

stochastic process (Zt)t∈[0,T ] defined by Zt = ζ(t)Yt for any t ∈ [0, T ]. By Îto’s formula, we have
dZt = f(t)ζ(t)bdt+ ζ(t)

√
β(t)dBt = −ζ̇(t)bdt+ ζ(t)

√
β(t)dBt. Therefore, for any time-steps

(s, t) such that T ≥ t > s ≥ 0, we have

ζ(t)Yt − ζ(s)Ys = {ζ(s)− ζ(t)}b+
∫ t

s
ζ(u)

√
β(u)dBu ,

and then

Yt = exp(
∫ t

s
f(u)du)Ys +

(
exp(

∫ t

s
f(u)du)− 1

)
b+

∫ t

s

√
β(u) exp(

∫ t

u
f(r)dr)dBu ,

which gives the result using Îto’s isometry and the fact that Ys is independent from (Bt−Bs)t∈[s,T ].
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General SDE integration. Consider a general SDE of the form dYt = f(t)(Yt + gt(Yt))dt +√
β(t)dBt defined on [0, T ], where f , β satisfy A0 and g : [0, T ] × Rd → Rd is a black-box

function. Let (s, t) be a pair of time-steps such that T ≥ t > s ≥ 0. We aim to compute the
conditional distribution of Yt given Ys = ys ∈ Rd. While this distribution is intractable for general
function g, it can be approximated by a tractable Gaussian kernel if t is close enough to s. Below,
we restate two common first-order methods that produce such approximation following the result of
Lemma 2.

(a) Euler-Maruyama (EM) scheme, which consists of exactly integrating on time interval [s, t] the
SDE defined by dYu = f(s)(ys+gs(ys))du+

√
β(s)dBu with constant drift and constant volatility.

(b) Exponential Integration (EI) scheme (Durmus & Moulines, 2015), more precise than the EM
scheme, which consists of exactly integrating on time interval [s, t] the SDE defined by dYu =

f(u)(Yu + gs(ys))du+
√
β(u)dBu with linear drift, where the intractable term is frozen at gs(ys).

Computation of scores for Gaussian mixtures. Below, we provide a useful lemma to compute
the marginal scores of a noising diffusion process applied to a general Gaussian mixture.
Lemma 3. Let π ∈ P(Rd). Consider the noising process (Xt)t∈[0,T ] defined by SDE (2) where
X0 ∼ π. Then, for any t ∈ (0, T ), the conditional distribution of Xt given X0 = x0 ∈ Rd is defined
by the Gaussian kernel

qt|0(·|x0) = N(S(t)x0, S(t)
2σ2(t) Id) , (9)

where S(t) = exp(
∫ t

0
f(u)du) and σ2(t) =

∫ t

0
β(u)/S(u)2du.

In particular, if π is a Gaussian distribution i.e., π = N(m,Σ) with mean m ∈ Rd and covariance
Σ ∈ Rd×d, then for any t ∈ [0, T ], the marginal distribution of Xt is Gaussian, defined by

pt = N(S(t)m, S(t)2Σ+ S(t)2σ2(t) Id) . (10)

On the other hand, if π is a Gaussian mixture i.e., π =
∑J

j=1 wjN(mj ,Σj) where J ≥ 1 is the
number of components, {wj}Jj=1 ∈ ∆J are the component weights, mj ∈ Rd and Σj ∈ Rd×d are
respectively the mean and the covariance of the j-th component, for any t ∈ [0, T ], the marginal
distribution of Xt is a Gaussian mixture, defined by

pt =

J∑
j=1

wjN(S(t)mj , S(t)
2Σj + S(t)2σ2(t) Id) . (11)

Note that differentiating (11) provides closed-form solutions of the score of the stochastic process.

Proof. The proof of (9) directly follows from Lemma 2. Then, (10) and (11) are obtained by apply-
ing the affine mapping defined by the transition kernel (9) to the target distribution π.

In particular, (11) demonstrates that any noising diffusion scheme applied to a Gaussian mixture
does not show any mode switching.

Integral probability Metrics. Finally, we dispense the definition of standard probability metrics,
that will be used to assess the performance of the considered samplers, when having access to ground
truth samples. Consider two distributions µ ∈ P(Rd) and ν ∈ P(Rd) that we aim to compare.

We recall that the 2-Wasserstein distance between µ and ν is given by

W2(µ, ν) = inf{
∫
Rd×Rd ∥x1 − x0∥2dπ(x0, x1) : π ∈ P(Rd × Rd), π0 = µ, π1 = ν}1/2 ,

where πi denotes the i-th marginal of π for i ∈ {0, 1}. In practice, we rather turn to its entropy
regularized version (Peyré et al., 2019)

W2,ε(µ, ν) = inf{
∫
Rd×Rd ∥x1 − x0∥2dπ(x0, x1)− H (π) : π ∈ P(Rd × Rd), π0 = µ, π1 = ν}1/2 ,

where ε > 0 is a regularization hyper-parameter and H (π) = −
∫
Rd×Rd log π(x0, x1)dπ(x0, x1)

refers to as the entropy of π. When having access to samples from µ and ν, we compute a statistical
estimation of W2,ε(µ, ν) via Sinkhorn algorithm (Cuturi, 2013) with ε = 10−3.
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We also consider the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012), which quantifies
the dissimilarity between µ and ν by comparing their mean embeddings in a reproducing kernel
Hilbert space Hk with kernel k, as followed

MMD(µ, ν) = sup
f∈HK :∥f∥HK

≤1

E[f(X)− f(Y )], X ∼ µ, Y ∼ ν .

In particular, MMD(µ, ν) = 0 if and only if µ = ν almost surely. When having access to sample sets
{xi}ni=1 from µ and {yi}mi=1 from ν, we compute an unbiased statistical estimation of MMD(µ, ν)
given by√

2
n(n−1)

∑
1≤i<j≤n k(xi, xj) +

2
m(m−1)

∑
1≤i<j≤m k(yi, yj)− 2

mn

∑n
i=1

∑m
j=1 k(xi, yj) ,

where k(x, y) = exp
(
−∥x− y∥2 /(2α)

)
is the squared exponential kernel whose positive

bandwidth is fixed as the median of the squared pairwise distances computed on the joint set
{xi}mi=1 ∪ {yj}nj=1 (Gretton et al., 2012).

Finally, we recall that the Kolmogorov-Smirnov (KS) distance between µ and ν is defined by

KS(µ, ν) = sup
x∈Rd

|Fµ(x)− Fν(x)| ,

where Fµ (respectively Fν) denotes the cumulative distribution function of µ (respectively ν). When
having access to samples from µ and ν, we implement a statistical estimation of the sliced KS
distance (Grenioux et al., 2023) using 128 random projections.

C DETAILS ON NOISING DIFFUSION PROCESSES

In this section, we consider a noising diffusion process (Xt)t∈[0,T ] induced by SDE (1) for an
arbitrary target distribution π ∈ P(Rd) and T > 0, and denote by P⋆ ∈ P(CT ) the corresponding
path measure. Below, we provide detailed results on this diffusion process, depending on the choice
of f and β: we first provide details on the general setting in Appendix C.1; then, we fully describe the
Pinned Brownian Motion and the Variance-Preserving scheme in Appendix C.2 and Appendix C.3,
that are used in our experiments; finally, we present novel noising schemes in Appendix C.4.

C.1 GENERAL NOISING SCHEME

Here, we consider the most general form of SDE (1).

Lemma 4. Let π ∈ P(Rd). Assume that f and β both verify A0. Then, for any pair of time-steps
(s, t) such that T ≥ t > s ≥ 0, the conditional distribution of Xt given Xs = xs ∈ Rd is defined
by the Gaussian kernel

qt|s(·|xs) = N
(
{S(t)− S(s)}xs, S(t)

2{σ2(t)− σ2(s)} Id
)
, (12)

where S(t) = exp(
∫ t

0
f(u)du) and σ2(t) =

∫ t

0
β(u)/S(u)2du.

Proof. The proof of (12) directly follows from Lemma 2.

C.2 PINNED BROWNIAN MOTION

For any t ∈ [0, T ], define α(t) =
∫ t

0
β(t)dt and consider the case where f(t) = − β(t)

α(T )−α(t) . Then,
SDE (1) can be rewritten as

dXt = − β(t)Xt

α(T )− α(t)
dt+

√
β(t)dWt , X0 ∼ π .

This noising scheme, known as the Pinned Brownian Motion (PBM) and previously considered by
Tzen & Raginsky (2019); Zhang & Chen (2022); Vargas et al. (2023b), can be obtained by applying
a Doob’s h-transform on the scaled Brownian motion (σWt)t∈[0,T ], associated to path measure Q,
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to hit 0 at time T . Interestingly, it can be shown that the resulting path measure (P⋆)R is solution to
the following stochastic optimal control problem

argmin{KL(P | Q) : P ∈ P(CT ),PT = π} ,

which is often referred to as a half Schrödinger Bridge problem.

Lemma 5. Let π ∈ P(Rd). Assume that f(t) = − β(t)
α(T )−α(t) and β verifies A0. Then, for any pair

of time-steps (s, t) such that T ≥ t > s ≥ 0, the conditional distribution of Xt given Xs = xs ∈ Rd

is defined by the Gaussian kernel

qt|s(·|xs) = N

(
α(T )− α(t)

α(T )− α(s)
xs,

(α(T )− α(t))(α(t)− α(s))

α(T )− α(s)
Id

)
. (13)

Since p⋆T (x) =
∫
Rd qT |0(x|x0)dπ(x0), it results that P⋆

T = δ0.

Proof. The proof of (13) directly follows from Lemma 2.

Following Lemma 5, the PBM is an ’exact’ noising scheme and we have πbase = δ0 in this setting.
Moreover, under mild assumptions on π, the time-reversed SDE (2) writes as

dYt = β(T − t)

{
Yt

α(T )− α(T − t)
+∇ log p⋆T−t(Yt)

}
dt+

√
β(T − t)dBt, Y0 = 0 .

On the choice of the β-schedule. Previous works have considered constant schedule β(t) = σ2,
where σ > 0 can be arbritrarily chosen, see e.g., Zhang & Chen (2022); Richter et al. (2023). We
also follow this setting in practice.

C.3 VARIANCE-PRESERVING DIFFUSION

For any t ∈ [0, T ], denote α(t) =
∫ t

0
β(t)dt and consider the case where f(t) = −β(t)/2σ2 with

σ > 0 and β being such that
∫ T

0
β(s)ds ≫ 1. Then, SDE (1) can be rewritten as

dXt = −β(t)Xt

2σ2
dt+

√
β(t)dWt , X0 ∼ π .

This noising scheme, known as the Variance-Preserving (VP) scheme (Song et al., 2021) and previ-
ously considered by Vargas et al. (2023a), is an Ornstein-Uhlenbeck diffusion process and is largely
used in score-based generative models.

Lemma 6. Let π ∈ P(Rd) and σ > 0. Assume that f(t) = −β(t)/2σ2 and β verifies A0 such that∫ T

0
β(s)ds ≫ 1. Then, for any pair of time-steps (s, t) such that T ≥ t > s ≥ 0, the conditional

distribution of Xt given Xs = xs ∈ Rd is defined by the Gaussian kernel

qt|s(·|xs) = N
(√

1− λs,txs, σ
2λs,tId

)
, (14)

where λs,t = 1 − exp(α(s) − α(t)). Since p⋆T (x) =
∫
Rd qT |0(x|x0)dπ(x0), it results that P⋆

T ≈
N(0, σ2 Id).

Proof. The proof of (14) directly follows from Lemma 2.

Following Lemma 6, the VP scheme is an ’ergodic’ noising scheme, converging exponentially fast
to the Gaussian distribution N(0, σ2 Id); therefore, we have πbase = N(0, σ2 Id) in this setting.
Moreover, under mild assumptions on π, the time-reversed SDE (2) writes as

dYt =
β(T − t)

2
{Yt + 2σ2∇ log p⋆T−t(Yt)}dt+ σ

√
β(T − t)dBt, Y0 ∼ P⋆

T ,

after simple linear time reparameterization.
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On the choice of the β-schedule. Previous works have considered a linear schedule β(t) =
βmin(1 − t/T ) + βmax(t/T ) where βmin = 0.1, βmax ∈ {10, 20} and T = 1, see e.g., Song
et al. (2021); Richter et al. (2023); Reu et al. (2024) or cosine parameterization (Nichol & Dhariwal,
2021; Vargas et al., 2023a), which has been proved to perform better in generative modeling. In
our sampling experiments, we did not observe any significant difference between these two settings.
Hence, we fix the linear β-schedule to be the default setting for our numerics (except DDS), and let
σ be arbitrarily chosen.

C.4 ADDITIONAL EXAMPLES OF NOISING DIFFUSION PROCESSES

Below, we present original noising schemes, but did not consider them in our experiments.

Pinned Ornstein-Uhlenbeck Motion. We first propose to consider the case where f(t) =

−β(t)
2 coth(

∫ T

t
β(u)
2 du). Then, SDE (1) can be rewritten as

dXt = −β(t)

2
coth(

∫ T

t
β(u)
2 du)Xtdt+

√
β(t)dWt, X0 ∼ π .

Analogously to the PBM, one can show that this noising scheme can be obtained by applying a
Doob’s h-transform on the Ornstein-Uhlenbeck process induced by dX̃t = −β(t)

2 X̃tdt+
√
β(t)dWt

to hit 0 at time T . We refer to this noising diffusion scheme as the Pinned Ornstein-Uhlenbeck
Motion (POUM).

Lemma 7. Let π ∈ P(Rd). Assume that f(t) = f(t) = −β(t)
2 coth(

∫ T

t
β(u)
2 du) and β verifies

A0. Then, for any pair of time-steps (s, t) such that T ≥ t > s ≥ 0, the conditional distribution of
Xt given Xs = xs ∈ Rd is defined by the Gaussian kernel qt|s(·|xs) given by

N

(
|sinh(∫ T

t
β(u)

2 du)|
|sinh(∫ T

s
β(u)

2 du)|xs, 2 sinh(
∫ T

t
β(u)
2 du)2

{
coth(

∫ T

s
β(u)
2 du)− coth(

∫ T

t
β(u)
2 du)

}
Id

)
.

(15)

Since p⋆T (x) =
∫
Rd qT |0(x|x0)dπ(x0), it results that P⋆

T = δ0.

Proof. The proof of (15) directly follows from Lemma 2.

Following Lemma 7, the POUM scheme is an ’exact’ noising scheme and we have πbase = δ0 in this
setting. Moreover, under mild assumptions on π, the time-reversed SDE (2) writes as

dYt =
β(T − t)

2
{coth(

∫ T

T−t
β(u)
2 du)Yt + 2∇ log p⋆T−t(Yt)}dt+

√
β(T − t)dBt, Y0 = 0 .

Gaussianized Pinned Brownian Motion. Let ζ : [0, T ] → (0,∞) be a square integrable function
on (0, T ). Denote α(t) =

∫ t

0
ζ(u)du. Inspired by Dai et al. (2023), we propose to consider f(t) =

− ζ(t)
α(T )−α(t) and β(t) = 2ζ(t)

α(T )−α(t) . Then, SDE (1) can be rewritten as

dXt = − ζ(t)Xt

α(T )− α(t)
Xtdt+

√
2ζ(t)

α(T )− α(t)
dWt, X0 ∼ π .

Lemma 8. Let π ∈ P(Rd). Assume that f(t) = f(t) = − ζ(t)
α(T )−α(t) and β(t) = 2ζ(t)

α(T )−α(t) , where
ζ : [0, T ] → (0,∞) is a square integrable function on (0, T ). Then, for any pair of time-steps (s, t)
such that T ≥ t > s ≥ 0, the conditional distribution of Xt given Xs = xs ∈ Rd is defined by the
Gaussian kernel

qt|s(·|xs) = N

(
α(T )− α(t)

α(T )− α(s)
xs,

(
1− (α(T )− α(t))2

(α(T )− α(s))2

)
Id

)
. (16)

Since p⋆T (x) =
∫
Rd qT |0(x|x0)dπ(x0), it results that P⋆

T = N(0, Id).

Proof. The proof of (16) directly follows from Lemma 2.
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Following Lemma 7, the noising scheme given above is ’exact’ with base distribution given by
πbase = N(0, Id), this setting being quite unusual in diffusion model community. Based on this,
we refer to this noising diffusion process as the Gaussianized Pinned Brownian Motion (GPBM).
Moreover, under mild assumptions on π, the time-reverse SDE (2) writes as

dYt =
ζ(T − t)

α(T )− α(T − t)

{
Yt + 2∇ log p⋆T−t(Yt)

}
dt+

√
2ζ(T − t)

α(T )− α(T − t)
dBt, Y0 ∼ N(0, Id) .

