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Abstract

Without prior information, domain generalization with only access to multi-domain1

training data relies on guessing what the test data is. In this work, we consider mild2

assumptions that there is a distribution over domains and the out-of-distribution3

data is generated by the shift of the domain distribution. We study a domain-level4

variance-based regularizer. We show that the variance-regularized method locally5

approximates the group distributionally robust optimization and embeds the local6

information into the objective function as a weighting scheme. By taking the7

empirical domain distribution as an anchor of the location, we propose a weighting8

correction scheme and provide guarantees of in-distribution generalization. Com-9

pared to the Empirical Risk Minimization, we prove the potential benefits of our10

proposed method but do not observe consistent improvements in general.11

1 Introduction12

Domain generalization [12, 28] is an out-of-distribution (OOD) generalization problem and has drawn13

much attention recently [39, 44, 35]. Some recent works consider an ambitious goal that generalizes14

to "absolutely" unseen domain by learning domain-invariant features. From the perspective of theory,15

the price of such invariant learning methods is the requirement for harsh assumptions or strong prior16

information, which is necessary to guarantee that the invariance exists and is identifiable. In this17

work, we assume that there exits a distribution of domains and the OOD test data is generated by18

the shift of the domain distribution. Then domain generalization is formulated into a distributionally19

robust optimization problem (DRO, [9, 11, 10]).20

Let z = (x,y) be a data point consisting of an input vector x ∈ X and the target label y ∈ Y.21

Suppose the training data is structured with respect to a latent domain label:22

Dtr =
{
zl, 1 ≤ l ≤ m

}
=

{
{zi,j , 1 ≤ j ≤ mi}, 1 ≤ i ≤ n

}
, (1)

where m is the total sample size , mi is the sample size of the i-th domain and n is the number of23

domains. We assume that the training domains are randomly drawn from possible domains with24

a domain distribution Q, i.e. Etr = {e1, e2, . . . , en} ⊆ E with ei ∼ Q and the data points under25

domain e is sampled from the distribution Pe. Let H be the hypothetical space and h ∈ H be a26

model that maps x ∈ X to h(x) ∈ Y. The loss function ℓ(ŷ,y) : Y × Y → [0,M ] measures27

how poorly the output ŷ = h(x) predicts the target y. Denote F as the collection of the functions28

f = ℓ(h(·), ·) : z → [0,M ] with h ∈ H. The in-domain expected risk and its sample average29

approximation ([34]) are denoted by30

R(f |ei) = Ez∼Pei
[f(z)] and R̂(f |ei) =

1

mi

mi∑
j=1

f(zi,j) (2)

respectively. The distribution shift between training and test data is characterized by the change of Q,31

while the data distributions Pe, e ∈ E are fixed.32
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We study the group distributionally robust optimization problem (group DRO, [21, 30, 33]):33

min
f∈F

max
Q

Ez∼P [f(z)], s.t. P =

∫
PeQ(de), Dϕ(Q∥Q0) ≤ ρ, (3)

where Q0 is a selected domain distribution, Dϕ(·∥·) stands for the ϕ-divergence ([3, 14]) and the34

tuning parameter ρ modulates the distribution shift. Throughout this paper, Dϕ(·∥·) is the χ2-35

divergence, i.e., ϕ(t) = 1
2 (t− 1)2. Sagawa* et al. [33] consider the empirical optimization problem,36

min
f∈F

max
q∈∆n

n∑
i=1

qiR̂(f |ei) with ∆n =

{
(q1, . . . , qn) : qi ≥ 0,

n∑
i=1

qi = 1

}
.

Here ∆n is the (n − 1)-dimensional probability simplex. In this case, the parameter ρ is fixed37

and sufficiently large. For more ambitious goals, Krueger et al. [25] propose the minimax risk38

extrapolation (MM-REx) that extends the uncertainty region ∆n into39

∆̃n(α) =

{
q = (q1, . . . , qn) : qi ≥ α,

n∑
i=1

qi = 1

}
,

where the parameter α ∈ (−∞, 1/n] modulates the uncertainty region. The negative value of α40

extrapolates risks and encourages robustness to large distribution shifts.41

At the sample level, the DRO loss can be asymptotically approximated by the sum of the ERM loss42

