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Appendix

A Missing Proofs in Section 3

Proposition 1 (β-Pareto Efficiency, Upper Bound). There is no neutral rule f : L(A)n →
R(A) that satisfies ε-DP and β-Pareto efficiency with β > e

nε
m−1 .

Proof. Let f : L(A)n → A be a voting rule satisfying ε-DP and β-Pareto efficiency. Let P be a
profile, where a1 � a2 � · · · � am, for all i ∈ N . Since a1 Pareto dominates a2, a2 Pareto dominates
a3, etc., we have

P[f(P ) = a1] > β · P[f(P ) = a2]

> β2 · P[f(P ) = a3]

· · ·
> βm−1 · P[f(P ) = am].

Then we claim that for profile P ,

P[f(P ) = a1] 6 enε · P[f(P ) = am].

Theorefore, we have βm−1 6 enε, i.e., β 6 e
nε
m−1 , as desired.

Finally, we prove the claim above. In fact, for any voting rule f : L(A)n → R(A) satisfying
ε-DP and neutrality, we have

P[f(P ) = a] 6 enε · P[f(P ) = b], for all a, b ∈ A. (1)

Now, we prove Equation (1). For any profile P, P ′ ∈ L(A)n, let `0(·, ·) represents the `0-distance
between them, i.e., `0(P, P ′) = {j ∈ N :�j 6=�′j}. Then, by considering the following operation
Op, we can see that P can be transferred to P ′ through k = `0(P, P

′) times of operations.

– Op: Choose a voter i ∈ N that �i 6=�′i, let �i=�′i.

Letting P0, P1, . . . , Pk denote all of the profiles, we have the following diagram.

P = P0
Op−−→ P1

Op−−→ P2
Op−−→ · · · Op−−→ Pk = P ′.

Notice that in each step, only one voter’s preference is changed. Consequently, for each i, Pi and
Pi+1 are neighboring profiles. Since f satisfies ε-DP, we have

P[f(P ) = a] 6 eε · P[f(P1) = a] 6 e2ε · P[f(P2) = a] 6 . . . 6 ek·ε · P[f(P ′) = a].

Besides, for any given P, P ′ ∈ L(A)n, there are at most n distinct voters j ∈ N that �j 6=�′j .
Therefore, for any profile P, P ′ ∈ L(A)n and any a ∈ A, we have

P[f(P ) = a] 6 enε · P[f(P ′) = a].

Now, for any profile P ∈ L(A)n and an arbitrarily chosen paif of alternatives a, b ∈ A, let P ′ be
the profile transferred from P by swapping a and b in each voter’s preference. By the neutrality of
f , we have

P[f(P ) = a] = P[f(P ′) = b] and P[f(P ′) = a] = P[f(P ) = b].
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Then it follows that

P[f(P ) = a] 6enε · P[f(P ′) = a]

=enε · P[f(P ) = b],

which completes the proof. ut

Proposition 2 (β-Pareto Efficiency, Lower Bound). Given ε ∈ R+, Mechanism 1 satisfies
ε-DP and e

nε
2m−2 -Pareto efficiency.

Proof. Let EBorda : L(A)∗ → R(A) denote the mapping introduced by BordaEXP. Then for any
profile P ∈ L(A)∗ and alternative a ∈ A, we have

P[EBorda(P ) = a] =
eBordaP (a)ε/(2m−2)∑

c∈A
eBordaP (c)ε/(2m−2) .

First, we establish the bound for Pareto efficiency. Given profile P ∈ L(A)n, suppose a, b ∈ A are
a pair of alternatives that a �j b for all j ∈ N . It follows that, for each voter j ∈ N , the number of
alternatives that are considered worse than b according to her preference order �j is strictly less
than the number of alternatives considered worse than a. Formally, we have

|{c ∈ A : a �j c}| − |{c ∈ A : b �j c}| > 1, for all j ∈ N.

By the definition of Borda score, we have

BordaP (a)− BordaP (b) > n.

Then it follows that

P[EBorda(P ) = a] =
eBordaP (a)·ε/(2m−2)∑

c∈A
eBordaP (c)·ε/(2m−2)

>
eBordaP (b) · enε/(2m−2)∑
c∈A

eBordaP (c)·ε/(2m−2)

= enε/(2m−2) · P[EBorda(P ) = b],

which indicates that EBorda satisfies e
nε

2m−2 -Pareto efficiency.
Then we prove the DP-bound. For all neighboring profiles P, P ′ ∈ L(A)n,

P[EBorda(P ) = a]

P[EBorda(P ′) = a]
=

eBordaP (a)· ε
2m−2

eBordaP ′ (a)·
ε

2m−2

·

∑
c∈A

eBordaP ′ (c)·
ε

2m−2∑
c∈A

eBordaP (c)· ε
2m−2

6 eε/2 · sup
P∈L(A)n

∑
c∈A

eBordaP ′ (c)·
ε

2m−2∑
c∈A

eBordaP (c)· ε
2m−2

6 eε,

which completes the proof. ut
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Lemma 1. Given γ > 0, a voting rule f satisfies γ-SD-efficiency if and only if

1

γ
> sup
P∈L(A)n,ξ∈R(A)

inf
j∈N,y∈A

∑
x:x�jy

P[ξ = x]∑
x:x�jy

P[f(P ) = x]
.