D VARIATIONAL OBJECTIVES FOR DIFFUSION-BASED METHODS

In this section, we first provide details on the continuous-time framework of variational diffusion-
based methods (including RDS) in Appendix D.1. Then, we describe in Appendix D.1 the RDS
discrete-time formulation, related to the variational loss LRDS given in (7), and compare this frame-
work to discrete-time formulations of previous variational methods.

In the rest of the section, we consider a target distribution π ∈ P(Rd) and recall that P⋆ denotes
the path measure associated to the noising SDE (1) initialized at X0 ∼ π.

D.1 CONTINUOUS TIME FORMULATION

D.1.1 RDS SETTING

Let πref ∈ P(Rd). We recall that Pref denotes the path measure associated to the noising SDE (1)
starting at X0 ∼ πref. First note that P⋆ = π ⊗ Pref

|0 . Therefore we have the following relation P⋆ =
dπ
dπref ·Pref, i.e., P⋆ is absolutely continuous with respect to Pref, with Radon-Nikodym derivative given
by (dP⋆/dPref)(X[0,T ]) = (dπ/dπref)(X0), for any diffusion process (Xt)t∈[0,T ] with forward time
direction.

Below, we first provide the proof of Proposition 1.

Proof of Proposition 1. Assume that P⋆
T = Pref

T = πbase and there exists θ⋆ ∈ Θ such that gθ
⋆

t = gt.
Under those two assumptions, it is clear that (Y θ⋆

t )t∈[0,T ] ∼ (P⋆)R; therefore, we have LLV(θ
⋆) = 0,

i.e., θ⋆ achieves optimal solution. We now detail how to obtain (6).

Consider the detached diffusion process (Y θ̂
t )t∈[0,T ] ∼ Pθ̂. Using the fact that P⋆ = dπ

dπref · Pref, the
log-ratio in the objective (5) can be computed as

log
dPθ

d(P⋆)R
(Y θ̂

[0,T ]) = log
dPθ

d (Pref)
R

(
Y θ̂
[0,T ]

)
+ log

γref

γ

(
Y θ̂
T

)
− logZ ref + logZ . (17)

Moreover, by applying Girsanov’s theorem to the path measures (Pref)R and Pθ with the assumption
Pref
T = πbase, we have

log
dPθ

d(Pref)R
(Y θ̂

[0,T ]) =

∫ T

0

β(T − t)

2

∥∥∥gθT−t(Y
θ̂
t )
∥∥∥2 dt+ ∫ T

0

√
β(T − t)gθT−t(Y

θ̂
t )

⊤dBt . (18)

Since the Radon-Nikodym derivative between path measures and their respective time-reversals is
the same, we obtain the explicit LV objective combine the previous results to obtain the LV objective
(6) by combining (17) and (18).

In contrast, previous reference-based works from Zhang & Chen (2022); Vargas et al. (2023a) relied
on the reverse KL continuous-time objective

Lc
KL(θ) = KL(Pθ | (P⋆)R) = E

[
log

dPθ

d(P⋆)R

(
Y θ
[0,T ]

)]
, Y θ

[0,T ] ∼ Pθ (19)

where the expectation is taken w.r.t. to the parameterized process, not the detached one. In this case
too, the objective may be simplified as presented next.
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Proposition 9. Assume there exists θ⋆ ∈ Θ such that gθ
⋆

t = gt. Then, the loss defined in (19)
achieves optimal solution at θ⋆ and, setting ϱ = log(γ/γref), it simplifies as

Lc
KL(θ) = E

[∫ T

0

β(T − t)

2

∥∥gθT−t(Y
θ
t )
∥∥2 dt+ ϱ(Y θ

T )

]
, (20)

where the equality holds, up to constants independent of θ.

Proof. For any θ ∈ Θ, we have by the KL chain rule

Lc
KL(θ) = KL(πbase | P⋆

T ) + Eπbase

[
KL(Pθ

|0 | (P⋆)R|0)
]
,

where the first term does not depend on θ. Then, it is clear that Lc
KL is minimized when θ = θ⋆.

The result of (20) directly follows from (17) and (18); in particular, the additional constants are
− logZ ref and logZ .

Based on the simplification (20), one may recognize a standard formulation of stochastic control-
affine problem with terminal cost ϱ, where the uncontrolled process is given by Pref.

D.1.2 DIS SETTING

In their paper, Berner et al. (2023) seek to approximate the time-reversal of P⋆ for the VP noising
scheme. To do so, they consider the class of variational path measures (Pθ)θ∈Θ ⊂ P(CT ) where
for any θ ∈ Θ, Pθ is associated to the SDE

dY θ
t = −f(T − t)Y θ

t dt+ β(T − t)sθT−t(Y
θ
t )dt+

√
β(T − t)dBt , Y

θ
0 ∼ πbase, (21)

where f , β and πbase are detailed in Appendix C.3, and sθ : [0, T ]×Rd is typically a neural network
that aims at approximating the marginal scores of P⋆. The resulting variational method, DIS, then
consists in minimizing the KL-based objective θ 7→ KL(Pθ | (P⋆)R), later extended by Richter
et al. (2023) to the LV-based setting. We refer to (Richter et al., 2023, Section 3.2.) for detailed
expressions of these continuous-time losses.

D.1.3 CMCD SETTING

Alternatively, Vargas et al. (2024) propose to approximate a diffusion process with marginals pre-
scribed by a curve of distributions (πt)t∈[0,T ], such that π0 = πbase and πT = π, with unnnormalized
densities that are assumed to be tractable. To do so, they consider the class of pairs of variational
path measures

(
(Pθ,Qθ)

)
θ∈Θ

⊂ P(CT )
2 where, for any θ ∈ Θ, Qθ is associated to the SDE

dXθ
t =

σ2

2
(∇ log πT−t(X

θ
t )− hθ

T−t(X
θ
t ))dt+ σdWt, Xθ

0 ∼ π . (22)

and Pθ is associated to the SDE

dY θ
t =

σ2

2
(∇ log πt(Y

θ
t ) + hθ

t (Y
θ
t ))dt+ σdBt, Y θ

0 ∼ πbase , (23)

with hθ : [0, T ] × Rd → Rd being a neural network. The resulting variational method, CMCD,
consists in minimizing the KL-based objective θ 7→ KL(Pθ | (Qθ)R) or the LV-based extension.
We refer to the original paper for detailed expressions of these continuous-time losses.

D.2 DISCRETE TIME FORMULATION

Following the setting of Section 2.2, we consider a time discretization of the interval [0, T ] given by
an increasing sequence of timesteps {tk}Kk=0 such that t0 = 03, tK = T and K ≥ 1. In the rest of
the section, we denote δk = tk+1 − tk.

This section is organized as follows. We first explain in Appendix D.3 the discretization setting
that we adopt for RDS, before deriving the RDS variational objective obtained by EM integration
(Appendix D.3.1), EI integration in the PBM case (Appendix D.3.2) and EI integration in the VP
case (Appendix D.3.3). Finally, for comparison purpose, we provide a discrete time approach to
DIS in Appendix D.5 and CMCD in Appendix D.5.

3In the only case of PBM, we consider t0 > 0 to avoid numerical integration error (typically t0 = 10−4).
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D.3 GENERAL RDS SETTING

Let θ ∈ Θ and let πref ∈ P(Rd) be an arbitrary reference distribution. Consider the variational
diffusion process (Y θ

t )t∈[0,T ] defined by SDE (4). We recall that under mild assumptions on πref,
see e.g., Cattiaux et al. (2023), the time-reversal of Pref is associated to the SDE

dY ref
t = −f(T − t)Y ref

t dt+ β(T − t)sref
T−t(Y

ref
t )dt+

√
β(T − t)dBt , Y

ref
0 ∼ Pref

T . (24)

Assume that we are given transition kernels (A, yk) 7→ pθk+1|k(A|yk) and (A, yk) 7→ pref
k+1|k(A|yk)

respectively approximating P(Y θ
tk+1

∈ A | Y θ
tk

= yk) and P(Y ref
tk+1

∈ A | Y ref
tk

= yk). Then, for K
sufficiently large, the path measures Pθ and (Pref)R may respectively be approximated by the joint
distributions pθ0:K ∈ P(K+1) and pref

0:K ∈ P(K+1), defined by pθ0:K = πbase∏K−1
k=0 pθk+1|k and

pref
0:K = πbase∏K−1

k=0 pref
k+1|k. Using the relation P⋆ = dπ

dπref · Pref, (P⋆)R may also be approximated
by the joint distribution p⋆0:K = dπ

dπref · pref
0:K ∈ P(K+1).

Using this correspondence between path measures and joint distributions, we propose to approxi-
mate LLV defined in (5) by the discrete time LV-based objective

LRDS(θ) = Var

[
log

dpθ0:K
dp⋆0:K

(Y θ̂
0:K)

]
, Y θ̂

0:K ∼ pθ̂0:K . (25)

In a similar manner, Lc
KL defined in (19) may be approximated by the discrete time KL-based objec-

tive

LKL(θ) = E
[
log

dpθ0:K
dp⋆0:K

(Y θ
0:K)

]
, Y θ

0:K ∼ pθ0:K . (26)

By definition of the joint distributions, and similarly to the continuous-time relation , the log-ratio
in (25) and (26) can be simplified as

log
dpθ0:K
dp⋆0:K

(Y θ̄
0:K) = log

dpθ0:K
dpref

0:K

(Y θ̄
0:K) + log

γ

γref (Y
θ̄
K) + logZ − logZ ref . (27)

where θ̄ ∈ {θ, θ̂}. In the following sections, building upon (27), we derive the exact expression of
the variational loss (25) for each combination of noising and discretization schemes. We emphasize
that these derivations are in particular applicable to PIS and DDS settings by taking πref as given in
Table 1.

D.3.1 EM-BASED RDS

In this section, we consider an arbitrary noising scheme that fits within the framework detailed in
Appendix C.1. For any k ∈ {0, . . . ,K − 1}, define the coefficients

wEM
k = β(T − tk)δk ,

aEM
k = 1− f(T − tk)δk ,

bEM
k = β(T − tk)δk ,

cEM
k = β(T − tk)δk .

To approximate SDEs (24) and (4) on time interval [tk, tk+1], we may define the following transition
kernels

pref
k+1|k(·|yk) = N(aEM

k yk + bEM
k sref

T−tk
(yk), c

EM
k Id) , (28)

pθk+1|k(·|yk) = N(aEM
k yk + bEM

k {sref
T−tk

(yk) + gθT−tk
(yk)}, cEM

k Id) , (29)

that can be obtained by applying the EM integration scheme, see Appendix B. In this case, the
log-ratio log dpθ/dpref can be computed as follows.
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Lemma 10. Assume that the joint distributions pθ and pref are respectively induced by the transition
kernels defined in (28) and (29). Then, for any y0:K ∈ (Rd)K+1, we have

log
dpθ

dpref (y0:K) =

K−1∑
k=0

wEM
k

2
∥gθT−tk

(yk)∥2 +
K−1∑
k=0

√
wEM

k gθT−tk
(yk)

⊤ϵk ,

where ϵk =
1√
cEM
k

(
yk+1 − aEM

k yk − bEM
k {sref

T−tk
(yk) + gθT−tk

(yk)}
)

. (30)

Proof. In this proof, for ease of reading, we will respectively denote aEM
k , bEM

k , cEM
k and wEM

k by ak,
bk, ck and wk. Let y0:K ∈ (Rd)K+1. We have

log
dpθ

dpref (y0:K) =

K−1∑
k=0

log
dpθk+1|k(yk+1|yk)
dpref

k+1|k(yk+1|yk)

=

K−1∑
k=0

{
−1

2
∥ϵk∥2 +

1

2

∥∥ϵk + (bk/
√
ck)g

θ
T−tk

(yk)
∥∥2}

=

K−1∑
k=0

b2k
2ck

∥∥gθT−tk
(yk)

∥∥2 + K−1∑
k=0

bk√
ck

gθT−tk
(yk)

⊤ϵk ,

where ϵk is defined by (30). The result of Lemma 10 directly follows by noting that wk = b2k/ck.

By combining Lemma 10 with (27), we deduce the expression of the RDS loss in this setting.
Corollary 11 (Expression of RDS loss – EM setting). When using the EM scheme to integrate the
SDE (4), the RDS loss simplifies as

LRDS(θ) = Var

[
K−1∑
k=0

wEM
k gθT−tk

(Yk)
⊤{gθ̂T−tk

(Yk)−
1

2
gθT−tk

(Yk)}

+

K−1∑
k=0

√
wEM

k gθT−tk
(Yk)

⊤Zk + log
γref

γ
(Y θ̂

K)

]
,

where {Zk}K−1
k=0 are independently distributed according to N(0, Id), and {Yk}Kk=0 is recursively

defined by Y0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1},

Yk+1 = aEM
k Yk + bEM

k {sref
T−tk

(Yk) + gθ̂T−tk
(Yk)}+

√
cEM
k Zk , (31)

with θ̂ being a detached version of θ.

Proof. Consider the discrete time process {Yk}Kk=0 defined by recursion (31). With the same nota-
tion as in Lemma 10, we have for any k ∈ {0, . . . ,K − 1}

ϵk = Zk +
√
wEM

k {gθ̂T−tk
(Yk)− gθT−tk

(Yk)} ,

recalling that wEM
k = (bEM

k )2/cEM
k . Using (27), we finally obtain the expression of the RDS loss.

For completeness, we also provide a similar result for the KL-based objective given in (26).
Corollary 12 (Expression of reverse KL loss – EM setting). When using the EM scheme to integrate
the SDE (4), up to additional constants independent of θ, the discrete time KL loss simplifies as

LKL(θ) = E

[
K−1∑
k=0

wEM
k

2

∥∥gθT−tk
(Y θ

k )
∥∥2 + log

γref

γ
(Y θ

K)

]
,

where {Zk}K−1
k=0 are independently distributed according to N(0, Id), and {Y θ

k }Kk=0 is recursively
defined by Y θ

0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1}

Y θ
k+1 = aEM

k Y θ
k + bEM

k {sref
T−tk

(Y θ
k ) + gθT−tk

(Y θ
k )}+

√
cEM
k Zk .
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As observed by Vargas et al. (2023a), there may be a significant bias raising from the use of the
Euler-Maruyama discretization when using diffusion-based sampling methods. This motivates us to
consider EI discretization in the RDS setting.

D.3.2 EI-BASED RDS (PBM)

We first provide the expression of the RDS loss in the case of the PBM noising scheme, which is
detailed in Appendix C.2. We recall the notation α(t) =

∫ t

0
β(u)du. For any k ∈ {0, . . . ,K − 1},

define the coefficients

wPBM
k =

(α(T )− α(T − tk))(α(T − tk)− α(T − tk+1))

α(T )− α(T − tk+1)
,

aPBM
k =

α(T )− α(T − tk+1)

α(T )− α(T − tk)
,

bPBM
k = α(T − tk)− α(T − tk+1) ,

cPBM
k =

(α(T )− α(T − tk+1))(α(T − tk)− α(T − tk+1))

α(T )− α(T − tk)
.

To approximate SDEs (24) and (4) on time interval [tk, tk+1], we may define the following transition
kernels

pref
k+1|k(·|yk) = N(aPBM

k yk + bPBM
k sref

T−tk
(yk), c

PBM
k Id) , (32)

pθk+1|k(·|yk) = N(aPBM
k yk + bPBM

k {sref
T−tk

(yk) + gθT−tk
(yk)}, cPBM

k Id) , (33)

that can be obtained by applying the EI scheme, see Appendix B. In this case, the log ratio
log dpθ/dpref can be computed as follows.

Lemma 13. Assume that the joint distributions pθ and pref are respectively induced by the transition
kernels defined in (32) and (33). Then for any y0:K ∈ (Rd)K+1, we have

log
dpθ

dpref (y0:K) =

K−1∑
k=0

wPBM
k

2
∥gθT−tk

(yk)∥2 +
K−1∑
k=0

√
wPBM

k gθT−tk
(yk)

⊤ϵk ,

where ϵk =
1√
cPBM
k

(
yk+1 − aPBM

k yk − bPBM
k {sref

T−tk
(yk) + gθT−tk

(yk)}
)

.

Proof. The proof is exactly the same as Lemma 10, noting that we still have wPBM
k = (bPBM

k )2/cPBM
k .

By combining Lemma 13 with (27), we deduce the expression of the RDS loss in this setting. The
proof of the following is the same as in Corollary 11.