[38] and a variance-based regularizer [17], where the negligible error term converges to zero almost43

surely. Section 7 in [17] gives general results when the DRO objective is a Hadamard differentiable44

functional to P and F is a P0-Donsker class. From the perspective of generalization, the upper45

bound of the prediction risk may also have a variance-based regularization term that trades between46

approximation error and estimation error [5, 6, 13, 24]. Sample variance penalization [27] replaces47

the variance-based regularization with its empirical estimator and gives theoretical guarantees on48

the prediction performance. To address the computationally intractable problem caused by the non-49

convexity of the regularizer, Namkoong and Duchi [29] and Duchi and Namkoong [16] investigate50

the robustly regularized risk, that provides a convex surrogate for variance-regularized loss, and51

prove finite-sample and asymptotic results characterizing prediction performance. Back to domain52

generalization problem, Krueger et al. [25] develop a variance-regularized empirical loss (V-REx):53

R̃(f) + λṼout(f), where54

R̃(f) =
1

n

n∑
i=1

R̂(f |ei) and Ṽout(f) =
1

n

n∑
i=1

(
R̂(f |ei)− R̃(f)

)2

.

Xie et al. [41] prove that with high probability, optimizing the regularized loss R̃(f) + λ
√
Ṽout(f)55

is equivalent to solve a MM-REx problem.56

In this work, we refine R̃(f) and Ṽout(f) based on the intuitive understanding of generalization57

and distribution estimation. Recall the problem in (3). In general, Q0 is the ground-truth domain58

distribution and Q belongs to a neighborhood of Q0. Therefore, the empirical version of (3) should59

replace Q0 with its empirical approximation over Etr, i.e.,60

q̂ = (q̂1, q̂2, . . . , q̂n) = (
m1

m
, . . . ,

mn

m
).

However, the existing variance-regularized methods directly replace Q0 with a discrete uniform61

distribution (the center of ∆̃n(α)) without considering a consistent and efficient estimator q̂. In the62

sample variance penalization, this problem does not exist because the discrete uniform distribution63

on sample points (no tie), i.e. the empirical distribution, is a consistent estimator of the ground-truth64

data distribution. Consider a new uncertainty region:65

Qα,ρ(q̂) = ∆̃n(α) ∩
{
q : Dϕ(q∥q̂) ≤ ρ

}
.

Specifically, any q = (q1, . . . , qn) ∈ Qα,ρ(q̂) satisfies66

qi ≥ α,

n∑
i=1

qi = 1,

n∑
i=1

1

2
(
qi
q̂i

− 1)2q̂i ≤ ρ.
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In Section 3.2, we prove that with high probability, the MM-REx problem on Qα,ρ(q̂) can be67

uniformly equivalent to minimize the variance-regularized empirical loss R̂(f) + λ

√
V̂out(f) where68

R̂(f) =

n∑
i=1

q̂iR̂(f |ei) and V̂out(f) =

n∑
i=1

q̂i
(
R̂(f |ei)− R̂(f)

)2
. (4)

Comparing to R̃(f) and Ṽout(f), the two terms R̂(f) and V̂out(f) just introduce a weighting scheme69

derived from the empirical domain distribution q̂. In addition, the term R̂(f) is the exact ERM loss70

[38]. In Section 3.1, we investigate the generalization guarantee of the variance-regularized estimator,71

72

f̂ = argmin
f∈F

R̂(f) + λ

√
V̂out(f), (5)

via the covering number of the function class F . Appendix C also provides a version of the general-73

ization guarantee with localized Rademacher complexities, which may provide tighter generalization74

bounds in some cases. In Section 4, we consider a general uncertainty region Qα,ρ(q0), where the75

choice of q0 represents a kind of prior knowledge. Similar to the arguments in Section 3, we can also76

write q0 as a weight assignment and embed it into the variance-regularized loss function. We present77

a general form of the proposed method and prove that the optimization equivalence in Section 3.278

still holds when we replace Qα,ρ(q̂) with Qα,ρ(q0).79

Our results clearly show that80

• From the perspective of generalization, we propose a weighting correction scheme for81

variance-regularized domain generalization methods. The proposed method can outperform82

ERM under some cases, which shows the potential competitive edge of the proposed83

weighting correction method.84

• We do not observe that our method consistently improves ERM under general cases.85