Proof. Suppose that f is not γ-SD-efficient. Then there must be some profile P ∈ L(A)n that f(P )
is γ-SD-dominated by some ξ ∈ R(A), i.e.,∑

x:x�jy
P[ξ = x] >

1

γ
·
∑

x:x�jy
P[f(P ) = x], for all y ∈ A and �j∈ P,

which is equivalent to

1

γ
6 inf
j∈N,y∈A

∑
x:x�jy

P[ξ = x]∑
x:x�jy

P[f(P ) = x]
.

Therefore, f is γ-SD-efficient if and only if for each P ∈ L(A)n, there does not exist such ξ, i.e.,

1

γ
> inf
j∈N,y∈A

∑
x:x�jy

P[ξ = x]∑
x:x�jy

P[f(P ) = x]
, for all y ∈ A and P ∈ L(A)n,

which is equivalent to

1

γ
> sup
P∈L(A)n,ξ∈R(A)

inf
j∈A,y∈A

∑
x:x�jy

P[ξ = x]∑
x:x�jy

P[f(P ) = x]
.

That completes the proof. ut

Proposition 3 (γ-SD-Efficiency, Upper Bound). Given γ ∈ R+, there is no neutral voting
rule f : L(A)n → R(A) satisfying ε-DP and γ-SD-efficiency with γ > (m−1)enε

(m−1)enε+1 .

Proof. Consider two profiles, P1 and P2, where all voters in P1 share the same preference order a1 �
a2 � · · · � am. In contrast, in P2, the voters’ preferences are am �′ a2 �′ a3 �′ · · · �′ am−1 �′ a1.
Then the unique SD-efficient lottery for P1 and P2 should be 1a1 and 1am , respectively. Here, 1a1
and 1am represent indicator functions defined as follows.

P[1a1 = a] =

{
1 a = a1

0 otherwise
, P[1am = a] =

{
1 a = am

0 otherwise
.

Let f be any neutral voting rule satisfying ε-DP. By Equation (1), we have

P[f(P1) = a1] 6 enε · P[f(P2) = a1] (by ε-DP)
= enε · P[f(P1) = am]. (by neutrality)

By symmetry, for any a 6= am, P[f(P1) = a] 6 enε · P[f(P1) = am]. Therefore,∑
a∈A

P[f(P1) = a] 6 ((m− 1)enε + 1) · P[f(P1) = am] 6 1,
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i.e., P[f(P1) = am] 6 1
(m−1)enε+1 . If there exists some γ that f satisfies γ-SD-efficiency, there does

not exist any ξ ∈ R(A), such that∑
x:x�y

P[ξ = x] >
1

γ
·
∑
x:x�y

P[f(P1) = x], for all y ∈ A.

Therefore, we have

1

γ
> sup
P∈L(A)n

sup
ξ∈R(A)

inf
y∈A

∑
x:x�y

P[ξ = x]∑
x:x�y

P[f(P ) = x]

> sup
ξ∈R(A)

inf
y∈A

∑
x:x�y

P[ξ = x]∑
x:x�y

P[f(P1) = x]

> inf
y∈A

∑
x:x�y

P[1a1 = x]∑
x:x�y

P[f(P1) = x]

=
1

max
y∈A

∑
x:x�y

P[f(P1) = x]

=
1

1− P[f(P1) = an]

>
(m− 1)enε + 1

(m− 1)enε
.

In other words, we have γ 6 (m−1)enε
(m−1)enε+1 , as desired. ut

Proposition 4 (γ-SD-Efficiency, Lower Bound). Mechanism 2 satisfies ε-DP and (m−1)eε
(m−1)eε+1 -

SD-efficiency.