Corollary 14 (Expression of RDS loss – EI setting – PBM scheme). When using the EI scheme to
integrate SDE (4) implemented with PBM, the RDS loss simplifies as

LRDS(θ) = Var

[
K−1∑
k=0

wPBM
k gθT−tk

(Yk)
⊤{gθ̂T−tk

(Yk)−
1

2
gθT−tk

(Yk)}

+

K−1∑
k=0

√
wPBM

k gθT−tk
(Yk)

⊤Zk + log
γref

γ
(Y θ̂

K)

]
,

where {Zk}K−1
k=0 are independently distributed according to N(0, Id), and {Yk}Kk=0 is recursively

defined by Y0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1}

Yk+1 = aPBM
k Yk + bPBM

k {sref
T−tk

(Yk) + gθ̂T−tk
(Yk)}+

√
cPBM
k Zk ,

with θ̂ being a detached version of θ.
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For completeness, we also provide a similar result for the KL-based objective given in (26).
Corollary 15 (Expression of reverse KL loss – EI setting – PBM noising). When using the EI
scheme to integrate SDE (4) implemented with PBM, up to additional constants independent of θ,
the discrete time KL loss simplifies as

LKL(θ) = E

[
K−1∑
k=0

wPBM
k

2

∥∥gθT−tk
(Y θ

k )
∥∥2 + log

γref

γ
(Y θ

K)

]
,

where {Zk}K−1
k=0 are independently distributed according to N(0, Id), and {Y θ

k }Kk=0 is recursively
defined by Y θ

0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1}

Y θ
k+1 = aPBM

k Y θ
k + bPBM

k {sref
T−tk

(Y θ
k ) + gθT−tk

(Y θ
k )}+

√
cPBM
k Zk .

D.3.3 EI-BASED RDS (VP)

Here, we provide the expression of the RDS loss in the case of the VP noising scheme, which is
detailed in Appendix C.3. We recall the notation α(t) =

∫ t

0
β(u)du. For any k ∈ {0, . . . ,K − 1},

define λk = exp ((α(T − tk)− α(T − tk+1))−1 and the coefficients

wVP
k =

4σ2(
√
1 + λk − 1)2

λk
= 4σ2 tanh

(
α(T − tk)− α(T − tk+1)

4

)
aVP
k =

√
1 + λk

bVP
k = 2σ2{

√
1 + λk − 1}

cVP
k = σ2λk

To approximate SDEs (24) and (4) on time interval [tk, tk+1], we may define the following transition
kernels

pref
k+1|k(·|yk) = N(aVP

k yk + bVP
k sref

T−tk
(yk), c

VP
k Id) , (34)

pθk+1|k(·|yk) = N(aVP
k yk + bVP

k {sref
T−tk

(yk) + sθT−tk
(yk)}, cVP

k Id) ,

that can be obtained by applying the EI scheme, see Appendix B. In this case, the log ratio
log dpθ/dpref can be computed as follows.
Lemma 16. Assume that the joint distributions pθ and pref are respectively induced by the transition
kernels defined in (34) and (34). Then, for any y0:K ∈ (Rd)K+1, we have

log
dpθ

dpref (y0:K) =

K−1∑
k=0

wVP
k

2
∥gθT−tk

(yk)∥2 +
K−1∑
k=0

√
wVP

k gθT−tk
(yk)

⊤ϵk

where ϵk =
1√
cVP
k

(
yk+1 − aVP

k yk − bVP
k {sref

T−tk
(yk) + gθT−tk

(yk)}
)

Proof. The proof is exactly the same as Lemma 10, noting that we still have wVP
k = (bVP

k )2/cVP
k .

By combining Lemma 16 with (27), we deduce the expression of the RDS loss in this setting. The
proof of the following is the same as in Corollary 11.
Corollary 17 (Expression of RDS loss – EI setting - VP scheme). When using the EI scheme to
integrate SDE (4) implemented with VP , the RDS loss simplifies as

LRDS(θ) = Var

[
K−1∑
k=0

wVP
k gθT−tk

(Yk)
⊤{gθ̂T−tk

(Yk)−
1

2
gθT−tk

(Yk)}

+

K−1∑
k=0

√
wVP

k gθT−tk
(Yk)

⊤Zk + log
γref

γ
(Y θ̂

K)

]
,
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where {Zk}K−1
k=0 are independently distributed according to N(0, Id), and {Yk}Kk=0 is recursively

defined by Y0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1}

Yk+1 = aVP
k Yk + bVP

k {sref
T−tk

(Yk) + gθ̂T−tk
(Yk)}+

√
cVP
k Zk ,

with θ̂ being a detached version of θ.

For completeness, we also provide a similar result for the KL-based objective given in (26).

Corollary 18 (Expression of reverse KL loss – EI setting - VP noising). When using the EI scheme
to integrate SDE (4) implemented with VP, up to additional constants independent of θ, the discrete
time KL loss simplifies as

LKL(θ) = E

[
K−1∑
k=0

wVP
k

2

∥∥gθT−tk
(Y θ

k )
∥∥2 + log

γref

γ
(Y θ

K)

]
,

where {Zk}K−1
k=0 are independently distributed according to N(0, Id), and {Y θ

k }Kk=0 is recursively
defined by Y θ

0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1},

Y θ
k+1 = aVP

k Y θ
k + bVP

k {sref
T−tk

(Y θ
k ) + gθT−tk

(Y θ
k )}+

√
cVP
k Zk .

D.4 DIS SETTING

Here, we propose a discrete time alternative to the continuous time objective proposed by Berner
et al. (2023) and Richter et al. (2023). Let θ ∈ Θ. Consider the variational diffusion process
(Y θ

t )t∈[0,T ] defined by SDE (21).

Assume that we are given transition kernels (A, yk) 7→ pθk+1|k(A|yk) and (A, yk+1) 7→
p⋆k|k+1(A|yk+1) respectively approximating P(Y θ

tk+1
∈ A | Y θ

tk
= yk) and P(Xtk ∈ A | Xtk+1

=

yk+1). Then, for K sufficiently large, the path measures Pθ and (P⋆)R may be approximated by the
joint distributions pθ0:K ∈ P(K+1) and p⋆0:K ∈ P(K+1) defined by pθ0:K = πbase∏K−1

k=0 pθk+1|k and

p⋆0:K = π
∏K−1

k=0 p⋆k|k+1.

Following the RDS methodology, we propose to approximate the KL-based continuous-time DIS
objective by

LDIS
KL (θ) = E

[
log

dpθ0:K
dp⋆0:K

(Y θ
0:K)

]
, Y θ

0:K ∼ pθ0:K , (35)

and the LV-based continuous-time DIS objective by

LDIS
LV (θ) = Var

[
log

dpθ0:K
dp⋆0:K

(Y θ̂
0:K)

]
, Y θ̂

0:K ∼ pθ̂0:K . (36)

To approximate SDEs (21) and (1) on time interval [tk, tk+1], we may define the following transition
kernels

p⋆k|k+1(·|yk+1) = N(yk+1 + f(T − tk+1)δkyk+1, β(T − tk+1)δk Id) , (37)

pθk+1|k(·|yk) = N(yk − f(T − tk)δkyk + β(T − tk)δks
θ(T − tk, yk), β(T − tk)δk Id) , (38)

that can be obtained by applying the EM integration scheme4, see Appendix B. In this case, the
log-ratio log dpθ/dp⋆ can be computed as follows.

4Note that one could also consider the Markov kernels given by Exponential integration of the SDEs associ-
ated to path measures (Pθ)R and P⋆, to reduce the discretization error. Here, we follow the spirit of the original
approach, where the authors considered the EM discretization.
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Lemma 19. Assume that the joint distributions p⋆ and pθ are respectively induced by the transition
kernels defined in (37) and (38). Then, for any y0:K ∈ (Rd)K+1, we have

log
dpθ

dp⋆
(y0:K) = logZ + log

πbase(y0)

γ(yK)
+

K−1∑
k=0

log
dpθk+1|k(yk+1|yk)
dp⋆k|k+1(yk|yk+1)

= logZ + log
πbase(y0)

γ(yK)
+

K−1∑
k=0

d

2
log

(
β(T − tk+1)

β(T − tk)

)
− 1

2
∥ϵk∥2 +

1

2
∥ϵ′k∥

2
,

where

ϵk =
1√

β(T − tk)δk

(
yk+1 − yk + f(T − tk)δkyk − β(T − tk)δks

θ
T−tk

(yk)
)
,

ϵ′k =
1√

β(T − tk+1)δk
(yk − yk+1 − f(T − tk+1)δkyk+1) .

Based on Lemma 19, we simply deduce the expression of the discrete time versions of LV-based and
KL-based DIS losses.

Corollary 20 (Expression of KL-DIS loss). When using the EM scheme to integrate SDE (21), up
to additional constants independent of θ, the KL-based discrete time DIS loss (35) simplifies as

LDIS
KL (θ) = E

[
log

πbase(Y θ
0 )

γ(Y θ
K)

− 1

2

K−1∑
k=0

∥Zk∥2

+
1

2

K−1∑
k=0

β(T − tk)

β(T − tk+1)

∥∥∥∥∥
√

δk
β(T − tk)

Aθ
k −

√
β(T − tk)δks

θ
T−tk

(Y θ
k )− Zk

∥∥∥∥∥
2
 ,

with Aθ
k = f(T − tk)Y

θ
k − f(T − tk+1)Y

θ
k+1 ,

where {Zk}K−1
k=0 are independently distributed according to N(0, Id), and {Y θ

k }Kk=0 is recursively
defined by Y θ

0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1},

Y θ
k+1 = Y θ

k − f(T − tk)δkY
θ
k + β(T − tk)δks

θ
T−tk

(Y θ
k ) +

√
β(T − tk)δkZk .

Corollary 21 (Expression of LV-DIS loss). When using the EM scheme to integrate SDE (21), the
LV-based discrete time DIS loss (36) simplifies as

LDIS
LV (θ) = Var

[
log

πbase(Y0)

γ(YK)
− 1

2

K−1∑
k=0

∥∥∥√β(T − tk)δk

(
sθ̂T−tk

(Yk)− sθT−tk
(Yk)

)
+ Zk

∥∥∥2
+
1

2

K−1∑
k=0

β(T − tk)

β(T − tk+1)

∥∥∥∥∥
√

δk
β(T − tk)

Ak −
√
β(T − tk)δks

θ̂
T−tk

(Yk)− Zk

∥∥∥∥∥
2
 ,

with Ak = f(T − tk)Yk − f(T − tk+1)Yk+1 ,

where {Zk}K−1
k=0 are independently distributed according to N(0, Id), and {Yk}Kk=0 is recursively

defined by Y0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1},

Yk+1 = Yk − f(T − tk)δkYk + β(T − tk)δks
θ̂
T−tk

(Yk) +
√
β(T − tk)δkZk ,

with θ̂ being a detached version of θ.

D.5 CMCD SETTING

Here, we propose a discrete time alternative to the continuous time objective proposed by Vargas
et al. (2024). Let θ ∈ Θ. Consider the variational diffusion processes (Y θ

t )t∈[0,T ] defined by SDE
(23), and (Xθ

t )t∈[0,T ], defined by (22).
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Assume that we are given transition kernels (A, yk) 7→ pθk+1|k(A|yk) and (A, yk+1) 7→
qθk|k+1(A|yk+1) respectively approximating P(Y θ

tk+1
∈ A | Y θ

tk
= yk) and Qθ(Xθ

tk
∈ A | Xθ

tk+1
=

yk+1). Then, for K sufficiently large, the path measures Pθ and (Qθ)R may be approximated by the
joint distributions pθ0:K ∈ P(K+1) and qθ0:K ∈ P(K+1) defined by pθ0:K = πbase∏K−1

k=0 pθk+1|k and

qθ0:K = π
∏K−1

k=0 qθk|k+1.

Following the RDS methodology, we propose to approximate the KL-based continuous-time CMCD
objective by

LCMCD
KL (θ) = E

[
log

dpθ0:K
dqθ0:K

(Y θ
0:K)

]
, Y θ

0:K ∼ pθ0:K , (39)

and the LV-based continuous-time CMCD objective by

LCMCD
LV (θ) = Var

[
log

dpθ0:K
dqθ0:K

(Y θ̂
0:K)

]
, Y θ̂

0:K ∼ pθ̂0:K . (40)

For any k ∈ {0, . . . ,K − 1}, let us define wCMCD
k = σ2δk/4.

To approximate SDEs (22) and (23) on time interval [tk, tk+1], we may define the following transi-
tion kernels

qθk|k+1(·|yk+1) = N(yk+1 +
σ2δk
2

(∇ log πtk+1
(yk+1)− hθ

tk+1
(yk+1)), σ

2δk Id) , (41)

pθk+1|k(·|yk) = N(yk +
σ2δk
2

(∇ log πtk(yk) + hθ
tk
(yk)), σ

2δk Id) , (42)

that can be obtained by applying the EM integration scheme, see Appendix B. In this case, the
log-ratio log dpθ/dqθ can be computed as follows.
Lemma 22. Assume that the joint distributions qθ and pθ are respectively induced by the transition
kernels defined in (41) and (42). Then, for any y0:K ∈ (Rd)K+1, we have

log
dpθ

dqθ
(y0:K) = logZ + log

πbase(y0)

γ(yK)
+

K−1∑
k=0

log
dpθk+1|k(yk+1|yk)
dqθk|k+1(yk|yk+1)

= logZ + log
πbase(y0)

γ(yK)
+

1

2

K−1∑
k=0

wCMCD
k ∥uk∥2 +

K−1∑
k=0

√
wCMCD

k u⊤
k ϵk ,

where

uk = ∇ log πtk(yk) +∇ log πtk+1
(yk+1) + hθ

tk
(yk)− hθ

tk+1
(yk+1) ,

ϵk =
1

σ
√
δk

(
yk+1 − yk − σ2δk

2
{∇ log πtk(yk) + hθ

tk
(yk)}

)
.

Based on Lemma 22, we simply deduce the expression of the discrete time versions of LV-based and
KL-based CMCD losses.
Corollary 23 (Expression of KL-CMCD loss). When using the EM scheme to integrate SDE (23),
up to additional constants independent of θ, the KL-based discrete time CMCD loss (39) simplifies
as

LCMCD
KL (θ) = E

[
log

πbase(Y θ
0 )

γ(Y θ
K)

+
1

2

K−1∑
k=0

wCMCD
k

∥∥uθ
k

∥∥2 ++

K−1∑
k=0

√
wCMCD

k (uθ
k)

⊤Zk

]
,

with uθ
k = ∇ log πtk(Y

θ
k ) +∇ log πtk+1

(Y θ
k+1) + hθ

tk
(Y θ

k )− hθ
tk+1

(Y θ
k+1) ,

where {Zk}K−1
k=0 are independently distributed according to N(0, Id), and {Y θ

k }Kk=0 is recursively
defined by Y θ

0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1},

Y θ
k+1 = Y θ

k +
σ2δk
2

{∇ log πtk(Y
θ
k ) + hθ

tk
(Y θ

k )}+ σ
√

δkZk .
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Corollary 24 (Expression of LV-CMCD loss). When using the EM scheme to integrate SDE (23),
the LV-based discrete time CMCD loss (40) simplifies as

LCMCD
LV (θ) = Var

[
log

πbase(Y0)

γ(YK)
+

1

2

K−1∑
k=0

wCMCD
k {

∥∥uθ
k

∥∥2 + (hθ̂
tk
(Yk)− hθ

tk
(Yk))

⊤uθ
k}

+

K−1∑
k=0

√
wCMCD

k (uθ
k)

⊤Zk

]
,

with uθ
k = ∇ log πtk(Yk) +∇ log πtk+1

(Yk+1) + hθ
tk
(Yk)− hθ

tk+1
(Yk+1) ,

where {Zk}K−1
k=0 are independently distributed according to N(0, Id), and {Yk}Kk=0 is recursively

defined by Y0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1},

Yk+1 = Yk +
σ2δk
2

{∇ log πtk(Yk) + hθ̂
tk
(Yk)}+ σ

√
δkZk .

E ANNEALED MCMC SAMPLERS

In this section, we present a line of Monte Carlo algorithms that aim at sampling from a sequence of
distributions p ∈ P(K+1), with K ≥ 1, defined such that p0 is an easy-to sample distribution and
pk is harder and harder to sample as k increases. In this section, we assume that each distribution pk
is absolutely continuous with respect to the Lebesgue measure, with tractable unnormalized density
and tractable score, where both can be evaluated pointwise.

Reminders on the Metropolis-Adjusted Langevin Algorithm (MALA). This sampling algo-
rithm is the only one in this section to be designed so as to sample from a single distribution
π ∈ P(Rd) with density γ : Rd → R+ known up to a normalizing constant. It is an extension
of the largely used Unadjusted Langevin Algorithm (ULA) (Roberts & Tweedie, 1996).