• The proposed method is robust to the change of the domain distribution Q. From an86

optimization perspective, it is equivalent to solve a group DRO problem.87

2 Preliminaries88

In this section, we present the rationale for using variance-based regularization to improve the89

robustness of generalization. Section 2.1 gives two domain adaptation examples that the test data90

is known. We prove that the standard deviation of risk can bound the generalization gap between91

training and test data. In Section 2.2, we formulate an invariant learning principle as a hypothesis92

testing problem. We point out that penalizing the risk variance can protect the null hypothesis: the93

model is invariant across domains.94

2.1 Risk variance bounds generalization gap95

We present two simple examples to show that penalizing the standard deviation of risk is a natural96

strategy to improve robustness to the domain distribution shift.97

Risk Interpolation. In the first example, we assume the test distribution belongs to the convex98

hull of training domains. This is a typical risk interpolation case. Let P ∗ be the test distribution.99

Suppose there exists q∗ = (q∗1 , · · · , q∗n) ∈ ∆n such that P ∗ =
∑n

i=1 q
∗
i Pei , where Pei , 1 ≤ i ≤ n100

are training domains. Then the generalization gap between the training and test data is101

errf =

n∑
i=1

q∗iR(f |ei)−
n∑

i=1

qiR(f |ei) =
n∑

i=1

(q∗i − qi)
(
R(f |ei)−

n∑
i=1

qiR(f |ei)
)
,

where qi = Q(dei)/Q(dEtr) is the proportion of the training domain ei in the training data. We102

write q = (q1, . . . , qn). By the Cauchy–Schwarz inequality, we have103

errf ≤
√
2Dϕ(q∗∥q)×

√
Vout(f), (6)
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where Vout(f) is the between-domain risk variance over the training domains:104

Vout(f) =

n∑
i=1

qi

(
R(f |ei)−

n∑
i=1

qiR(f |ei)
)2

.

Notice that Vout(f) only depends the training data. Therefore, it is natural to penalize
√
Vout(f) to105

obtain a tight upper bound of the test error. The principle here is that if for ∀ei ∈ Etr, R(f |ei) is106

a constant that only depends on f , i.e. Vout(f) = 0, then changes from q to q∗ cannot cause any107

generalization gap.108

Sub-population Shift. Recall that the training data in (1) is structured with respect to a latent domain109

label. In this example, the domain label is the class label y. Therefore, the marginal distribution of110

y is different in the training and test data, and the conditional distribution P (x|y) is the same. Let111

Y = {1, 2, . . . ,K}. Then the generalization gap between the training and test data is112

errf =

K∑
k=1

E[f(z)|y = k]×
(
Pe′(y = k)− Pe(y = k)

)
≤

√
2Dϕ(Pe′(y)∥Pe(y))×

√
Vout(f),

where113

Vout(f) =

K∑
k=1

Pe(y = k)
(
E[f(z)|y = k]− 1

K

K∑
k=1

E[f(z)|y = k]
)2

is the between-class risk variance over the training data. Therefore, the generalization gap is also114

bounded above by the between-domain risk variance. If the in-class risks are equal, i.e., E[f(z)|y =115

k] = E[f(z)|y = k′], ∀k, k′ ∈ Y, then the sub-population shift cannot cause generalization gap.116

2.2 Penalizing risk variance protects invariant models117

In this section, we heuristically discuss the relationship between variance-based regularization and118

invariant learning. The REx principle [25] presents two training goals: Reducing training risks and119

Increasing the similarity of training risks. Krueger et al. [25] heuristically explain the utility of120

V-REx as enforcing the equality of training risks in the limit case λ→ +∞. In some experiments,121

V-REx with small λ also shows robust generalization and may outperform ERM. Here we understand122

this phenomenon by extending the REx principle to the population level:123

(i) Minimizing the expected risk R(f);124

(ii) Cannot reject the null hypothesis of the test:125

H0 : R(f |e) = R(f |e′),∀e, e′ ∈ E vs H1 : R(f |e) ̸= R(f |e′),∃e, e′ ∈ E . (7)

In general, Principle (i) is achieved by minimizing the ERM loss. Next we show that variance-based126

regularization is related to the hypothesis testing problem in Principle (ii). Under regular assumptions,127

one can use the one-way ANOVA F-test to check the hypothesis testing in (7). The F-test statistic is128

the ratio of the between-domain variance to the in-domain variance, i.e.,129

F =
V̂out(f)

V̂ (f)− V̂out(f)
with V̂ (f) =

1

m

n∑
i=1

mi∑
j=1

(
f(zij)− R̂(f)

)2
.