Proof. Letting EAnti : L(A)n → R(A) denote the mapping introduced by Mechanism 2.
For any neighboring profiles P, P ′ ∈ L(A)n that P−j = P ′−j and �j 6=�′j , suppose that the

chosen ballot in the mechanism is �i. Then

P[EAnti(P ) = a | i 6= j] = P[EAnti(P
′) = a | i 6= j] (use C to denote them)

Further, for any a ∈ A,

P[EAnti(P ) = a]

P[EAnti(P ′) = a]
=

P[i = j ∧ EAnti(P ) = a] + P[i 6= j ∧ EAnti(P ) = a]

P[i = j ∧ EAnti(P ′) = a] + P[i 6= j ∧ EAnti(P ′) = a]

=
1
nP[EAnti(P ) = a | i = j] + n−1

n P[EAnti(P ) = a | i 6= j]
1
nP[EAnti(P ′) = a | i = j] + n−1

n P[EAnti(P ′) = a | i 6= j]

=
1
nP[EAnti(P ) = a | i = j] + n−1

n · C
1
nP[EAnti(P ′) = a | i = j] + n−1

n · C
(P−j = P ′−j)

6
eε · 1nP[EAnti(P

′) = a | i = j] + n−1
n · C

1
nP[EAnti(P ′) = a | i = j] + n−1

n · C
6 eε,
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which indicates that EAnti satisfies ε-DP. On the other hand, given profile P , suppose the top-ranked
and the last-ranked alternative of �i are atop and alast, respectively. Then, for any ξ ∈ R(A), we
have ∑

x:x�iy
P[ξ = x]∑

x:x�iy
P[EAnti(P ) = x]

6
1∑

x:x�iy
P[EAnti(P ) = x]

=

∑
x:x�iy

P[1atop = x]∑
x:x�iy

P[EAnti(P ) = x]
.

Theorefore,

sup
ξ∈R(A)

inf
y∈A

∑
x:x�iy

P[ξ = x]∑
x:x�iy

P[EAnti(P ) = x]
= inf
y∈A

1∑
x:x�iy

P[EAnti(P ) = x]

=
1

1− P[EAnti(P ) = alast]

=
(m− 1)eε

(m− 1)eε + 1
.

By Lemma 1, EAnti satisfies
(m−1)eε

(m−1)eε+1 -SD-efficiency, which completes the proof. ut

Lemma 2. Given γ 6 1, γ-PC-efficiency implies γ-SD-efficiency.

Proof. In fact, we only need to prove that for any ξ, ζ ∈ R(A), ξ �γ−SD ζ implies ξ �γ−PC ζ. Let
ξ and ζ be two lotteries satisfying ξ �γ−SD ζ, i.e.,∑

x�y
P[ξ = x] >

1

γ
·
∑
x�y

P[ζ = y], for any y ∈ A.

Then, on the one hand, we have∑
x,y∈A∧x�y

P[ξ = x] · P[ζ = y] =
∑
y∈A

P[ζ = y] ·
∑
x�y

P[ξ = x]

>
∑
y∈A

P[ζ = y] · 1
γ

∑
x�y

P[ζ = y]

=
1

γ
·

∑
x,y∈A∧x�y

P[ζ = y] · P[ζ = y].

On the other hand, we have
1

γ
·

∑
x,y∈A∧x�y

P[ζ = y]P[ξ = y] =
∑
x∈A

P[ζ = y] ·
∑
y≺x

P[ξ = y]

=
1

γ
·
∑
x∈A

P[ζ = y] ·
∑
y≺x

1−
∑
x�y

P[ξ = x]


6

1

γ
·
∑
x∈A

P[ζ = y] ·
∑
y≺x

1− 1

γ

∑
x�y

P[ζ = y]


6

1

γ
·
∑
x∈A

P[ζ = y] ·
∑
y≺x

1−
∑
x�y

P[ζ = y]


=

1

γ
·

∑
x,y∈A∧x�y

P[ζ = y] · P[ζ = y].
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Then it follows that∑
x,y∈A∧x�y

P[ξ = x] · P[ζ = y] >
1

γ
·

∑
x,y∈A∧x�y

P[ζ = x] · P[ξ = y],

which completes the proof. ut

Proposition 5 (κ-PC-Efficiency, Upper Bound). Given any κ, ε ∈ R+, there is no voting
rule f : L(A)n → R(A) satisfying ε-DP and κ-PC-efficiency.

Proof. Consider the profile P , where all voters share the same prefereoce

a1 � a2 � · · · � am.

Then the unique PC-efficient distribution on A is 1a1 . Further, we have∑
x,y: x�iy

P[1a1 = x] · P[f(P ) = y] =
∑

y: a1�iy
P[f(P ) = y] = 1− P[f(P ) = a1].

However, ∑
x,y: x�iy

P[f(P ) = x] · P[1a1 = y] =
∑
x∈A

P[f(P ) = x] ·
∑

y: x�iy
P[1a1 = y] = 0.