Given a number of steps L ≥ 1, a step-size λ > 0 and an easy-to-sample distribution pinit ∈ P(Rd),
ULA builds a Markov chain (Xℓ)Lℓ=0 defined by X0 ∼ pinit and for any ℓ ∈ {0, . . . , L− 1},

Xℓ+1 = Xℓ + λ∇ log γ(Xℓ) +
√
2λZℓ , Zℓ ∼ N(0, Id) ,

which reduces to a time discretization of the Langevin diffusion that admits π as invariant distribu-
tion. Building upon this recursion, MALA (Roberts & Tweedie, 1996) addresses the discretization
bias by adding a Metropolis-Hastings acceptance/rejection step at each iteration, see Algorithm 5.
In practice, one can easily adapt the step-size λ by targeting a specific acceptance ratio. We follow
this paradigm in our numerical experiments, see Appendix H for more details.

Annealed Langevin MCMC (AL-MCMC). Based on exact samples from p0, the Annealed
Langevin MCMC algorithm (Song & Ermon, 2019; 2020) consists in sequentially sampling from
pk+1 with MALA (Algorithm 5) initialized in the last samples obtained at step k. The core idea
behind this procedure is that the warm initialization obtained by the easy-to-sample distributions
(i.e., when k is low) can help to overcome sampling issues, such as high energy barriers, in the more
complex distributions (i.e., when k is large). We refer to Algorithm 6 for the pseudo-code of this
approach.

Sequential Monte Carlo (SMC) and extension. The Sequential Monte Carlo (Neal, 2001;
Del Moral et al., 2006) algorithm lies on the same paradigm as Algorithm 6 but proceeds in parallel
over N chains (which are referred as particles) while ensuring that the warm initialization is cor-
rect. To do so, SMC relies on an additional resampling step before each MALA run via importance
weights, that we next define.

Let N ≥ 1, k ∈ {0, . . . ,K − 1} and (xn
k )

N
n=1 be samples from pk obtained independently as the

last samples of N parallel MALA runs (or exactly obtained if k = 0). Then, the SMC importance
weights designed to sample from pk+1, denoted by (w̃n

k+1)
N
n=1, and their renormalized versions,
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Algorithm 5: Metropolis-Adjusted Langevin Algorithm (MALA)
Input: Target distribution π with unnormalized density γ, step size λ > 0, number of steps L ≥ 1, initial

distribution pinit

▷ Initialization
X0 ∼ pinit

for ℓ ∈ {0, . . . , L− 1} do
▷ Propose a new sample
X̃ℓ+1 = Xℓ + λ∇ log γ(Xℓ) +

√
2λZℓ, Zℓ ∼ N(0, Id)

▷ Compute the acceptance ratio
α = min

(
1, γ(X̃ℓ+1)q(Xℓ|X̃ℓ+1)

γ(Xℓ)q(X̃ℓ+1|Xℓ)

)
where q(y | x) = N(y;x+ λ∇ log γ(x), 2λ Id)

▷ Accept or reject depending on α
U ∼ U([0, 1])
if U ≤ α then

Xℓ+1 = X̃ℓ+1

else
Xℓ+1 = Xℓ

Output: Sequence of samples X0:L such that X0:L iid∼ π (approximately)

Algorithm 6: Annealed Langevin MCMC (AL-MCMC) algorithm
Input: Sequence of target distributions {pk}Kk=0, step-sizes {λk}Kk=1 ∈ (0,∞)K , number of MALA

steps per level L ≥ 1
▷ Initialization
X0:L

0
iid∼ p0

for k = 0, . . . ,K − 1 do
▷ Sample from pk+1 by starting at samples obtained from pk
X0:L

k+1 = MALA(pk+1, λk+1, L, δXL
k
), see Algorithm 5

Output: Sequence of samples X0:L
0:K such that X0:L

k
iid∼ pk (approximately)

denoted by (wn
k+1)

N
n=1, are defined as

w̃n
k+1 =

pk+1(x
n
k )

pk(xn
k )

, wn
k =

w̃n
k+1∑N

j=1 w̃
j
k+1

.

The SMC resampling step then consists in obtaining N new samples (ynk+1)
N
n=1 by random selection

among the original samples (xn
k )

N
n=1 via a multinomial distribution (with replacement) defined by

the normalized weights (wn
k+1)

N
n=1. These novel samples will then be used as starting points for

running MALA on the target pk+1. We detail the whole SMC procedure in Algorithm 7.

Recently, Phillips et al. (2024) proposed an extension of the SMC algorithm, Particle Denoising
Diffusion Sampler (PDDS), where they consider the specific case where the intermediate distribu-
tions {pk}Kk=0 are defined as the approximate marginals of a denoising diffusion process. Below, we
explain the fundamentals of PDDS.

Let π ∈ P(Rd) be a hard-to-sample distribution. With the same notations as in Section 2.1, consider
the noising process (X⋆)t∈[0,T ] induced by the following SDE

dX⋆
t = f(t)X⋆

t dt+
√

β(t)dWt , X
⋆
0 ∼ π . (43)

Then, assuming that X⋆
T ∼ πbase, the time-reversal of SDE (43) is given by

dY ⋆
t = −f(T − t)Y ⋆

t dt+ β(T − t)∇ log p⋆T−t(Y
∗
t )dt+

√
β(t)dBt, Y ⋆

0 ∼ πbase , (44)

where p⋆t is the density of the marginal distribution associated to X⋆
t , which is intractable in gen-

eral. Assume that we are given a sequence of intermediate unnormalized densities (pt)t∈[0,T ] that
approximate the target densities (p⋆t )t∈[0,T ].

In particular, the time-reversed SDE (44) can be approximated by

dYt = −f(T − t)Ytdt+ β(T − t)∇ log pT−t(Yt)dt+
√

β(T − t)dBt , Y0 ∼ πbase . (45)
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Algorithm 7: Sequential Monte Carlo (SMC) algorithm
Input: Sequence of target distributions {pk}Kk=0, step-sizes {λk}Kk=1 ∈ (0,∞)K , number of MCMC

steps per level L ≥ 1, number of particles N ≥ 1
▷ Initialization
X1:N

0
iid∼ p0

for k = 0, . . . ,K − 1 do
▷ 1. Compute the importance weights (in parallel, for n = 1, . . . , N )
W̃n

k+1 = pk+1(X
n
k )/pk(X

n
k )

▷ 2. Normalize the importance weights (in parallel, for n = 1, . . . , N )
Wn

k+1 = W̃n
k+1/

∑N
j=1 W̃

j
k+1

▷ 3. Resample X1:N
k into Y 1:N

k+1 using the importance weights
I1:N ∼ M(W 1

k+1, . . . ,W
N
k+1)

Y 1:N
k+1 = XI1:N

k

▷ 4. Sample from pk+1 by starting from sample Y n
k+1 (in parallel, for n = 1, . . . , N )

X̃1:L
k+1 = MALA(pk+1, λk+1, L, δY n

k+1
), see Algorithm 5

Xn
k+1 = X̃L

k+1

Output: Sequence of samples X1:N
0:K such that X1:N

k
iid∼ pk (approximately)

Consider a time discretization {tk}Kk=0 such that t0 = 0 and tK = T , and the sequence of target
distributions {pk}Kk=0 defined by pk = pT−tk , such that pk is expected to be harder and harder to
sample from as k increases.

Let k ∈ {0, . . . ,K − 1}, define δk = tk+1 − tk. Since SDE (43) is linear, it can be exactly
integrated on time interval [T − tk+1, T − tk], see Lemma 2. We denote by p⋆k|k+1 the correspond-
ing transition density. On the other hand, SDE (45) can only be approximately integrated on time
interval [tk, tk+1] (due to the score term in the drift). For instance, this can be done using the
Euler-Maruyama transition kernel5

pk+1|k(·|yk) = N(yk − f(T − tk)δkyk + β(T − tk)δk∇ log pT−tk(yk), β(T − tk)δk Id) .

To sample sequentially from {pk}Kk=0, Phillips et al. (2024) suggest to apply the SMC procedure
detailed in Algorithm 7, where the k-th resampling step (1-3) is now defined as follows.

0. Sample X̂n
k+1 ∼ pk+1|k(· | Xn

k ) (in parallel, for n = 1, . . . , N );

1. Compute the importance weights (in parallel, for n = 1, . . . , N )

W̃n
k+1 =

pk+1(X̂
n
k+1)p

⋆
k|k+1(X

n
k | X̂n

k+1)

pk(Xn
k )pk+1|k(X̂

n
k+1 | Xn

k )
;

2. Normalize the weights with Wn
k+1 = W̃n

k+1/
∑N

j=1 W̃
j
k+1 (in parallel, for n = 1, . . . , N );

3. Resample X̂1:N
k+1 into Y 1:N

k+1 with the multinomial distribution associated to {Wn
k+1}Nn=1.

Hence, this novel resampling step amounts to reweight the samples obtained from the approximate
time-reversed SDE (45) by using the exact noising scheme as proposal.

Replica Exchange (RE). The Replica Exchange algorithm (Swendsen & Wang, 1986) aims at
sampling from the annealed distributions {pk}Kk=0 with K + 1 parallel Markov chains, i.e., the k-th
chain targets pk. For the sake of pedagogy, we assume here that K is even.

At each level, RE sampling is done via a local MCMC sampler, such as MALA, which is expected
to have poor performance for large k. To alleviate this issue, every L MALA steps, RE randomly
performs a swapping between Markov chains. More specifically, each consecutive pair (k, k+1) of

5In the original paper, the authors consider the VP noising scheme and compute pk+1|k as the transition
kernel obtained by Exponential Integration of SDE (45) on [tk, tk+1].
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Markov chains (i.e., either (k, k+1) ∈ {(0, 1), . . . , (K−2,K−1)} or (k, k+1) ∈ {(1, 2), . . . , (K−
1,K)}), with respective current states Xk and Xk+1, is swapped with probability

pk,k+1 = min

(
1,

pk(Xk+1)pk+1(Xk)

pk(Xk)pk+1(Xk+1)

)
.

We provide the pseudo-code of this algorithm in Algorithm 9.

Algorithm 8: Swapping step of Replica Exchange
Input: Sequence of target distributions {pk}Kk=0 with even K, current samples X1:K , swapping state

s ∈ {0, 1}
if s = 0 then

Indexes = {0, 2, . . . ,K − 2}
else

Indexes = {1, 3, . . . ,K − 1}
▷ Compute the swapping probability between k and k + 1 (in parallel, for k ∈ Indexes)
pk,k+1 = min

(
1,

pk(Xk+1)pk+1(Xk)

pk(Xk)pk+1(Xk+1)

)
▷ Swap depending on pk,k+1 (in parallel, for k ∈ Indexes)
U ∼ U([0, 1])
if U < pk,k+1 then

(Xk, Xk+1) = (Xk+1, Xk)

Output: Randomly swapped sequence X0:K

Algorithm 9: Replica Exchange (RE) algorithm
Input: Sequence of target distributions {pk}Kk=0 with even K, step-sizes {λk}Kk=1 ∈ (0,∞)K , total

number of MCMC steps M ≥ 1, swap frequency S ≥ 1
▷ Initialization
X0

0:K
iid∼ p0

s = 0
for m = 0, . . . ,M − 1 do

if (m+ 1)modS == 0 then
▷ Swap Markov chains for indexes determined by s
Xm+1

0:K = swapRE(Xm
0:K , s), see Algorithm 8

s = (s+ 1)mod 2
else

▷ Sample locally (in parallel, for k = 0, . . . ,K)
Xm+1

k = MALA(pk, λk, 1, δXm
k
), see Algorithm 5

Output: Sequence of samples X0:M
0:K such that X0:M

k
iid∼ pk (approximately)

Known limitations of annealed MCMC samplers. In general, annealed MCMC samplers usu-
ally target a sequence of distributions {pk}Kk=0, which forms a geometric bridge between an easy-
to-sample distribution πbase and a hard-to-sample distribution π, i.e., pk = (πbase)(K−k)/Kπk/K .
However, this scheme suffer from mode-switching for multi-modal distribution π (Phillips et al.,
2024), i.e., the mode weights of the intermediate distributions may vary a lot as k increases. There-
fore, transitions between annealing levels is hard in practice, as samples can easily get stuck in a
low-probability modes. Moreover, due to the use of reweighting schemes, SMC and RE are highly
sensitive to the overlap between consecutive distributions, which requires to take K large in complex
multi-modal settings.
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F ENERGY-BASED MODELS

This section is dedicated to describing Energy-Based Models.

F.1 SINGLE-LEVEL EBMS

Let p ∈ P(Rd). We assume having access to samples from p but not to its density. Energy-
based Models (EBM) perform a density estimation task by modeling the density of p with pφ(x) =
exp(−Eφ(x))/Zφ, where Eφ : Rd → R is a neural network and Zφ =

∫
Rd exp(−Eφ(x))dx is

an unknown normalizing constant. This model is trained by maximizing the log-likelihood of the
model L(φ) = E[log pφ(X)] where X ∼ p, whose gradients can be computed as

∇φL(φ) = E[∇φE
φ(X−)]− E[∇φE

φ(X+)], X− ∼ pφ, X+ ∼ p . (46)

Given samples from p (referred to as positive samples) and samples from pφ (referred to as negative
samples), one can compute a Monte-Carlo estimator of ∇φL(φ) using (46). In practice, the negative
samples are usually obtained by running a MCMC sampler on pφ (which is possible because it is
known up to a normalizing constant). However, obtaining truthful negative samples is the main
challenge of the EBM training procedure as pφ is expected to be as multi-modal as p.

F.2 MULTI-LEVEL EBMS

Let p ∈ P(K+1), with K ≥ 1. For k = 1, . . . ,K, we assume having access to samples from pk but
not to its density. Regarding p0, we assume it to be known entirely. Our goal is to approximate the
density of pk at every level k ∈ {1, . . . ,K}. A naive approach would consist in defining single-level
EBMs for each k. Assuming that the distributions pk are not completely unrelated, doing this would
be however very inefficient. This section presents alternatives to this approach.

F.2.1 PRIOR WORKS

Diffusion Recovery Likelihood (DRL). Recently, Gao et al. (2021); Zhu et al. (2024) proposed
the DRL framework, based on the extra assumption that for any k ∈ {0, . . . ,K − 1}, the condi-
tional distribution pk|k+1 is known and given by pk|k+1(· | xk+1) = N(αk+1xk+1, σ

2
k+1 Id) for

some αk+1 ∈ R and σk+1 > 0. This is typically the case when the joint distribution p is de-
fined via a discrete time approximation of a linear SDE, see Appendix C. In the following, we
denote Yk = αkXk where Xk ∼ pk. In DRL, the authors suggest to use a multi-level EBM
pφk (·) = exp(−Eφ(k, ·))/Zφ

k , where Eφ : {1, . . . ,K} × Rd → R is a neural network and the
normalizing constant Zφ

k =
∫
Rd exp(−Eφ(k, x))dx is intractable. In this case, the density of pk

is approximated, up to a multiplicative constant, by exp(−Eφ(k, ·)). Using Bayes rule, they define
for any k ∈ {0, . . . ,K − 1} the following conditional EBM

pφk+1|k(yk+1 | xk) ∝ pk|k+1(xk | yk+1/αk+1)p
φ
k+1(yk+1)

= (Zφ(k + 1, xk))
−1

exp

(
− 1

2σ2
k+1

∥xk − yk+1∥2 − Eφ(k + 1, yk+1)

)
,

where Zφ(k + 1, xk) =
∫
Rd exp

(
−
(
2σ2

k+1

)−1 ∥xk − y∥2 − Eφ(k + 1, y)
)
dy. Note that if σ2

k+1

is small enough, for instance when K is large, then the quadratic term dominates in the expression of
log pφk+1|k(· | xk), which means that this conditional distribution localizes on xk. Therefore, by ap-
plying a first order Taylor expansion of the energy term at xk, the following Gaussian approximation
holds

pφk+1|k(yk+1 | xk) ≈ N
(
xk − σ2

k+1∇Eφ(k + 1, xk), σ
2
k+1 Id

)
.

Hence, if σ2
k+1 is chosen small enough, this conditional distribution will be very easy to sample

from. Based on this observation, the authors suggest to use the following maximum likelihood
objective

LDRL(φ) =

K−1∑
k=0

LDRL
k (φ) , with LDRL

k (φ) = E
[
log pφk+1|k(αk+1Xk+1 | Xk)

]
, (47)
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where Xk+1 ∼ pk+1 and Xk ∼ pk|k+1(·|Xk+1). In particular, the gradient of the the single-level
DRL loss defined in (47) can be expressed as

∇φLDRL
k (φ) = E[∇φE

φ(k, Y −
k )]− E[∇φE

φ(k, αkX
+
k )] ,

where Xk ∼ pk, Y −
k+1 ∼ pφk+1|k(· | Xk) and X+

k+1 ∼ pk+1. Up to a multiplicative constant, the
density of pk can then be approximated by xk 7→ pφk (αkxk).