Here V̂out(f) and R̂(f) are defined in (4). If F is larger than a threshold, e.g. the (1− 5%)-quantile130

of a F distribution, one should reject the null hypothesis. Here 5% is the significance level. If131

the in-domain variance of a well-trained model is approximately stable, then penalizing V̂out(f) is132

equivalent to a constraint that H0 cannot be rejected. Therefore our proposed method that penalizes133

V̂out(f) is consistent with the REx principle and the regularization term V̂out(f) is a generalized134

version of V-REx.135
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3 Variance-Based Regularization136

Motivated by Section 2, we study a variance-based regularization method for domain generalization,137

which minimizes the following empirical loss function:138

R̂(f) + λ

√
V̂out(f), (8)

where λ is a tuning parameter and V̂out(f) is an empirical estimator of the between-domain risk139

variance. The proposed loss (8) directly optimizes the ERM principle R̂(f), which is different to140

the recent invariant learning methods that minimize R̃(f), e.g. Invariant Risk Minimization [1].141

The regularization term is slightly different to V-REx: (i) The square-root operator is derived from142

generalization gap; (ii) Different to the empirical variance ofR(f |e), we penalize the between-domain143

variance of f(z).144

We consider Q0 in (3) as the training domain distribution and denote the training distribution as145

P0 =
∫
PeQ0(de). To proceed further, we denote more notations as follows:146

R(f) = Ee∼Q0
[R(f |e)] = Ez∼P0

[f(z)], V (f) = Ez∼P0

[
(f(z)−R(f))2

]
,

Vin(f |e) = Ez∼Pe

[
(f(z)−R(f |e))2

]
, Vout(f) = Ee∼Q0

[
(R(f |e)−R(f))2

]
,

where R(f |e) is defined in (2). Here Vout(f) is the between-domain variance and Vin(f |e) is the147

in-domain variance of the domain e ∈ E . According to the decomposition of the total variance, we148

have149

V (f) = Var
(
E[f(z)|e]

)
+ E

[
Var(f |e)

]
= Vout(f) + Ee∼Q0

[
Vin(f |e)

]
.

When Q0 and Pe are replaced by the corresponding empirical distributions, we rewrite V (f),150

Vin(f |e) and Vout(f) as V̂ (f), V̂in(f |e) and V̂out(f) respectively. In the finite-sample setup, the151

decomposition of the total variance also holds:152

V̂ (f) = V̂out(f) +

n∑
i=1

mi

m
V̂in(f |e).

3.1 Generalization153

Since the empirical loss (8) is derived from generalization bounds, we present two versions of the154

generalization guarantee. The first result depends on the covering number of the function class F .155

In the Appendix, we also derive a version of the generalization bound with localized Rademacher156

complexities, which can provide more refined uniform generalization bounds in some cases.157

We start with the definition of the covering number. Let F be a collection of bounded functions158

f : X × Y → [0,M ]. Suppose F is a subset of a metric space with a norm ∥ · ∥. We say a collection159

{f1, . . . , fN} ⊆ F is an ϵ-cover of F if for each f ∈ F , there exists f i such that ∥f − f i∥ ≤ ϵ. The160

covering number of F is161

N
(
F , ϵ, ∥ · ∥

)
:= inf

{
N ∈ N : there exists a collection {f1, . . . , fN}

which is an ϵ-cover of F with respect to ∥ · ∥
}
.

In the following, we use the ℓ∞ norm: ∥f − g∥∞ = supz∈X×Y |f(z)− g(z)|. Now we are ready to162

present the following theorem:163

Theorem 1 Let n ≥ 2 and {zi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi} is an i.i.d sample drawn from P0.164

Suppose f(z) ∈ [0,M ] for any f ∈ F and z ∈ X ×Y and the function class F has the over number:165

Nϵ = N(F , ϵ, ∥ · ∥L∞(X×Y)). Let 0 < δ < 1 and166

t = log
(n+ 2)Nϵ

δ
, λ =

√
2t

m− 1
.
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Then we have, with probability at least 1− δ,167