In other words, for all κ ∈ R+, the lottery 1a1 can κ-PC-dominate any f(P ), which completes the
proof. ut

Proposition 6 (α-Condorcet Criterion, Lower Bound). Mechanism 3 satisfies eε-Condorcet
criterion and ε-DP.

Proof. Let RCW : L(A)∗ → R(A) denote the mapping introduced by CWRR. Then for any profile
P ∈ L(A)∗ and alternative a ∈ A, we have

P[RCW(P ) = a] =

{
eε

eε+m−1 , a = CW(P )
1

eε+m−1 , otherwise
, for all P that CW(P ) exists.

By definition, it is not hard to see that CWRR satisfies eε-Condorcet criterion. Thus, we only
need to prove that CWRR satisfies ε-DP. In fact, for any neighboring profiles P, P ′ ∈ L(A)n and
a ∈ A,

P[RCW(P ) = a]

P[RCW(P ′) = a]
6

maxa∈A P[RCW(P ) = a]

maxa∈A P[RCW(P ′) = a]

6
eε

eε +m− 1
/

1

eε +m− 1

= eε,

which completes the proof. ut

Proposition 7 (η-Condorcet Loser Criterion, Upper Bound). There is no voting rule sat-
isfying ε-DP and η-Condorcet loser criterion with η > eε.

Proof. Suppose f : L(A)n → A be a voting rule satisfying ε-DP and η-Condorcet loser criterion.
Consider the profile P (n = 2k + 1):

– k + 1 voters: a1 � a2 � · · · � am,
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– k voters: am � am−1 � · · · � a1.

By definition, we have wP [am, ai] = −1, for all ai ∈ A\{am}, i.e., am is the Condorcet loser. Now,
letting one voter change her preferece from a1 � a2 � · · · � am to am � am−1 � · · · � a1, we can
obtain another profile P ′:

– k voters: a1 �′ a2 �′ · · · �′ am,
– k + 1 voters: am �′ am−1 � · · · �′ a1.

Now we have wP ′ [a1, ai] = −1, for all ai ∈ A\{a}, i.e., a1 is the Condorcet loser for P ′. Then

P[f(P ) = a1] > η · P[f(P ) = am] (By η-Condorcet loser)

> e−ε · η · P[f(P ′) = am] (By ε-DP)

> e−ε · η2 · P[f(P ′) = a1] (By η-Condorcet loser)

> e−2ε · η2 · P[f(P ) = a1], (ε-DP)

which indicates that e−2ε · η2 6 1, i.e., η 6 eε. That completes the proof. ut

Proposition 8 (η-Condorcet Loser Criterion, Lower Bound). Mechanism 4 satisfies eε-
Condorcet loser criterion and ε-DP.

Proof. Let RCL : L(A)∗ → R(A) denote the mapping introduced by CLRR, we have

P[RCL(P ) = a] =

{
1

(m−1)eε+1 , a = CL(P )
eε

(m−1)eε+1 , otherwise
, for all P that CL(P ) exists.

By definition, it is not hard to see that CLRR satisfies eε-Condorcet criterion. Thus, we only
need to prove that CLRR satisfies ε-DP. In fact, for any neighboring profiles P, P ′ ∈ L(A)n and
a ∈ A,

P[RCL(P ) = a]

P[RCL(P ′) = a]
6

maxa∈A P[RCL(P ) = a]

maxa∈A P[RCL(P ′) = a]

6
eε

(m− 1)eε + 1
/

1

(m− 1)eε + 1

= eε,

which completes the proof. ut
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B Missing Proofs in Section 4

B.1 Results in Table 3 and their proofs

Proposition 9. Given ε ∈ R+, BordaEXP satisfies

(1) e
n
2 +(m−2)·e

n(m−2)
4m−4

e
n
2 +(m−1)·e

n(m−2)
4m−4

-SD-efficiency,

(2) e(b
n
2 c+1)· m

2m−2−
n
2 -Condorcet criterion,

(3) e
n

2m−2−(d
n
2 e−1)

m
2m−2 -Condorcet loser criterion.

Proof. Let EBorda denote the voting rule introduced by BordaEXP. First, we prove (1). In fact,

sup
P,ξ

inf
j,y

∑
x�jy

P[ξ = x]∑
x�jy

P[EBorda(P ) = x]
6 sup

P
inf
j,y

1∑
x�jy

P[EBorda(P ) = x]

= sup
P

inf
j

1

1− P[EBorda(P ) = ajlast]

6
1

1− sup
P

inf
j
P[EBorda(P ) = ajlast]

.

where ajlast denote the last-ranked alternative in �j . By syemmetry, we have

sup
P

inf
j
P[EBorda(P ) = ajlast] =

e
n(m−2)
4m−4

e
n
2 + (m− 1) · e

n(m−2)
4m−4

.