Diffusion Assisted EBM (DA-EBM). On the other hand, (Zhang et al., 2023) suggest to solve
the problem by jointly modeling indexes and states. Here, the multi-level EBM is expressed as
pφk (x) = exp(−Eφ(k, x))/Zφ, where Eφ : {0, . . . ,K} × Rd → R is a neural network and the
normalizing constant Zφ =

∑K
k=0

∫
Rd exp(−Eφ(k, x))dx, which can be learn by maximizing the

following maximum likelihood objective

LDAEBM(φ) = E [log pφk (Xk)] , k ∼ U({0, . . . ,K}), Xk ∼ pk . (48)

The gradient of objective (48) can be written as

∇φLDAEBM(φ) = E[∇φE
φ(k−, X−)]− E[∇φE

φ(k+, X+
k )] ,

where (k−, X−) ∼ pφ, k+ ∼ U({0, . . . ,K}) and X+
k ∼ pk+ . In the same fashion as Kim &

Ye (2023), the authors suggest to perform the negative sampling from pφ by doing a Gibbs-within-
Langevin procedure, whose transition kernel is summarized in Algorithm 10.

Algorithm 10: Gibbs-within-Langevin MCMC transition kernel
Input: Previous state (k, x) ∈ {0, . . . ,K} × Rd, step-size λ > 0
▷ Sample x̃ given k with standard MCMC
x̃ = MALA(pφ(· | k), λ) where pφ(· | k) ∝ pφk (·)
▷ Sample k̃ given x̃ with a multinomial distribution
k̃ ∼ M (exp(−Eφ(0, x̃)), . . . , exp(−Eφ(K, x̃)))

Output: Next state (k̃, x̃)

F.2.2 OUR APPROACH: USING AN ANNEALED MCMC SAMPLER AS BACKBONE

In this paper, we also suggest to learn a multi-level EBM approximating p, defined by pφk (x) =

exp (−Eφ(k, x)) /Zφ
k , where Eφ : {0, . . . ,K} ×Rd → R is a neural network and the normalizing

constant Zφ
k =

∫
Rd exp (−Eφ(k, x)) dx. We propose to learn φ by maximizing a simple yet novel

maximum likelihood joint objective

Lours(φ) =

K∑
k=0

Lours
k (φ) , Lours

k (φ) = E [log pφk (Xk)] , Xk ∼ pk , (49)

with single-level gradient given by

∇φLours
k (φ) = E[∇φE

φ(k,X−
k )]− E[∇φE

φ(k,X+
k )] , X−

k ∼ pφk , X+
k ∼ pk .

Unlike previous multi-level EBM algorithms, the negative sampling phase can be simply done in
our framework by leveraging annealed MCMC algorithms presented in Appendix E on the sequence
of EBM densities {pφ(k, ·)}Kk=0. This allows us to kill two birds in one stone as (i) we get negative
samples for each single-level EBM and (ii) we overcome the negative sampling limitations of each
EBM by leveraging the correlation between the consecutive levels. In practice, we use Replica
Exchange as default annealed MCMC sampler because of its massively parallel capabilities. We
summarize our training procedure in Algorithm 11. For ease of reading, we presented the continuous
time analog of this approach in the main part of the paper, see Section 3.3.
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Algorithm 11: Multi-level EBM training using annealed MCMC samplers
Input: Number of traing iterations N ≥ 1, initial parameter φ0, batch size B ≥ 1, number of MCMC

steps L ≥ 1, predefined annealed MCMC sampler
for n = 0, . . . , N − 1 do

▷ Get B samples from pk (in parallel, for k = 0, . . . ,K)
{X+

k,b}
B
b=1

iid∼ pk
▷ Get B samples from each pφn

k using the annealed MCMC sampler
{X−

k,b}
B,K
b=1,k=0 = annealedMCMC

(
{pφn

k }Kk=0, B
)

▷ Apply a stochastic gradient descent on φn

Compute the MC estimator ĝn of the gradient of the loss Lours(φn) defined in (49)

ĝn = B−1 ∑K
k=0

(∑B
b=1 ∇φE

φn

(
k,X−

k,b

)
−

∑B
b=1 ∇φE

φn

(
k,X+

k,b

))
Update φn to φn+1 with Adam optimizer based on ĝn

Output: Optimized parameter φN

Multi-level EBM parameterization as GMM tilting. To reduce the computational footprint of
multi-level EBMs in the context of LRDS, we suggest to define our EBM model as a tilting of a
learned GMM. Let φ̄ = {wj ,mj ,Σj}Jj=1 be the parameters learned by GMM-LRDS (Algorithm 3)
to approximate π̂ref and denote by pφ̄t the t-th marginal density of the resulting reference process.
Building on this, we define pφt as a tilting of pφ̄t by

log pφt (x) = log pφ̄t (x)−NNφ(t, x) ,

where NNφ : [0, T ] × Rd → R is a neural network with parameter φ. In this scenario, we design
the initial φ0 to ensure that NNφ0 = 0. In practice, in the case where the GMM shares very few
similarities with π̂ref close to t = 0, we rather consider

log pφt (x) = 1t>tlim(t)× log pφ̄t (x)−NNφ(t, x) ,

where tlim ∈ [0, T ]. For most of our numerical experiments, we found that tlim = 0.2 brought
satisfying results.

G ADDITIONAL METRICS FOR VARIATIONAL DIFFUSION-BASED METHODS

When specifically using annealed VI methods, one may consider additional metrics to evaluate the
performance of the corresponding samplers. For completeness purpose, we provide in this section
the expressions of the sampling metrics presented by Blessing et al. (2024), for all discrete time
variational diffusion-based methods presented in this paper: RDS (including PIS and DDS), DIS
and CMCD. All of these metrics are implemented in our code.

Given a fixed level of time discretization K ≥ 1, these performance criteria require the evaluation
of a variational importance weight function w : (Rd)K+1 → R+, assessing the quality of the
variational approximation, that is specific to each variational setting.

• For RDS (including PIS and DDS), we define

w(y0:K) =
Z ref

Z
dpθ0:K(y0:K)

dp⋆0:K(y0:K)
=

dpθ0:K(y0:K)γref(yK)

dpref
0:K(y0:K)γ(yK)

,

where pθ ∈ P(K+1) and pref ∈ P(K+1) are respectively defined as discrete time approximations
of the path measures Pθ and (Pref)R; see Appendix D.3 for more details.

• For DIS, we define

w(y0:K) =
1

Z
dpθ0:K(y0:K)

dp⋆0:K(y0:K)
,

where pθ ∈ P(K+1) and p⋆ ∈ P(K+1) are respectively defined as discrete time approximations of
the path measures Pθ, induced by SDE (21), and (P⋆)R; see Appendix D.4 for more details.
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• For CMCD, we define

w(y0:K) =
1

Z
dpθ0:K(y0:K)

dqθ0:K(y0:K)

where pθ ∈ P(K+1) and qθ ∈ P(K+1) are respectively defined as discrete time approximations
of the path measures Pθ, induced by SDE (23), and (Qθ)R, where Qθ is induced by SDE (22); see
Appendix D.5 for more details.

Note that, for each variational setting, w does not depend on the normalization constant of the target
distribution : in particular, Z simplifies in the DIS and CMCD expressions. This also stands for Z ref

in the RDS setting.

G.1 ’REVERSE’ PERFORMANCE CRITERIA

Definition. Standard variational metrics, referred to as ’reverse’ performance criteria by Blessing
et al. (2024), are defined as expectations with respect to the variational distribution.

(a) The Evidence Lower Bound (ELBO), expected to be maximized, defined by

ELBO = −E[logw(Y θ
0:K)] , Y θ

0:K ∼ pθ0:K .

For any RDS setting with intractable Z ref, this criterion may assess the performance of the RDS
sampler itself, but cannot be used for numerical comparison with different variational settings.

(b) The MC estimation of the normalizing constant Ẑr, expected to be close to Z , defined by

Ẑr = E[w(Y θ
0:K)] , Y θ

0:K ∼ pθ0:K .

For any RDS setting with intractable Z ref, this criterion cannot be used.
(c) The normalized Explained Sum of Squares (nESSr), expected to be close to 1, defined by

nESSr =
E[w(Y θ

0:K)]2

E[w(Y θ
0:K)2]

, Y θ
0:K ∼ pθ0:K .

Computation. Based on the results from Appendix D.2, we detail the simulation of Y θ
0:K and the

computation of logw(Y θ
0:K) for each setting.

• RDS setting: Y θ
0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1},

Y θ
k+1 = akY

θ
k + bk{sref

T−tk
(Y θ

k ) + gθT−tk
(Y θ

k )}+
√
ckZk , Zk ∼ N(0, Id) ,

and the importance weight function is given by

logw(Y θ
0:K) =

K−1∑
k=0

wk

2

∥∥gθT−tk
(Y θ

k )
∥∥2 + K−1∑

k=0

√
wkg

θ
T−tk

(Y θ
k )

⊤Zk + log
γref

γ
(Y θ

K) ,

where {wk, ak, bk, ck}K−1
k=0 depend on the noising scheme and the discretization setting.

• DIS setting: Y θ
0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1},

Y θ
k+1 = Y θ

k − f(T − tk)δkY
θ
k + β(T − tk)δks

θ
T−tk

(Y θ
k ) +

√
β(T − tk)δkZk , Zk ∼ N(0, Id) ,

and the importance weight function is given by

logw(Y θ
0:K) = log

πbase(Y θ
0 )

γ(Y θ
K)

+

K−1∑
k=0

d

2
log

(
β(T − tk+1)

β(T − tk)

)
− 1

2

K−1∑
k=0

∥Zk∥2

+
1

2

K−1∑
k=0

β(T − tk)

β(T − tk+1)

∥∥∥∥∥
√

δk
β(T − tk)

Aθ
k −

√
β(T − tk)δks

θ
T−tk

(Y θ
k )− Zk

∥∥∥∥∥
2

,

with Aθ
k = f(T − tk)Y

θ
k − f(T − tk+1)Y

θ
k+1 .
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• CMCD setting: Y θ
0 ∼ πbase, and for any k ∈ {0, . . . ,K − 1},

Y θ
k+1 = Y θ

k +
σ2δk
2

{∇ log πtk(Y
θ
k ) + hθ

tk
(Y θ

k )}+ σ
√

δkZk , Zk ∼ N(0, Id) ,

and the importance weight function is given by

logw(Y θ
0:K) = log

πbase(Y θ
0 )

γ(Y θ
K)

+
1

2

K−1∑
k=0

wCMCD
k

∥∥uθ
k

∥∥2 ++

K−1∑
k=0

√
wCMCD

k (uθ
k)

⊤Zk ,

with uθ
k = ∇ log πtk(Y

θ
k ) +∇ log πtk+1

(Y θ
k+1) + hθ

tk
(Y θ

k )− hθ
tk+1

(Y θ
k+1) .

G.2 ’FORWARD’ PERFORMANCE CRITERIA

Definition. As observed by Blessing et al. (2024), the ’reverse’ variational metrics presented above
may not be able to quantify mode collapse. Hence, the authors propose novel variational metrics,
referred to as ’forward’ performance criteria, that are defined as expectations with respect to the
ground truth distribution.

(a) The Evidence Upper Bound (EUBO), expected to be minimized, defined by

EUBO = E[logw(Y0:K)] , Y0:K ∼ p⋆0:K .

For any RDS setting with intractable Z ref, this criterion may assess the performance of the RDS
sampler itself, but cannot be used for numerical comparison with different variational settings.

(b) The MC estimation of the normalizing constant Ẑf , expected to be close to Z , defined by

Ẑf =
(
E[w(Y0:K)−1]

)−1
, Y0:K ∼ p⋆0:K .

For any RDS setting with intractable Z ref, this criterion cannot be used.

(c) The normalized Explained Sum of Squares (nESSf ), expected to be close to 1, defined by

nESSf =
(
E[w(Y0:K)−1]E[w(Y0:K)]

)−1
, Y0:K ∼ p⋆0:K .

Computation. Based on the results from Appendix D.2, we detail the simulation of Y0:K and the
computation of logw(Y0:K) for each setting.

• RDS setting with EM scheme: YK ∼ π, and for any k ∈ {0, . . . ,K − 1},

Yk = Sk+1(tk)Yk+1 + Sk+1(tk)σk+1(tk)Zk , Zk ∼ N(0, Id) ,

where Sk(t) = exp
(∫ T−t

T−tk
f(u)du

)
, σ2

k(t) =
∫ T−t

T−tk

β(u)
Sk(u)2

du, and the importance weight function
is given by

logw(Y0:K) = −
K−1∑
k=0

wEM
k gθT−tk

(Yk)
⊤
{
sref
T−tk

(Yk) +
1

2
gθT−tk

(Yk)

}

−
K−1∑
k=0

σk+1(tk)g
θ
T−tk

(Yk)
⊤Zk +

K−1∑
k=0

(
1

Sk+1(tk)
− 1 + f(T − tk)δk

)
gθT−tk

(Yk)
⊤Yk

+ log
γref

γ
(YK) ,

as a consequence of Lemma 10.

• RDS setting with EI scheme (PBM): YK ∼ π, and for any k ∈ {0, . . . ,K − 1},

Yk = Sk+1(tk)Yk+1 + Sk+1(tk)σk+1(tk)Zk , Zk ∼ N(0, Id) ,
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where Sk+1(tk) =
αT−αT−tk+1

αT−αT−tk
and σk+1(tk)

2 = αT−tk − αT−tk+1
, with α(t) =

∫ t

0
β(u)du, and

the importance weight function is given by

logw(Y0:K) = −
K−1∑
k=0

wPBM
k gθT−tk

(Yk)
⊤{sref

T−tk
(Yk) +

1

2
gθT−tk

(Yk)}

−
K−1∑
k=0

√
wPBM

k gθT−tk
(Yk)

⊤Zk + log
γref

γ
(YK) ,

as a consequence of Lemma 13.
• RDS setting with EI scheme (VP): YK ∼ π, and for any k ∈ {0, . . . ,K − 1},

Yk = Sk+1(tk)Yk+1 + Sk+1(tk)σk+1(tk)Zk , Zk ∼ N(0, Id) ,

where Sk+1(tk) =
1√

1+λk
and σk+1(tk)

2 = σ2λk, with α(t) =
∫ t

0
β(u)du and λk = exp({α(T −

tk)− α(T − tk+1)}, the importance weight function is given by

logw(Y0:K) = −
K−1∑
k=0

wVP
k gθT−tk

(Yk)
⊤{sref

T−tk
(Yk) +

1

2
gθT−tk

(Yk)}

−
K−1∑
k=0

√
wVP

k gθT−tk
(Yk)

⊤Zk + log
γref

γ
(YK) ,

as a consequence of Lemma 16.
• DIS setting: YK ∼ π, and for any k ∈ {0, . . . ,K − 1},

Yk = Yk+1 + f(T − tk+1)δkYk+1 +
√
β(T − tk+1)δkZk , Zk ∼ N(0, Id) ,

and the importance weight function is given by

logw(Y0:K) = log
πbase(Y0)

γ(YK)
+

K−1∑
k=0

d

2
log

(
β(T − tk+1)

β(T − tk)

)
+

1

2

K−1∑
k=0

∥Zk∥2

− 1

2

K−1∑
k=0

1

β(T − tk)δk

∥∥∥∥∥Ak − β(T − tk)δks
θ
T−tk

(Yk)−
√

β(T − tk+1)δk
1 + f(T − tk+1)δk

Zk

∥∥∥∥∥
2

with Ak =

(
1

1 + f(T − tk+1)δk
− 1 + f(T − tk)δk

)
Yk ,

as a consequence of Lemma 19.
• CMCD setting: YK ∼ π, and for any k ∈ {0, . . . ,K − 1},

Yk = Yk+1 +
σ2δk
2

{∇ log πtk+1
(Yk+1)− hθ

tk+1
(Yk+1)}+ σ

√
δkZk , Zk ∼ N(0, Id) ,

and the importance weight function is given by

logw(Y0:K) = log
πbase(Y0)

γ(YK)
− 1

2

K−1∑
k=0

wCMCD
k

∥∥uθ
k

∥∥2 − K−1∑
k=0

√
wCMCD

k (uθ
k)

⊤Zk

with uθ
k = ∇ log πtk(Yk) +∇ log πtk+1

(Yk+1) + hθ
tk
(Yk)− hθ

tk+1
(Yk+1) ,

as a consequence of Lemma 22.
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Table 3: Covariance settings for the bi-modal Gaussian mixture. We denote by logdiag(a, b)
with 0 < a < b the diagonal matrix in Rd×d whose diagonal is a log-linear interpolation between a
and b. Moreover, Qd ∈ Rd×d is a random orthogonal matrix built by doing the QR decomposition
of a random matrix distributed according to U([0, 5]d×d). The seed used to generate this last matrix
is fixed at 42.