R(f) ≤ R̂(f) + λ

√
V̂out(f) +

n∑
i=1

λ

√
(mi − 1)Vin(f |ei)

m

+

n∑
i=1

√
(m− 1)miMλ2√
m(mi − 1)

+
(4m− 1)Mλ2

3m

+
(
2 + λ+

n∑
i=1

λ

√
(mi − 1)

m

)
ϵ,

holds for every f ∈ F .168

The proof of Theorem 1 is presented in the Appendix B. In some cases, the covering number-169

based analysis cannot provide a tight generalization bound [4, 5, 36]. Therefore, we also use the170

local Rademacher complexity [5] to present the generalization of the proposed variance-based171

regularization. The details and proof are postponed into Appendix C.172

Why we study In-Distribution generalization? Theorem 1 provides the generalization guarantee173

for the in-distribution (ID) generalization rather than the OOD generalization. But its result gives174

important insights into the OOD generalization. First, the ID error provides a lower bound for175

the worst-case OOD error since Etr is a subset of E . Second, some empirical studies of OOD176

generalization have observed a linear relationship between the ID and OOD test error [31, 20, 22].177

Third, some OOD generalization bounds are derived from a domain adaptation framework [8, 7, 2,178

42, 43], e.g.,179

OOD error ≤ ID error + error gap +O(·), (9)

which starts from the ID error and then depicts the error gap. Most recent works focus on minimising180

the error gap and ignore how their robust (or invariant ) methods increase the ID test error. Fourth,181

our assumptions are mild and general. We do not impose strong constraint on the test data, e.g.182

structured generative mechanism, and only assume the domain distribution shift. Therefore, we183

analyze the ID error of the proposed robust method under mild assumptions.184

We denote f∗ as the optimal function and let f̂ be a solution:185

f̂ ∈ argmin
f∈F

R̂(f) + λ

√
V̂out(f).

Next we study the excess risk of f̂ . According to Theorem 1, we obtain the following result.186

Corollary 2 Suppose the assumptions in Theorem 1 hold. Let 0 < δ < 1 and187

t = log
2Nϵ + 2

δ
, λ =

√
2t

m− 1
.

Then, with probability at least 1− δ,188

R(f̂)−R(f∗) ≤ 2λ

√
(m− 1)V (f∗)

m
+

n∑
i=1

λ

√
miV̂in(f̂ |ei)

m

+
(
2 + λ+

n∑
i=1

λ

√
mi

m

)
ϵ+ λ2

4(4m− 1)M

3m
.

Parametric Example. Suppose the hypothetical space F is a class of parametric functions:189

F =
{
fθ(z) : z ∈ X × Y, θ ∈ Θ ⊆ Rd

}
,

where the parameter set Θ is bounded. Further, for any data point z, fθ(z) is a L-Lipschitz function190

of θ with respect to ℓ2 norm on Θ. Then the covering number is bounded above:191

Nϵ ≤
(
1 + diam(Θ) · L · 1

ϵ

)d

, with diam(Θ) = sup
θ,θ′∈Θ

∥θ − θ′∥2.
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Then we take192

ϵ =
1

m
, logNϵ = O(logm), λ = O(

√
logm

m
).

Therefore, by Corollary 2, with probability at least 1− δ,193

R(f̂)−R(f∗) ≤ 2λ

√
(m− 1)V (f∗)

m
+

n∑
i=1

λ

√
miV̂in(f̂ |ei)

m
+O(

logm

m
). (10)

Potential competitive edge. The second term on the RHS of (10) contains the empirical in-domain194

variance V̂in(f̂ |ei). For over-parameterized model, the empirical in-domain variance of f̂ can be195

close to zero. If there exists an optimal function f∗ ∈ argminf R(f) such that V (f∗) = 0, then the196

term O(logm/m) dominants the convergence rate of the excess risk.1 For ERM, the convergence197

rate of the excess risk is 1/
√
m, which is slower than logm/m. Due to the fast convergence rate, our198

proposed method can outperform ERM when the sample size m is large enough.199

Cannot consistently outperform ERM. If there is no optimal function f∗ ∈ argminf R(f) satisfies200