Then BordaEXP satisfies e
n
2 +(m−2)·e

n(m−2)
4m−4

e
n
2 +(m−1)·e

n(m−2)
4m−4

. Second, we prove (2). By definition, for any profile

P that CW(P ) exists, CW(P ) must defeat each alternative a 6= {CW(P )} in at least half of
the votes, i.e., BordaP (CW(P )) > (m − 1)

(
bn2 c+ 1

)
. And for each a 6= CW(P ), BordaP (a) 6

(m− 1)n− (bn2 c+ 1). Therefore,

P[EBorda(P ) = CW(P )]

P[EBorda(P ) = a]
>e

(m−1)(bn2 c+1)
2m−2 −

(m−1)n−(bn
2
c+1)

2m−2

=e(b
n
2 c+1)· m

2m−2−
n
2 ,

which indicates that BordaEXP satisfies e(b
n
2 c+1)· m

2m−2−
n
2 -Condorcet criterion. Finally, we prove

(3). By definition, for any profile P that CL(P ) exists, a 6= CL(P ) must be ranked than CL(P )
in at least a half of votes, i.e., BordaP (CL(P )) 6 (m − 1)

(
bn2 c − 1

)
. And for each a 6= CL(P ),

BordaP (a) > n− dn2 e+ 1. Therefore,

P[EBorda(P ) = a]

P[EBorda(P ) = CL(P )]
>e

n−dn
2
e+1

2m−2 −
(m−1)(bn2 c−1)

2m−2

=e
n

2m−2−(d
n
2 e−1)

m
2m−2 ,

which indicates that BordaEXP satisfies e
n

2m−2−(d
n
2 e−1)

m
2m−2 -Condorcet loser criterion. ut

Proposition 10. Given ε ∈ R+, RD-Anti satisfies
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(1) 1-Pareto efficiency,

(2) (bn2 c−1)e
ε+dn2 e+1

neε -Condorcet criterion,

(3) (bn2 c−1)e
ε+dn2 e+1

neε -Condorcet loser criterion.

Proof. First, given profile P , for any a, b ∈ A, a Pareto dominates b means that a �j b for all
j ∈ N . Then a, the Pareto dominator, is never ranked last in any �j . Therefore, P[EAnti(P ) = a] >
P[EAnti(P ) = b], which completes the proof of (1). Second, we prove (2). For any profile P ∈ L(A)n,

|{j ∈ N : ajlast = CW(P )}| 6 dn
2
e − 1,

otherwise CW(P ) will be the Condorcet loser. Therefore,

P[EAnti(P ) = CW(P )] >
dn2 e − 1

n
· 1

(m− 1)eε + 1
+
bn2 c+ 1

n
· eε

(m− 1)eε + 1
.

For any a 6= CW(P ),

P[EAnti(P ) = a] 6
eε

(m− 1)eε + 1
.

Hence, we have

P[EAnti(P ) = CW(P )]

P[EAnti(P ) = a]
>

(
bn2 c − 1

)
eε + dn2 e+ 1

neε
,

which completes the proof. Finally, we prove (3). Given a profile P that CL(P ) exists,

|{j ∈ N : ajlast = a}| 6 dn
2
e − 1,

otherwise a will be the Condorcet loser. Therefore,

P[EAnti(P ) = a] >
dn2 e − 1

n
· 1

(m− 1)eε + 1
+
bn2 c+ 1

n
· eε

(m− 1)eε + 1
.

Hoewver,

P[EAnti(P ) = CL(P )] 6
eε

(m− 1)eε + 1
.

Hence we have

P[EAnti(P ) = a]

P[EAnti(P ) = CL(P )]
>

(
bn2 c − 1

)
eε + dn2 e+ 1

neε
,

which completes the proof of (3). ut

Proposition 11. Given ε ∈ R+, CWRR satisfies 1-Pareto efficiency, m−1
m -SD-efficiency, and

1-Condorcet loser criterion.

Proof. The bounds of Pareto efficiency and Condorcet loser criterion are evident, since for any
profile P , neither a Pareto dominated alternative nor the Condorcet loser can be the Condorcet
winner. Then we only need to prove the bound of SD-efficiency. Given profile P , we have

sup
P,ξ

inf
j,y

∑
x�jy

P[ξ = x]∑
x�jy

P[RCW(P ) = x]
6

1

1− sup
P

inf
j
P[RCW(P ) = ajlast]

.