Type Difficulty Cond. number Covariance

Diagonal Isotropic 1 (5× 10−2)2 × Id
Diagonal Medium 102 (5× 10−2)2 × logdiag(10−2, 1)
Diagonal Hard 104 (5× 10−2)2 × logdiag(10−4, 1)

Full Medium 102 (5× 10−2)2 ×Qd × logdiag(10−2, 1)×QT
d

Full Hard 104 (5× 10−2)2 ×Qd × logdiag(10−4, 1)×QT
d

H IMPLEMENTATION DETAILS

H.1 DETAILS ON TARGET DISTRIBUTIONS

Gaussian mixture from Figure 2. The distribution from Figure 2 is a 16-dimensional mixture
between N(m1,Σ1) and N(m2,Σ2) with weights 0.7 and 0.3 respectively. Let 1d be the d-
dimensional vector with all components equal to 1, then we have

m1 = −0.6× 116, m2 = +0.6× 116 .

Moreover, denote Rθ a rotation matrix with angle θ between the first and last axes, then

Σ1 = Rπ/4 diag(10
−2, . . . , 10−2, 10−1)RT

π/4, Σ2 = Rπ/6 diag(10
−1, 10−2, . . . , 10−2)RT

π/6 .

In practice, we estimate the weight of the first mode w1 by computing a Monte Carlo estimator of∫
1N(x;m1,Σ1)>N(x;m2,Σ2)(x)π(x)dx . (50)

Bi-modal Gaussian mixture. This Gaussian mixture is used in Figure 1 and also in Section 5. It is
a d-dimensional mixture between N(−1d,Σ) and N(1d,Σ) with weights 2/3 and 1/3 respectively.
The different values of Σ are recapped in Table 3. Just like the previous experiment, we also use
(50) to estimate the strongest mode weight with Monte Carlo approach.

Multi-modal Gaussian mixtures. Given a number of mixture components L > 2, we define a
d-dimensional Gaussian mixture x ∈ Rd 7→

∑L
ℓ=1 wℓN(x;mℓ, 0.5 Id), where the mean locations

{mℓ}Lℓ=1 are independently distributed according to U
(
[−L,L]d

)
and the mixture weights {wℓ}Lℓ=1

are strictly increasing, defined with a constant geometrical increment such that wL/w1 = 3. To
assess the mode weight recovery in this multi-modal setting, we compute the total variation distance
between the exact mode weight histogram and the mode weight histogram computed from Monte
Carlo approximation.

Rings distribution. Let T : R+ × [0, 2π] → R2 be the transformation from polar to cartesian
coordinates. Let θ ∼ U([0, 2π]) and R ∼ N(r, σ2) with r, σ > 0, we say that T (R, θ) is distributed
as a ring of radius r and width σ. The Rings distribution is a mixture of rings with radiuses r = 1, 3, 5
and width σ = 0.1. The weights of each ring within the mixture are 1/9, 3/9 and 5/9. In this specific
case, we use more MCMC chains and GMM components than the number of modes. The initial
points of the MCMC samplers are fetched by drawing the same amount of uniformly distributed
points on each ring.

Checkerboard distribution. We divide the square [−4, 4]2 into 16 squares of size 2 × 2. This
distribution is defined as a mixture of uniform distributions on those squares in an interleaving
fashion. We assign a weight of 18.75% to each 4 squares on the left and 6.25% to each 4 squares on
the right. The initial points of the MCMC samplers are taken as the middle of each square.
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The ϕ4 field system. The ϕ4 model is a simplified framework often used as a continuous version
of the Ising model, aiding in the exploration of phase transitions within statistical mechanics. As per
Gabrié et al. (2022), we focus on a discretized version of this model, set on a one-dimensional grid
with size d = 32. Each configuration is represented as a d-dimensional vector (ϕi)

d
i=1. To further

constrain the system, we fix the field to zero at both ends by setting ϕ0 = ϕd+1 = 0.

The negative log-density of the distribution is then expressed as follows

lnπh(ϕ) = −β

(
ad

2

d+1∑
i=1

(ϕi − ϕi−1)
2 +

1

4ad

d∑
i=1

(1− ϕ2
i )

2 + hϕi

)
. (51)

We selected parameter values that make the system bimodal, setting a = 0.1 and the inverse tem-
perature β = 20, while adjusting the value of h. We define w+ as the statistical frequency of
configurations where ϕd/2 > 0, and w− as the frequency where ϕd/2 < 0. When h = 0, the system
is symmetric under the transformation ϕ → −ϕ, so we anticipate w+ = w−. However, for h > 0,
the negative mode becomes more prevalent.

For large values of d, the relative likelihood of the modes can be approximated using Laplace ex-
pansions at the 0th and 2nd orders. Letting ϕh

+ and ϕh
− represent the local maxima of (51), these

approximations provide the following results respectively

w−

w+
≈

πh(ϕ
h
−)

πh(ϕh
+)

,
w−

w+
≈

πh(ϕ
h
−)× | detHh(ϕ

h
−)|−1/2

πh(ϕh
+)× | detHh(ϕh

+)|−1/2
, (52)

where Hh is the Hessian of the function ϕ → lnπh(ϕ). We compute the modes ϕh
+ and ϕh

− using a
gradient descent on the distribution’s potential. Since we do not have access to ground truth samples
in practice, we compare the Laplace approximations defined in (52), considered as our ground truth,
to a Monte Carlo estimation of w−/w+.

Bayesian logistic regression models. Finally, we evaluate the performance of a Bayesian lo-
gistic model, defined for any pair (x, y) ∈ Rdim × {0, 1} by the likelihood p(y|x;w, b) =
Bernoulli(y;σ(wTx + b)), where w ∈ Rdim is a weight vector, b ∈ R is an intercept and σ is the
sigmoid function. Given a dataset D = {(xj , yj)}Mj=1 ⊂ Rdim ×{0, 1} of size M , we aim to sample
from the posterior distribution p(w, b|D) ∝ p(w, b)

∏M
j=1 p(yj |xj ;w, b) where p(w, b) = p(w)p(b)

is a fixed prior distribution. Following Blessing et al. (2024), we consider four real-world settings
of binary classification problem: Ionosphere (dim = 35, M = 351), Sonar (dim = 61, M = 208),
German Credit (dim = 25,M = 1000), Breast Cancer (dim = 31, M = 569). Each of these
datasets is randomly split into a training subset Dtrain of size 0.8M and a test subset Dtest of size
0.2M . In this setting, we define the target distribution π = p(w, b|Dtrain) and evaluate the sampling
quality by computing the (unnormalized) average predictive log-likelihood log p(w, b|Dtest), which
is expected to be maximized. In each case, the prior is carefully chosen as a Gaussian distribution
with the following parameters:

• Ionosphere: p(w) = N(0, 5.25 I34) and p(b) = N(4.25, 0.252),
• Sonar: p(w) = N(0, 4.5 I60) and p(b) = N(−2.5, 0.52),
• German Credit: p(w) = N(0, 1.25 I24) and p(b) = N(3.25, 0.55),
• Breast Cancer: p(w) = N(0, 3.75 I30) and p(b) = N(31, 22).

We draw the reader’s attention to the fact that these posterior distributions don’t exhibit explicit
multi-modality features. Therefore, for EBM-LRDS, the tilting EBM parameterization is rather
based on a Gaussian approximation of the target distribution than a GMM approximation. The
initial point of the MCMC samplers are sampled from the prior distribution.

H.2 COMPUTATIONAL COMPARISON OF THE PRESENTED METHODS

This section aims at comparing the computational budget of each algorithm. In particular, we track
the number of neural network evaluations and the number of target evaluations. For each algorithm,
we take the following notations
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Table 4: Complexity of each algorithm during the overall sampling procedure. We track the
number of target evaluations and neural network evaluations. We consider that computing π is as
expensive as computing ∇ log π. We assume an infinite parallel computational capabilities. Note
that the cost of the training procedure can be amortized to sample multiple times.

Method Number of target evaluations Number of neural network evaluations

SMC O(KM) 0
RE O(M) 0
PIS/DDS/DIS/CMCD O(NK) O(NK)
PDDS O(A(N +KM)) O(A(N +KM))
iDEM O(AN) O(ANK)

LRDS O(N) O(NK)

• For SMC : K (number of annealing steps), M (number of MCMC steps per level)
• For RE : M (total number of MCMC steps)
• For RDS (PIS/DDS/LRDS), DIS and CMCD : N (number of training steps), K (number of dis-
cretization steps)
• For PDDS : N (number of training steps), M (number of MCMC steps per level), K (number of
discretization steps), A (number of adaptation steps)
• For iDEM : N (number of training steps), K (number of discretization steps), A (number of
adaptation steps)

We detail the complexities of each algorithm in Table 4. Note that, in LRDS, the complexity of
MCMC sampling (to compute π̂ref) or the complexity of learning the reference process were ignored
as they are negligeable compared to the training and sampling budgets; see Appendix H.3 for details.

H.3 HYPER-PARAMETERS OF EACH SAMPLING ALGORITHM

In this section, we detail every hyper-parameter for each algorithm involved in the computations of
the results in Section 5. The computationally-related parameters were chosen to ensure a comparable
execution clock-time between the different algorithms on the same hardware.

Construction of the MCMC dataset for π̂ref. We build the dataset of reference samples by run-
ning MCMC samplers initialized in the modes of the target distribution. We run 4 chains per mode.
We use the Metropolis-adjusted Langevin algorithm (MALA) as default sampler except for the
Checkerboard distribution where we use the Random Walk Metropolis Hastings (RWMH) algo-
rithm as the score is constant. In both cases, we adapt the step size automatically for 8192 warmup
steps to aim at a 70% acceptance rate. The datasets are 60000 samples long.

Annealed MCMC methods (SMC, RE). For both algorithms, we incorporate prior knowledge
within the geometric annealing path by taking πbase = N(m,Σ) where m and Σ where computed
using maximum likelihood on samples from π̂ref. For SMC, we use 128 annealing levels with 1024
particles and 64 MCMC steps per level (with a 4096 steps warmup). For the ϕ4 distribution we
use 64 MCMC steps. For RE, we use 128 annealing levels with 256 independent chains per level
and a swapping frequency every 8 steps for a total of 32 steps (with a 8192 steps warmup). Both
algorithms use MALA as MCMC backbone with a step-size automatically tuned to achieve 70%
acceptance rate.

Variational diffusion-based methods (PIS, DDS, DIS, CMCD, LRDS). For PIS, DDS and DIS,
we use the implementation provided by Richter et al. (2023). We re-implemented CMCD ourselves;
see Appendix D.5 for details. For PIS, DDS and DIS, we set the hyper-parameter σ as advised
by Appendix I.2 by computing the mean and the variance of the samples from π̂ref to add prior
knownledge. For CMCD, we use a geometric annealing path πbase = N(m,Σ) where m and Σ are
computed using maximum likelihood on samples from π̂ref.
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For all algorithms, we use 100 time discretization steps and we perform 4096 optimization steps
with a batch of size 2048. The neural network at stake is a Fourier MLP, as in Zhang & Chen
(2022), with 4 layers of width 64. In the case of PIS, DDS, DIS and CMCD, we use a target-
informed parameterization by adding NN(t) × ∇ log π(x) (where NN is a time-dependent scalar
neural network) to the Fourier MLP, as suggested by the respective authors. Not that, by default, we
do not use this target-informed parameterization in LRDS. Additionally, as recommended by Zhang
& Chen (2022), we design the guidance network such that gθ0 = 0. This ensures that the very first
sampling phase is driven solely using the reference process.

For DIS, we use a linear VP schedule. For all diffusion-based algorithms and target distributions, we
ensured that the noising schedules were chosen to ensure that the target distribution gets successfully
noised at time T . For LRDS, we use an exponential integration of the respective time-reversed SDE
as default transition kernel; see Appendix D.3.2 and Appendix D.3.3.

Adaptive diffusion-based methods (iDEM, PDDS). For iDEM, we use the implementation pro-
vided by the original paper (Akhound-Sadegh et al., 2024). In order to provide prior information
leveraging π̂ref, (i) we standardize the target distribution by using the empirical mean and variance
of π̂ref (ii) we preload the buffer with samples from π̂ref. Following the design choices of the original
paper, we use a Variance Exploding noising scheme with a geometric variance schedule σt. Because
we standardized the target distribution, we decided to take σT = 5 for each target distribution to en-
sure that the distribution is properly noised. We used the same hyper-parameters as in their Gaussian
mixture experiment with 400 epochs instead of 1000 to ensure computational fairness. For PDDS,
we also use the implementation provided by the original paper (Phillips et al., 2024). In order to
provide prior information leveraging π̂ref, we standardized the target distribution by leveraging the
empirical mean and variance of π̂ref thus bypassing the original VI step of their algorithm. We also
significantly increased the default computational budget by using 128 discretization steps, 2048 par-
ticles and training for 100000 steps with a batch size of 512. The rest of the hyper-parameters are
the default ones.

LRDS reference fitting details. For GMM-LRDS, the EM algorithm is taken from Pedregosa
et al. (2011). We use a diagonal covariance for Rings distribution, Checkerboard distribution, di-
agonal Gaussian mixtures and Bayesian posterior distributions, and use a full covariance otherwise.
In the full covariance case, we regularize the covariance to ensure their positivity. For EBM-RDS,
we fit multi-level EBMs with Algorithm 11 using the Replica Exchange annealed sampler (see Al-
gorithm 9) as backbone. This sampler has the advantage of being massively parallel and thus suited
for GPU computations. We perform 200 epochs with a batch size of 32 for each noise level. To
increase gradient accuracy and enhance efficiency, we accumulate the gradients over 10 steps where
we keep the same negative samples but update the positive ones. We perform 32 MCMC steps to
sample a batch of negative samples with a swap happening every 8 steps. We keep 16 MCMC steps
out of 32 to compute the expectations. To compensate the short length of our MCMC chains, we
leverage a persistent buffer to kickstart the chains at each noise level. Lastly, we utilise the GMM
tilting EBM parameterization detailed at the end of Appendix F where the neural network parame-
terized as x 7→ NN(t, x)Tx as suggested by Salimans & Ho (2021). We leverage the GMM tilting
initialization of the EBM to perform exact MCMC sampling at the very first gradient step. More-
over, we preconditioned the network as advised by Karras et al. (2022) by leveraging the Gaussian
approximation of π̂ref.
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I ADDITIONAL RESULTS

I.1 LINK BETWEEN THE TARGET AND THE REFERENCE PROCESSES

Let πref ∈ P(Rd) be an arbitrary distribution. We recall that under mild assumptions on πref, see
e.g., Cattiaux et al. (2023), the time-reversal of Pref is associated to the SDE

dY ref
t = −f(T − t)Y ref

t dt+ β(T − t)sref
T−t(Y

ref
t )dt+

√
β(T − t)dBt , Y

ref
0 ∼ Pref

T . (53)

Link with Schrödinger Bridge. Since P⋆ and Pref are based on the same noising diffusion pro-
cess, these path measures are linked by the relation P⋆ = π ⊗ Pref

|0 . Hence, using the KL chain
rule (Léonard, 2014), it is clear that P⋆ is solution to the following minimization problem over path
measure space

argmin{KL(P | Pref) : P ∈ P(CT ),P0 = π} ,

which is often referred to as a half-Schrödinger bridge problem in stochastic control literature.

Link with Doob’s h-transform. This relation on path measure space can also be written as P⋆ =
dπ
dπref · Pref, see Appendix D.1. Therefore, solely based on the SDE (53) describing (Pref)R, (P⋆)R

may be expressed as a Doob’s h-transform of (Pref)R via the SDE

dYt = −f(T − t)Ytdt+ β(T − t){sref
T−t(Yt) + hT−t(Yt)}dt+

√
β(T − t)dBt , Y0 ∼ P⋆

T ,

where the Doob’s control function h : [0, T ] × Rd → Rd is defined, for any yt ∈ Rd and any
t ∈ [0, T ], by

hT−t(yt) = ∇ logE(Pref)R
T |t

[
dπ

dπref (YT ) | Yt = yt

]
= ∇ logEPref

0|T−t

[
dπ

dπref (X0) | Xt = yt

]
.