Then there are two possible cases for the profile, discussed as follows
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1. If CW(P ) exists, then there must exist some j that ajlast 6= CW(P ). Therefore

inf
j
P[RCW(P ) = ajlast] =

1

eε +m− 1
.

2. If CW(P ) does not exist, then

inf
j
P[RCW(P ) = ajlast] =

1

m
>

1

eε+m−1
.

In other words, we have

sup
P

inf
j
P[RCW(P ) = ajlast] =

1

m
,

which indicates that CWRR satisfies m−1
m -SD-efficiency. That completes the proof. ut

Proposition 12. Given ε ∈ R+, CLRR satisfies 1-Pareto efficiency, (m−2)eε+1
(m−1)eε+1 -SD-efficiency, and

1-Condorcet criterion.

Proof. The bounds of Pareto efficiency and Condorcet criterion are evident, since for any profile
P , neither a Pareto dominator nor the Condorcet winner can be the Condorcet loser. Then we
only need to prove the bound of SD-efficiency. Given profile P , we have

sup
P,ξ

inf
j,y

∑
x�jy

P[ξ = x]∑
x�jy

P[RCL(P ) = x]
6

1

1− sup
P

inf
j
P[RCL(P ) = ajlast]

.

Then there are two possible cases for the profile, discussed as follows

1. If CL(P ) exists, considering the profile P , where each ajlast 6= CL(P ) for each j ∈ N , we have

inf
j
P[RCL(P ) = ajlast] =

eε

(m− 1)eε + 1
.

2. If CL(P ) does not exist, then

inf
j
P[RCL(P ) = ajlast] =

1

m
6

eε

(m− 1)eε + 1
.

In other words, we have

sup
P

inf
j
P[RCL(P ) = ajlast] =

1

m
,

which indicates that CWRR satisfies (m−2)eε+1
(m−1)eε+1 -SD-efficiency. That completes the proof. ut

B.2 Proofs of Theorems 1-6

Theorem 1. There is no voting rule satisfying ε-DP, α-Condorcet criterion and η-Condorcet loser
criterion with α · η > eε.

Proof. Consider the profile P (n = 2k + 1):

– k + 1 voters: a1 � a2 � · · · � am,
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– k voters: am � am−1 � · · · � a1.

By definition, we have CW(P ) = a1, since wP [a1, ai] = 1, for all ai 6= a1. Now consider another
profile P ′ with the same number of voters:

– k voters: a1 �′ a2 �′ · · · �′ am,
– k + 1 voters: am � am−1 � · · · � a1.

Then wP [a1, ai] = −1, for all ai ∈ A\{a}, i.e., a1 is a Condorcet loser. Since there is only one voter
changes her preference from P to P ′, we have

P[f(P ) = a1] > α · P[f(P ) = a2] (α-Condorcet criterion)
> αη · P[f(P ) = am] (η-Condorcet loser criterion)

> e−ε · αη · P[f(P ′) = am] (ε-DP)

> e−ε · α2 · η · P[f(P ′) = a2] (α-Condorcet criterion)

> e−ε · α2 · η2 · P[f(P ′) = a1] (η-Condorcet loser criterion)

> e−2ε · α2 · η2 · P[f(P ′) = a1], (ε-DP)

which indicates that e−2εα2η2 6 1, i.e., αη 6 eε. That completes the proof. ut

Theorem 2. If a neutral voting rule f : L(A)n → A satisfies ε-DP, β-Pareto efficiency, and α-
Condorcet criterion, then αβm−2 6 enε.

Proof. Consider the following profile P (n = 2k + 1):

– k + 1 voters: a1 � a2 � · · · � am;
– k voters: a2 � · · · � am � a1.

By definition, we have wP [a1, ai] = 1, for all ai ∈ A\{a1}, which indicates that CW(P ) = a1. Also
notice that wP [ai, aj ] = n for all i < j. Thus, ai Pareto dominates aj for all i < j. The relations
among all alternatives are shown in the following graph.

a1
Condorcet Winner−−−−−−−−−−−−−→ a2

Pareto−−−−−→ a3
Pareto−−−−−→ · · · Pareto−−−−−→ am. (2)

Since f satisfies α-Condorcet criterion and β-Pareto efficiency, we have

P[f(P ) = a1] > α · P[f(P ) = a2]

> αβ · P[f(P ) = a3]

> · · ·
> αβm−2 · P[f(P ) = am].

Now, consider another profile P ′, where all voters’ preferences are exactly the same:

am � am−1 � · · · � a1.

Then we have the following graph.

am
Condorcet Winner−−−−−−−−−−−−−→ am−1

Pareto−−−−−→ am−2
Pareto−−−−−→ · · · Pareto−−−−−→ a1.

Similarly, we have

P[f(P ′) = am] > αβm−2 · P[f(P ′) = a1].
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Notice that |{j ∈ N :�j 6=�′j}| = n. Therefore,

P[f(P ) = a1] > αβm−2 · P[f(P ) = am]

> e−nε · αβm−2 · P[f(P ′) = am] (ε-DP)

> e−nε · α2β2m−4 · P[f(P ′) = a1]

> e−2nε · α2β2m−4 · P[f(P ) = a1]. (ε-DP)

Then e−2nεα2β2m−4 6 1, i.e., αβm−2 6 enε, which completes the proof. ut

Theorem 3. If a neutral voting rule f : L(A)n → R(A) satisfies ε-DP, β-Pareto efficiency, and
α-Condorcet loser criterion, then αβm−2 6 enε.

Proof. Consider the following profile P (n = 2k + 1):

– k + 1 voters: a1 � a2 � · · · � am;
– k voters: a2 � · · · � am � a1.

By definition, we have wP [a1, ai] = 1, for all ai ∈ A\{a1}, which indicates that CL(P ) = a1. Also
notice that wP [ai, aj ] = n for all i < j. Thus, ai Pareto dominates aj for all i < j. The relations
among all alternatives are shown in the following graph.

a1
Pareto−−−−−→ a2

Pareto−−−−−→ · · · Pareto−−−−−→ am−1
Condorcet Loser−−−−−−−−−−−−→ am.

Since f satisfies α-Condorcet loser criterion and β-Pareto efficiency, we have

P[f(P ) = a1] > β · P[f(P ) = a2]

> · · ·
> βm−2 · P[f(P ) = am−1]

> αβm−2 · P[f(P ) = am].

Now, consider another profile P ′, where all voters’ preferences are exactly the same:

am � am−1 � · · · � a1.

Then we have the following graph.

am
Pareto−−−−−→ am−1

Pareto−−−−−→ · · · Pareto−−−−−→ a2
Condorcet Loser−−−−−−−−−−−−→ a1.

Similarly, we have

P[f(P ′) = am] > αβm−2 · P[f(P ′) = a1].

Notice that |{j ∈ N :�j 6=�′j}| = n. Therefore,

P[f(P ) = a1] > αβm−2 · P[f(P ) = am]

> e−nε · αβm−2 · P[f(P ′) = am] (ε-DP)

> e−nε · α2β2m−4 · P[f(P ′) = a1]

> e−2nε · α2β2m−4 · P[f(P ) = a1]. (ε-DP)

Then e−2nεα2β2m−4 6 1, i.e., αβm−2 6 enε, which completes the proof. ut

Proposition 13. Condorcet method satisfies SD-efficiency on DC .
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Proof. Let P be an arbitrarily chosen profile in DC . Then we only need to proof that there does
not exist ξ ∈ R(A) that SD-dominates CM(P ).

In fact, if there exists such a ξ, we can obtain by definition that∑
b�ja

P[ξ = b] >
∑
b�ja

P[CM(P ) = b], for all j ∈ N and a ∈ A.

Since for any a ∈ A that CW(P ) �j a, we have∑
b�ja

P[CM(P ) = b] = P[CM(P ) = CW(P )] = 1,

which indicates that ∑
b�ja

P[ξ = b] > 1.

Therefore, for any a ∈ A that CW(P ) �j a, P[ξ = a] = 0. However, according to the definition
of CW(P ), each a ∈ A must be ranked behind CW(P ) in some �j . Hence we have ξ = CM(P ), a
contradiction. ut

Theorem 4. There is no neutral voting rule f : L(A)n → R(A) satisfying ε-DP, α-Condorcet
criterion, and γ-SD efficiency with γ > α+m−1−αe−nε

α+m−1 .

Proof. Consider the profile P , where all voters’ vote are exactly the same, i.e.,

a1 �j a2 �j · · · �j am, for all j ∈ N.

It is not hard to see that CW(P ) = a1. Since f satisfies α-Condorcet criterion, we have P[f(P ) =
a] 6 P[f(P ) = a1]/α, for all a ∈ A\{a1}. Therefore,

1 = P[f(P ) = a1] +
∑

a∈A\{a1}

p[f(P ) = a] 6

(
1 +

m− 1

α

)
P[f(P ) = a1],

i.e., P[f(P ) = a1] > α
α+m−1 . Further, by Equation (1), we have

P[f(P ) = am] > e−nε · P[f(P ) = a1] >
αe−nε

α+m− 1
.