Additionally, we have for any xt ∈ Rd,
p⋆t
pref
t

(xt) =
1

pref
t (xt)

∫
Rd

p⋆t|0(xt|x0)dπ(x0)

=

∫
Rd

dπ

dπref (x0)
pref
t|0(xt|x0)dπ

ref(x0)

pref
t (xt)

= EPref
0|t

[
dπ

dπref (X0) | Xt = xt

]
.

By combining previous computations, we obtain ht = ∇ log p⋆t /p
ref
t = gt for any t ∈ [0, T ].

I.2 OPTIMAL SETTING OF ISOTROPIC GAUSSIAN REFERENCE DISTRIBUTION

The goal of this section is to explain how to set the hyperparameter σ ∈ (0,∞) in PIS and DDS set-
tings so as to ‘optimize’ the reference distribution πref = N(0, σ2 Id), when targeting a multi-modal
distribution. The same reasoning can also be applied in the DIS setting to set the base distribution
πbase, chosen as an isotropic Gaussian distribution.

Let π ∈ P(Rd) be our target distribution. Assume that we are given a diagonal Gaussian approx-
imation π̃ = N(m,Σ) of π, with mean m ∈ Rd and covariance Σ = diag(Γ2) ∈ Rd×d, where
Γ ∈ (0,∞)d. We propose to set πref as ’close’ as possible to π̃ in PIS and DDS by solving the
following variational problem

argmin{KL(π̃ | N(0, σ2 Id)) : σ ∈ (0,∞)} .

Let σ > 0. We have

KL(π̃ | N(0, σ2Id)) =
1

2

[
log

|σ2Id|
|Σ|

− d+ σ−2mTm+Tr(σ−2Σ)

]

=
1

2

d log(σ2)−
d∑

j=1

log Γ2
j − d+ σ−2mTm+ σ−2

d∑
j=1

Γ2
j

 .
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Moreover, the derivative with respect to σ2 is given by

∂

∂σ2
KL(π̃ | N(0, σ2Id)) =

1

2

dσ−2 − σ−4

mTm+

d∑
j=1

Γ2
j

 .

In particular, the optimal solution of this variational problem is

σ2
π = d−1

mTm+

d∑
j=1

Γ2
j

 ,

which motivates us to set πref = N(0, σ2
π Id).

In practice, when we do not have samples from the target distribution, we rather rely on a diagonal
Gaussian approximation of the empirical distribution π̂ref (obtained with local MCMC samplers)
and set πref = N(0, σ2

π̂ref Id).

Application to Gaussian mixtures. In the particular case where π is a Gaussian mixture, we have
an analytical formula for π̃.

Let π =
∑J

j=1 wjN (mj ,Σj) be our target distribution with w1:J ∈ ∆J , where the j-th component
has mean mj ∈ Rd and covariance Σj = diag(λj) ∈ Rd×d with λj ∈ (0,∞)d. Consider X ∼ π
and Z ∼ M(w1, . . . , wJ). We first have

E[X] = E [E [X | Z]] =

J∑
j=1

wjmj .

We define the diagonal variance of π by diagVar(π) = (Var[X]1, . . . ,Var[X]d) ∈ (0,∞)d where
Var[X]i = E[(Xi − E[X]i)

2] for any i ∈ {1, . . . , d}. By the law of total variance, we have

Var[X]i = E [Var [X | Z]i] + Var [E [X | Z]]i

=

J∑
j=1

wj(λ
2
j )i +

J∑
j=1

wj ((mj)i − E [X]i)
2
.

By characterisation of Gaussian distributions, N(E[X],diagVar(π)) is the closest diagonal Gaussian
distribution to π in the Kullback-Leibler sense. Therefore, in this particular setting, π̃ may be defined
by m = E[X] and Γ2 = diagVar(π). We use this approach when computing σ2

π in the numerical
experiment commented in Figure 1.

I.3 FAILURE OF LOCAL MCMC SAMPLERS ON MULTIMODAL DISTRIBUTIONS

As we show in Figure 7, local MCMC samplers such as the Random Walk Metropolis Hastings
(RWMH) algorithm (Metropolis et al., 1953), the Metropolis-adjusted Langevin Algorithm (MALA)
(Roberts & Tweedie, 1996), the Hamiltonian Monte Carlo (HMC) algorithm (Duane et al., 1987;
Brooks et al., 2011) or the No-U Turn Sampler (NUTS) (Hoffman & Gelman, 2014) tend to produce
Markov chains that get trapped in modes. The resulting samples are thus not representative of the
global landscape.

I.4 LIMITATIONS OF GAUSSIAN MIXTURE MODELS

Figure 8 shows the progressive GMM approximation of the Rings distribution by leveraging an
increasing number of components. This figure shows that, in this case, getting a good approximation
of the distribution requires significantly more components that the number of modes (here, 3). This
highlights the limitation of the approximation power of Gaussian Mixture models.
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Figure 7: Samples from different MCMC samplers when sampling from a bi-modal Gaussian mix-
ture in 2 dimensions - There are 4 different chains (in different colors). The MCMC samplers ran for
4096 warmup steps before producing those 1024 samples. We only display 1 sample every 4 steps.

Figure 8: Increasingly expressive GMM approximations of the rings distribution - (Top) Approxi-
mation using diagonal covariances (Bottom) Approximation using full covariances

I.5 FURTHER EXPERIMENTAL RESULTS

In this section, we display detailed results for the experimental settings presented in Section 5, as
well as additional results that assess the robustness and the superiority of LRDS compared to its
competitors for a large diversity of settings. When ground truth samples are available (i.e., in all set-
tings except ϕ4 and Bayesian regression), we display statistical estimations of the integral probabil-
ity metrics defined in Appendix B, namely, the regularized Wasserstein distance with regularization
ε = 10−3 (W2,ε), the Maximum Mean Discrepancy (MMD) and the sliced Kolmogorov-Smirnov
distance (KS).

I.5.1 HIGH-DIMENSIONAL BI-MODAL GAUSSIAN MIXTURES

Below, we display the results of all considered samplers, including LRDS, when targeting the bi-
modal Gaussian mixtures defined in Appendix H.1 with increasing dimension d ∈ {8, 16, 32, 64}.
To assess the sampling quality at a global level, we compute for each sampler the absolute error
’Mode Err.’ when estimating the strongest mode weight (in %, comprised between 0%, the best,
and 66.7%, the worst) via Monte Carlo approximation. All metrics are computed based on 8192
samples. In particular,

• Table 5 corresponds to Gaussian mixtures with diagonal covariance and medium conditioning,
completing the results of Table 2 presented in the main paper,

• Table 6 corresponds to Gaussian mixtures with diagonal covariance and isotropic conditioning,

• Table 7 corresponds to Gaussian mixtures with diagonal covariance and hard conditioning,

• Table 8 corresponds to Gaussian mixtures with full covariance and medium conditioning,

• Table 9 corresponds to Gaussian mixtures with full covariance and hard conditioning.
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Table 5: Results for bi-modal Gaussian mixtures with diagonal covariance and medium condi-
tioning, averaged over 16 sampling runs (same setting as Table 2). Bold font indicates best result,
orange cells refer to settings with uninformative mode weight estimation (i.e., uniform mixture),
red cells denote mode collapse. N/A denotes settings where results could not be obtained due to
numerical issues. The MMD and KS results are displayed with 100-factor rescaling.

d = 16 d = 32 d = 64

Algorithm Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓ Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓ Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓
SMC 11.4%±9.1% 0.38±0.00 13.91±10.68 10.80±7.84 15.8%±8.5% 0.70±0.01 18.68±9.67 14.63±7.59 15.2%±7.5% 1.16±0.01 17.87±8.72 14.14±6.71

RE 16.5%±1.3% 0.38±0.00 20.57±1.78 15.20±1.31 15.9%±1.4% 0.70±0.00 19.23±2.03 14.54±1.55 17.0%±1.4% 1.17±0.00 20.36±1.83 15.68±1.39

LV-PIS 6.0%±3.4% 0.43±0.00 7.63±3.07 6.86±2.49 33.2%±0.1% 1.01±0.03 34.90±0.58 28.43±1.52 33.0%±0.1% 1.62±0.02 34.03±0.71 29.33±0.75

LV-DDS 11.8%±9.3% 0.40±0.01 13.83±10.23 11.29±8.06 31.5%±2.9% 0.86±0.04 33.96±3.29 28.00±2.65 33.1%±0.1% 1.49±0.02 34.45±0.61 28.95±0.89

LV-DIS 14.6%±1.0% 0.44±0.00 19.58±1.23 15.53±1.00 16.9%±1.1% 0.87±0.01 22.98±1.38 18.59±0.85 16.7%±0.7% 1.61±0.02 23.53±0.90 19.83±0.75

LV-CMCD 36.8%±18.9% 5.57±2.49 79.05±23.17 N/A 42.3%±24.4% 4.32±3.61 51.31±29.17 19.74±4.76 27.7%±22.6% 3.92±4.70 36.62±29.97 20.51±11.83

iDEM 33.3%±0.0% 1.75±0.17 53.82±0.36 36.86±0.92 66.7%±0.0% 4.16±0.22 85.52±0.53 61.10±1.26 11.7%±0.4% 117.82±0.14 90.13±0.12 N/A
PDDS 0.8%±0.6% 0.40±0.00 1.66±0.68 2.59±0.29 66.7%±0.0% 11.22±0.08 105.11±0.24 N/A N/A N/A N/A N/A

GMM-LRDS 1.7%±0.6% 0.38±0.00 2.58±0.96 2.69±0.66 2.7%±0.8% 0.71±0.00 3.64±1.07 3.38±0.76 4.1%±0.6% 1.19±0.00 5.25±0.98 4.50±0.70

Table 6: Results for bi-modal Gaussian mixtures with diagonal covariance and isotropic condition-
ing, averaged over 16 sampling runs. Bold font indicates best result, orange cells refer to settings
with uninformative mode weight estimation (i.e., uniform mixture), red cells denote mode collapse.
N/A denotes settings where results could not be obtained due to numerical issues. The MMD and
KS results are displayed with 100-factor rescaling.

d = 16 d = 32 d = 64

Algorithm Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓ Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓ Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓
SMC 16.0%±10.1% 0.65±0.01 19.11±12.55 14.06±8.74 12.3%±9.6% 1.18±0.01 14.57±11.46 11.03±8.03 11.0%±8.8% 1.94±0.00 12.98±10.51 9.80±7.38

RE 15.2%±1.2% 0.66±0.00 18.72±1.66 13.42±1.23 16.1%±1.3% 1.19±0.00 19.50±1.70 14.14±1.26 16.5%±1.3% 1.94±0.00 19.46±1.71 14.39±1.24

LV-PIS 1.9%±1.2% 0.66±0.00 2.66±1.45 2.63±0.89 1.3%±0.6% 1.20±0.00 2.15±0.68 2.23±0.42 2.8%±0.6% 1.98±0.00 2.94±0.90 2.81±0.61

LV-DDS 0.7%±0.5% 0.65±0.00 0.86±0.70 1.59±0.30 0.8%±0.5% 1.19±0.00 1.09±0.60 1.56±0.24 1.6%±0.8% 1.95±0.00 2.13±0.97 2.23±0.61

LV-DIS 7.7%±4.0% 0.66±0.00 9.60±4.92 7.21±3.34 13.2%±1.4% 1.20±0.00 15.98±1.79 11.63±1.24 16.6%±0.6% 1.97±0.00 19.71±0.97 14.46±0.84

LV-CMCD 41.6%±14.4% 1.24e+3±1.32e+3 76.57±21.36 N/A 57.1%±13.9% 1.96e+1±1.45e+1 10.10e+1±7.95 N/A 34.7%±21.7% 8.99e+2±1.54e+2 78.35±12.37 N/A
iDEM 66.7%±0.0% 2.23±0.17 83.92±0.50 59.68±2.16 33.3%±0.0% 2.48±0.15 49.83±0.35 35.02±0.62 0.3%±0.2% 179.86±0.12 97.17±1.05 N/A
PDDS 0.9%±0.6% 0.70±0.00 1.27±1.25 2.50±0.49 0.9%±0.6% 1.22±0.00 1.53±0.87 2.41±0.31 0.9%±0.7% 1.96±0.00 0.85±1.25 2.05±0.56

GMM-LRDS 1.6%±0.6% 0.66±0.00 2.07±0.99 2.23±0.54 2.8%±0.5% 1.19±0.00 3.72±0.89 3.23±0.58 4.6%±0.6% 1.96±0.00 5.65±0.88 4.56±0.61

Table 7: Results for bi-modal Gaussian mixtures with diagonal covariance and hard conditioning,
averaged over 16 sampling runs. Bold font indicates best result, orange cells refer to settings with
uninformative mode weight estimation (i.e., uniform mixture), red cells denote mode collapse. N/A
denotes settings where results could not be obtained due to numerical issues. The MMD and KS
results are displayed with 100-factor rescaling.

d = 16 d = 32 d = 64

Algorithm Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓ Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓ Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓
SMC 12.4%±8.3% 0.24±0.00 15.40±10.16 12.00±7.57 16.5%±9.5% 0.47±0.00 20.22±11.66 15.71±8.58 11.4%±9.8% 0.80±0.00 13.88±11.92 11.16±8.79

RE 16.3%±1.4% 0.25±0.00 20.76±1.95 15.40±1.38 17.0%±1.7% 0.47±0.00 21.31±2.19 16.11±1.58 16.4%±1.4% 0.81±0.00 19.99±1.75 15.54±1.38

LV-PIS 8.4%±3.4% 0.45±0.00 13.52±2.50 12.48±2.01 32.2%±0.3% 1.29±0.02 33.89±0.60 29.92±0.57 32.5%±0.2% 2.24±0.04 33.91±0.76 30.49±0.61

LV-DDS 24.7%±8.8% 0.32±0.03 26.89±9.03 22.92±7.59 40.5%±13.9% 0.73±0.02 44.97±19.24 37.20±12.88 38.1%±15.4% 1.59±0.04 42.64±20.91 35.46±13.67

LV-DIS 16.8%±0.6% 0.42±0.00 23.65±1.07 21.09±0.94 16.7%±0.7% 0.92±0.01 24.96±1.05 23.69±0.83 16.6%±0.6% 2.02±0.04 25.92±0.81 26.09±0.70

LV-CMCD 24.9%±9.9% 2.98e+3±2.07e+3 66.83±5.85 N/A 25.8%±21.7% 4.37e+3±2.71e+3 53.93±7.27 65.60±5.72 26.1%±23.6% 3.65e+3±6.36e+2 57.60±13.51 N/A
iDEM 33.3%±0.0% 2.12±0.11 51.43±0.33 38.07±1.02 66.7%±0.0% 7.53±0.52 85.77±0.63 55.56±1.03 33.3%±0.0% 175.16±0.83 102.13±0.20 N/A
PDDS N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

GMM-LRDS 2.1%±1.0% 0.25±0.00 3.41±1.26 3.46±0.90 1.7%±0.9% 0.47±0.00 3.00±1.12 2.99±0.80 4.5%±1.8% 0.82±0.00 6.12±2.21 5.25±1.62

Table 8: Results for bi-modal Gaussian mixtures with full covariance and medium conditioning,
averaged over 16 sampling runs. Bold font indicates best result, orange cells refer to settings with
uninformative mode weight estimation (i.e., uniform mixture), red cells denote mode collapse. N/A
denotes settings where results could not be obtained due to numerical issues. The MMD and KS
results are displayed with 100-factor rescaling.

d = 8 d = 16 d = 32

Algorithm Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓ Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓ Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓
SMC 17.3%±7.1% 0.17±0.00 21.55±8.84 16.07±6.33 13.5%±4.5% 0.38±0.00 16.35±5.47 12.52±4.05 10.3%±5.8% 0.70±0.00 12.18±6.67 9.72±5.15

RE 16.6%±1.0% 0.17±0.00 21.34±1.54 15.30±1.11 16.4%±1.4% 0.38±0.00 20.65±1.90 15.23±1.34 16.3%±1.2% 0.70±0.00 19.90±1.74 15.04±1.24

LV-PIS 6.8%±2.4% 0.20±0.00 9.89±2.78 8.67±1.98 25.4%±12.6% 0.52±0.06 28.21±13.13 23.37±10.61 33.1%±0.2% 1.07±0.39 35.02±0.70 27.85±3.09

LV-DDS 1.6%±0.8% 0.17±0.00 2.64±0.87 2.63±0.53 3.3%±0.9% 0.39±0.00 4.83±1.08 4.27±0.75 4.0%±1.1% 0.75±0.00 6.85±1.23 5.95±1.01

LV-DIS 9.9%±1.2% 0.19±0.00 13.29±1.80 10.64±1.35 15.9%±0.6% 0.45±0.00 21.10±0.90 16.56±0.67 16.8%±0.5% 0.87±0.01 22.72±0.89 18.38±0.70