However, for profile P , the unique SD-efficient lottery is 1a1 . In other words, all lotteries ξ ∈ R(A)
that ξ 6= 1a1 are γ-SD-dominated by 1a1 with γ > 1. Further,∑

x�y
P[1a1 = x]∑

x�y
P[f(P ) = x]

>

inf
y∈A

∑
x�y

P[1a1 = x]

sup
y∈A

∑
x�y

P[f(P ) = x]

=
1

1− P[f(P ) = am]

>
1

1− αe−nε

α+m−1

=
α+m− 1− αe−nε

α+m− 1
,

i.e., 1a1 can α+m−1−αe−nε
α+m−1 -dominates f(P ), which completes the proof. ut
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Theorem 5. There is no neutral voting rule f : L(A)n → R(A) satisfying ε-DP, η-Condorcet loser
criterion, and γ-SD-efficiency with γ > enε−η

enε .

Proof. Let m > 2. Consider the following profile P with k(m− 2) voters (k > 1).

– k voters: y � a1 � a2 � · · · � x � am−2,
– k voters: y � a2 � a3 � · · · � x � a1,
– k voters: y � a3 � a4 � · · · � x � a2,
– k voters: · · · ,
– k voters: y � am−2 � a1 � · · · � x � am−3.

Then it is quite evident that CL(P ) = x. Since f satisfies η-Condorcet loser criterion, we have
P[f(P ) = a] > η · P[f(P ) = x], for all a ∈ A\{x}. By Equation (1), we have P[f(P ) = x] > e−nε.
Since f satisfies η-Condorcet loser criterion,

P[f(P ) = a] > η · P[f(P ) = x] > αe−nε, for all a ∈ A\{x}.

However, the unique SD-efficient lottery of P is 1y, since 1y can SD-dominates any other lotteries
on A. Further, ∑

b�a
P[1y = b]∑

b�a
P[f(P ) = b]

>

inf
a∈A

∑
b�a

P[1y = b]

sup
a∈A

∑
b�a

P[f(P ) = b]

=
1

1− inf min
16i6m−2

P[f(P ) = ai]

>
1

1− αe−nε
.

In other words, 1y can enε−η
enε -SD-dominates f(P ), which completes the proof. ut

Theorem 6. There is no neutral voting rule f : L(A)n → R(A) satisfying ε-DP, γ-SD-efficiency,
and β-Pareto efficiency with γ > enε−enεβ2−m

enε−enεβ2−m+β−1 .

Proof. Consider the profile P , where all voters’ preferences are the same, i.e.,

a1 �j a2 �j · · · �j am, for all j ∈ N.

By definition, for all i < j, any ai Pareto dominates aj in profile P . In other words, we have the
following diagram

a1
Pareto−−−−−→ a2

Pareto−−−−−→ · · · Pareto−−−−−→ am.

Since f satisfies β-Pareto efficiency, P[f(P ) = ai+1] 6 β · P[f(P ) = ai] holds for any i < m. By
Equation (1), P[f(P ) = am] > e−nε · P[f(P ) = a1]. Further,

P[f(P ) = a1] 6 enε · P[f(P ) = am],

P[f(P ) = a2] 6
1

β
· P[f(P ) = a1] 6

enε

β
· P[f(P ) = am],

· · ·

P[f(P ) = am−1] 6
1

βm−2
· P[f(P ) = a1] 6

enε

βm−2
· P[f(P ) = am].
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By summing up the above inequalities, we have

1 =
∑
a∈A

P[f(P ) = a] 6

(
1 +

(
1 +

1

β
+ · · ·+ 1

βm−2

)
enε
)
· P[f(P ) = am],

i.e., P[f(P ) = am] > β−1
enε−enεβ2−m+β−1 . However, the unique SD-efficient lottery of P is 1a1 , since

it can SD-dominate any other lottery. Further, we have∑
b�a

P[1y = b]∑
b�a

P[f(P ) = b]
>

inf
a∈A

∑
b�a

P[1y = b]

sup
a∈A

∑
b�a

P[f(P ) = b]

=
1

1− P[f(P ) = am]

>
1

1− β−1
enε−enεβ2−m+β−1

.

In other words, 1a1 can enε−enεβ2−m

enε−enεβ2−m+β−1 -SD-dominates f(P ), which completes the proof. ut



16

C More Experimental Figures
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Fig. 1. Tradeoff curves between α-Condorcet criterion and γ-SD-efficiency under ε-DP (upper bounds).
Left: m = 5, n = 10. Right: m = 5, n = 20.
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Fig. 2. Tradeoff curves between η-Condorcet loser criterion and γ-SD-efficiency under ε-DP (upper
bounds). Left: m = 5, n = 10. Right: m = 5, n = 20.