LV-CMCD 52.4%±20.7% 2.02±1.75 66.92±25.86 26.22±20.14 33.4%±20.3% 1.78±2.35 41.72±26.09 24.10±8.75 41.7%±14.4% 4.17±2.20 58.61±17.27 27.40±12.23

iDEM 66.7%±0.0% 2.06±0.19 85.27±0.40 61.42±1.09 66.7%±0.0% 3.95±0.20 84.48±0.53 62.98±1.10 66.7%±0.0% 6.89±0.24 85.60±0.41 62.87±1.31

PDDS 1.3%±1.1% 0.19±0.00 1.52±1.58 2.65±0.77 1.9%±0.9% 0.40±0.00 2.63±1.53 3.09±0.77 0.7%±0.6% 0.73±0.00 1.56±0.89 2.61±0.37

GMM-LRDS 1.3%±0.6% 0.17±0.00 1.97±0.85 2.36±0.52 1.8%±0.5% 0.38±0.00 2.65±0.87 2.72±0.58 2.4%±0.5% 0.71±0.00 3.48±0.89 3.24±0.61

For all of these bi-modal settings, we observe that the mode weight estimation error is consistent
with the values of probability metrics (except for the regularized Wasserstein distance, which is not
discriminative between the methods). In particular, GMM-LRDS is on par or superior to all com-
petitors in each setting, except the least challenging setting (’Isotropic’ conditioning, see Table 6),
where LV-DDS is more performant.
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Table 9: Results for bi-modal Gaussian mixtures with full covariance and hard conditioning, av-
eraged over 16 sampling runs. Bold font indicates best result, orange cells refer to settings with
uninformative mode weight estimation (i.e., uniform mixture), red cells denote mode collapse. N/A
denotes settings where results could not be obtained due to numerical issues. The MMD and KS
results are displayed with 100-factor rescaling.

d = 8 d = 16 d = 32

Algorithm Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓ Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓ Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓
SMC 14.2%±15.0% 0.10±0.00 17.83±19.13 13.83±13.58 10.1%±6.9% 0.24±0.00 12.91±8.77 10.03±6.21 17.9%±10.2% 0.47±0.00 21.61±12.58 16.96±9.50

RE 16.1%±1.2% 0.11±0.00 20.99±1.86 15.12±1.33 16.8%±1.2% 0.25±0.00 21.54±1.76 15.89±1.22 16.3%±1.3% 0.47±0.00 20.28±1.79 15.39±1.32

LV-PIS 10.9%±1.1% 0.20±0.01 15.75±1.22 14.13±0.83 2.2%±1.5% 0.43±0.00 10.36±0.80 10.50±0.70 32.7%±0.3% 1.34±0.03 34.25±0.75 30.15±0.78

LV-DDS 3.2%±1.8% 0.12±0.01 5.53±1.63 5.36±1.05 7.5%±4.1% 0.29±0.00 11.39±4.88 9.91±3.53 10.5%±7.8% 0.62±0.00 16.62±8.01 14.10±6.05

LV-DIS 16.3%±0.9% 0.16±0.00 22.12±1.36 17.99±0.98 16.8%±0.5% 0.39±0.00 23.15±0.89 19.95±0.64 16.6%±0.5% 0.87±0.01 24.42±0.78 22.19±0.61

LV-CMCD 25.4%±18.5% 5.89e+3±5.35e+3 80.73±12.98 N/A 42.1%±16.3% 1.74e+4±1.44e+4 85.05±9.77 N/A 28.6%±14.9% 2.49e+4±8.13e+4 79.46±25.42 N/A
iDEM 66.6%±0.0% 0.23±0.00 84.95±0.61 60.96±1.39 66.7%±0.0% 5.49±0.12 86.81±0.47 59.71±1.59 66.7%±0.0% 10.33±0.09 81.57±0.65 53.73±1.36

PDDS N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

GMM-LRDS 1.8%±0.7% 0.11±0.00 2.85±1.00 3.22±0.67 1.0%±0.7% 0.25±0.00 2.22±0.91 2.60±0.62 2.2%±1.3% 0.47±0.00 3.19±1.63 3.13±1.17
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Figure 9: Execution clock-time for bi-modal Gaussian mixtures with diagonal covariance (left) and
full covariance (right), averaged over the conditioning settings.

Execution time. To demonstrate the applicability of LRDS in practice, we provide in Figure 9 the
execution clock-time of each sampling method for several Gaussian mixture sampling settings. The
computations were all ran on the same V100 GPU. We notice that (i) the initial MCMC sampling
step to build the reference dataset, then used to initialize each sampler, and the reference fitting
time from GMM-LRDS are completely negligeable compared to the training time, and that (ii) the
training time of GMM-LRDS is on par with previous variational diffusion-based approaches.

Ablation study on GMM-LRDS: effect of the reference distribution. To asses the robust-
ness of GMM-LRDS with respect to the setting of the reference distribution, we conduct an
ablation study that reveals the impact of modifying the location and the entropy of the refer-
ence modes. To do so, we set d = 8 and define the target distribution π : x ∈ Rd 7→
(2/3)N(x;−1d, 0.05) + (1/3)N(x;1d, 0.05), as detailed in Appendix H.1. Instead of defining
the reference distribution in GMM-LRDS as a Gaussian mixture fitted on MCMC samples, we
propose to consider a flexible reference distribution given by the Gaussian mixture x ∈ Rd 7→
(2/3)N(x;m1, 0.05α

2Id) + (1/3)N(x;m2, 0.05α
2Id) where (m1,m2) ∈ Rd × Rd and α > 0.

To observe the impact of the location of the reference modes on GMM-LRDS, we take α = 1
(same variance setting as the target) and (m1,m2) ∼ N(−1d, σ

2
mId) ⊗ N(1d, σ

2
mId) where σm ∈

{0, 0.25, 0.5, 0.75, 1.0} is a mean perturbation parameter. Hence, the higher σm, the further the
reference modes might be with respect to the target modes. We display in Figure 10 the results of
GMM-LRDS for this setting, averaged over 16 sampling runs. This ablation study notably reveals
the major need of precision on the location of the target modes (in practice, brought by MCMC
sampling) to build the reference distribution.

On the other hand, to understand the effect of the entropy of the reference modes, we take
(m1,m2) = (−1d,1d) (same mean setting as the target), and α ∈ {0.5, 0.75, 1, 1.5, 2}, which can
be seen as a variance perturbation parameter. We display in Figure 11 the results of GMM-LRDS
for this setting, averaged over 16 sampling runs. Interestingly, our ablation study demonstrates that
GMM-LRDS works well as soon as the support of the reference distribution includes the support of
the target distribution. In practice, this is verified by MCMC sampling.
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Figure 10: Results of GMM-LRDS for an 8-dimensional bi-modal Gaussian mixture when varying
the location of the reference modes: the performance degrades as soon as the reference modes and
the target modes are further from each other.
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Figure 11: Results of GMM-LRDS for an 8-dimensional bi-modal Gaussian mixture when varying
the variance of the reference modes: except for small reference mode variance, the performance is
unchanged.
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Figure 12: Results of GMM-LRDS for an 8-dimensional bi-modal Gaussian mixture when varying
the distance between the modes of the target distribution: the performance does not significantly
degrades, despite the increasing sampling complexity.

Ablation study on GMM-LRDS: effect of the distance between the target modes. To asses
the robustness of GMM-LRDS with respect to the complexity of the target distribution, we con-
duct a second ablation study that illustrates the behaviour of GMM-LRDS for target with higher
energy barrier. To do so, we set d = 8 and define the target distribution π : x ∈ Rd 7→
(2/3)N(x;−a1d, 0.05)+(1/3)N(x; a1d, 0.05), where a ∈ {1, 2, 4, 8, 16} indicates the complexity
level of the target. For each target, we conduct 16 sampling runs of GMM-LRDS, and display the
results in Figure 12. Our numerics show that the performance GMM-LRDS remains significantly
consistent with increasing a, proving the interest of our method for complex sampling multi-modal
problems.
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Table 10: Results of GMM-LRDS for bi-modal Gaussian mixtures with diagonal covariance and
various conditioning settings (d = 128), averaged over 16 sampling runs. The MMD and KS
results are displayed with 100-factor rescaling.

Isotropic conditioning Medium conditioning Hard conditioning

Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓ Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓ Mode Err. ↓ W2,ε ↓ MMD ↓ KS ↓
6.6%±0.6% 3.04±0.00 7.84±0.92 6.16±0.67 6.8%±0.9% 1.86±0.00 8.33±1.29 6.81±0.98 6.2%±3.6% 1.32±0.00 8.09±3.83 6.73±2.92

Limitation of LRDS: high dimension. Although LRDS outperforms its competitors when sam-
pling from challenging bi-modal Gaussian mixtures, its performance tends to decrease when the
dimension is large, like most of samplers. To highlight this limitation, we provide in Table 10 the
results of GMM-LRDS for various Gaussian mixture settings with d = 128. In those settings,
GMM-LRDS fails to recover a good estimation of the strongest mode weight (roughly, 10% of
relative error).

I.5.2 MULTI-MODAL GAUSSIAN MIXTURES

We display in Figure 13 the results of all considered samplers, including LRDS, when targeting
the multi-modal Gaussian mixtures defined in Appendix H.1 with fixed dimension d = 8 and in-
creasing number of modes L ∈ {4, 8, 16, 32, 64}. To assess the sampling quality at a global level,
we dispense for each sampler the total variation distance between the true weight histogram and
the weight histogram obtained via Monte Carlo approximation. All metrics are computed based on
8192 samples. We notably observe that GMM-LRDS has the best performance compared to all other
sampling methods, independently of the number of modes in the target distribution. In particular,
Figure 13 demonstrates that GMM-LRDS is able to recover both global features and local features
for a complex multi-modal distribution.

Execution time. To demonstrate the applicability of LRDS in practice, we provide in Figure 14
the execution clock-time of each sampling method for all multi-modal Gaussian mixture sampling
settings. The conclusions are the same as in the bi-modal setting: GMM-LRDS has equivalent
training time to previous variational diffusion-based approaches, with negligeable extra cost due to
reference fiting.

Limitation of LRDS: high number of modes. As depicted in Figure 13 (top left), the recovery
of the mode weights of a multi-modal target distribution gets worse as soon as the number of target
modes is large. Although GMM-LRDS performs better than its competitors, it suffers from the same
limitation.
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Figure 13: Results for multi-modal Gaussian mixtures, averaged over 16 sampling runs. (Top Left):
Total variation distance between weight histograms. (Top Right): Results with regularized Wasser-
stein distance. (Bottom Left): Results with MMD distance. (Bottom Right): Results with KS
distance. Incomplete curves refer to settings where results could not be obtained due to numerical
issues.
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Figure 14: Execution clock-time for multi-modal Gaussian mixtures with increasing number of
mixture components (from left to right).

I.5.3 RINGS AND CHECKERBOARD DISTRIBUTIONS

In Figure 15 and Figure 16, we illustrate the impact of the number J of Gaussian mixture compo-
nents when running GMM-LRDS to sample from Rings and Checkerboard distributions, detailed
in Appendix H.1,by taking J ∈ {1, 8, 16, 32, 64}. In particular, we consider mixture models with
diagonal covariance (first two rows) and full covariance (last two rows), fitted on MCMC samples
from the target via EM algorithm. For both settings, we observe that setting J large enables to
recover with more precision the support of the target distribution, leading consequently to better
performance of GMM-LRDS. In the special Rings setting, where the target energy landscape is nar-
row and complex, we also notice that mixtures with full covariance provide better estimation of the
support of the distribution. On the other hand, we remark that GMM-LRDS struggles to recover the
geometry of the Checkerboard distribution, while EBM-LRDS is more performant, see Figure 6.
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Figure 15: Results of GMM-LRDS for Rings distribution with increasingly expressive GMM for
reference distribution - (Top two rows) GMM density and GMM-LRDS samples for diagonal co-
variance parameterization (Bottom two rows) GMM density and GMM-LRDS samples for full
covariance parameterization.

Table 11: Estimation of the weight ratio for the ϕ4 system with different values of h, averaged
over 16 runs. The Laplace approximations, that stand for ground truth, are displayed at the bottom
of the table. Orange cells refer to settings with uninformative mode weight estimation (i.e., uniform
mixture), red cells denote mode collapse. N/A denotes settings where results could not be obtained
due to numerical issues.

Algorithm h = 0 h = 9× 10−4 h = 2× 10−3 h = 2.5× 10−3 h = 3.5× 10−3

SMC 1.28±1.19 1.71±1.47 1.51±1.38 1.60±1.52 1.57±1.43

RE 1.00±0.12 1.01±0.12 1.04±0.13 1.11±0.13 1.07±0.14

LV-PIS ∞ ∞ ∞ ∞ ∞
LV-DDS 0.00±0.00 ∞ 0.00±0.00 ∞ ∞
LV-DIS 3.82e− 5±7.35e−5 0.00±0.00 1.13±2.22e−2 1.33±2.84e−2 ∞
CMCD ∞ ∞ ∞ 3.66e− 1±6.53e−3 ∞
iDEM 57.0±63.7 63.5±74.1 56.0±60.88 62.0±72.9 57.5±69.0

PDDS N/A N/A N/A N/A N/A

Laplace 0th order 1.00 1.35 1.95 2.30 3.22
Laplace 2nd order 1.00 1.34 1.90 2.23 3.08

I.5.4 ϕ4 FIELD SYSTEM

Table 11 shows that all the competing algorithms fail at recovering the weight ratio of the ϕ4 system.
In particular, those methods are highly prone to mode collapse either on the ’negative’ mode or on
the ’positive’ mode.
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Figure 16: Results of GMM-LRDS for Checkerboard distribution with increasingly expressive
GMM for reference distribution - (Top two rows) GMM density and GMM-LRDS samples for
diagonal covariance parameterization (Bottom two rows) GMM density and GMM-LRDS samples
for full covariance parameterization.
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Table 12: Average predictive log-likelihood for Bayesian posterior distributions obtained from
logistic regression tasks, averaged over 16 runs. Bold font indicates best performance.

Algorithm Ionosphere (d = 36) ↑ Sonar (d = 62) ↑ German Credit (d = 26) ↑ Breast Cancer (d = 32) ↑
SMC −139.4±0.3 −191.4±0.2 −122.2±0.1 −89.2±0.5

RE −139.5±0.2 −191.3±0.1 −122.2±0.1 −90.1±0.3

LV-PIS −156.0±1.0 −202.2±0.2 −153.7±2.2 −203.9±3.3

LV-DDS −147.7±0.5 −195.2±0.7 −151.2±1.3 −128.4±0.9

LV-DIS −190.7±7.3 −859.5±22.2 −222.3±22.2 −829.2±9.9

CMCD −139.4±0.5 −190.4±0.3 −5660.7±2375.5 −465.5±88.8

iDEM −153.7±0.2 −4634.1±12.9 −132.4±0.1 −320.8±0.9

PDDS −139.6±0.3 −191.3±0.1 −122.2±0.1 −102.2±0.1

GMM-LRDS −138.0±0.5 −190.5±1.0 −129.0±2.7 −100.1±2.1

EBM-LRDS −148.0±15.4 −191.8±0.9 −131.2±5.2 −92.7±4.0

SMC RE
LV-PIS

LV-DDS
LV-DIS

CMCD

GMM-LRDS

EBM-LRDS

0

2000

4000

C
lo

ck
tim

e
(i

n
s)

Ionosphere

SMC RE
LV-PIS

LV-DDS
LV-DIS

CMCD

GMM-LRDS

EBM-LRDS

Sonar

SMC RE
LV-PIS

LV-DDS
LV-DIS

CMCD

GMM-LRDS

EBM-LRDS

Credit

SMC RE
LV-PIS

LV-DDS
LV-DIS

CMCD

GMM-LRDS

EBM-LRDS

Cancer

Inference Training MCMC sampling Reference fitting

Figure 17: Execution clock-time for Bayesian posterior distributions obtained from logistic regres-
sion tasks ’Ionosphere’, ’Sonar’, ’German Credit’ and ’Breast Cancer’ (from left to right).

I.5.5 BAYESIAN LOGISTIC REGRESSION MODELS

Finally, we display in Table 12 the results of all considered samplers, including LRDS, when target-
ing the Bayesian posterior distributions obtained from real-world data and defined in Appendix H.1.
To assess the sampling quality, we compute the average predictive log-likelihood (i.e. the expected
posterior distribution on the test dataset) via Monte Carlo approximation with 8192 samples. Since
these distributions do not exhibit explicit multi-modal characteristics, we observe that standard
MCMC-based techniques such as SMC and RE perform better than deep learning-based approaches.
Interestingly, LRDS is on par or superior to previous diffusion-based approaches. For completeness,
we also provide in Figure 17 the execution clock-time of all samplers in this setting.
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