V (f∗) = 0, then the first term on the RHS (10) can dominant the excess risk. In this case, the201

convergence rate of the the excess risk of our method is
√
logm/m, which is slower than ERM. This202

implies that if V (f∗) > 0 for ∀f∗ ∈ argminf R(f), ERM can outperform our method when m is203

large enough.204

OOD generalization. According to Eq. (9), OOD error can be rewritten as a sum of ID error and error205

gap. The distance between the training and test domain distribution can determine the error gap term206

under our setup. Furthermore, we only assume that the training and test domain distributions are close207

but different, and do not impose any structured generative models, such as structural equation models208

[40] or probabilistic graphical models [23]. In other words, we do not introduce prior information and209

use mild and general assumptions. Due to the uncertainty of the test data, the error gap should be the210

worst-case error gap for the domain distribution shift and hypothetical space, which is independent of211

the estimator. This implies that without prior information, the ID error is a reliable metric to infer the212

OOD error.213

Non-convexity. Similar to the Sample Variance Penalization [27], the proposed objective function214

(8) is in general non-convex and computationally intractable. The proposed regularization term215

is non-convex even if the loss function is convex. It is still unclear how to actually minimize the216

variance-regularized objective function. Krueger et al. [25] use a penalty annealing scheme to obtain217

a good pre-train model. In the Appendix A, we empirically show that our method can use random218

initialization without dropping generalization performance.219

3.2 Optimization220

In this section, we show that minimizing (8) is equivalent to solving a group DRO problem con-221

cerning a local neighbourhood of the empirical domain distribution. Let q = (q1, q2, . . . , qn) be a222

discrete distributions defined on the domain set Etr = {e1, e2, . . . , en}. We consider the following223

optimization problem that minimizes224

max
q∈Qα,ρ(q̂)

n∑
i=1

qiR̂(f |ei), (11)

which is slightly different to group DRO problem because Qα(q̂, ρ) is not centered at the uniform225

discrete distribution. We denote λ =
√
2ρ and rewrite the empirical loss in (8) as226

L(f ; ρ) = R̂(f) +

√
2ρV̂out(f). (12)

The following theorem shows that the objective (11) is bounded by two variance-regularized functions227

in the form of (12).228

1The factor logm comes frome the covering number Nϵ. If the hypothetical space F only contains finite
models, Nϵ is a constant and is independent to m. Then the convergence rate of the excess risk is 1/m.
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Theorem 3 Suppose the training dataset D and a function f ∈ F are given. Let ρ+ be the largest229

distance between q̂ and q ∈ Qα,+∞(q̂) and230

ρ− =
mini(α/q̂i − 1)2V̂out(f)

2
(
mini R̂(f |ei)− R̂(f)

)2 ,
then we have231

L(f ; ρ−) ≤ max
q∈Qα,+∞(q̂)

n∑
i=1

qiR̂(f |ei) ≤ L(f ; ρ+). (13)

This second inequality in (13) implies that the optimization problem (11) with ρ = +∞ is always232

bounded above by the variance-regularized loss with the tuning parameter ρ+. On the other hand, we233

can also derive a tuning parameter ρ− depends on the training data and a given model f , and then234

prove that L(f ; ρ−) is a lower boundary of (11). According to the proof of Theorem 3, one can find235

that the equality holds:236

max
q∈Qα,ρ(q̂)

n∑
i=1

qiR̂(f |ei) = R̂(f) +

√
2ρV̂out(f),

when the radius ρ satisfies ρ ≤ ρ−. If V̂out(f) is nonzero and ρ is given, the equality holds if and237

only if ∀ei ∈ Etr,238

α ≤ q̂i

(√ 2ρ

V̂out(f)

(
R̂(f |ei)− R̂(f)

)
+ 1

)
. (14)

Therefore, the parameter α and the radius ρ govern each other.239

Sketch of Proof: We start with a preliminary result: for any α and ρ,240

max
q∈Qα,ρ(q̂)

n∑
i=1

qiR̂(f |ei) ≤ L(f ; ρ),

which is directly derived from the Cauchy-Schwarz inequality. By checking the conditions for the241

equality, we obtain the constraints in (14). Note that Qα,+∞(q̂) ⊆ Q+∞,ρ+
(q̂) since ρ+ is the largest242

distance between q̂ and q ∈ Qα,+∞(q̂). Hence the second inequality in (13) is trivial. Let q∗
− be243

q∗
− = argmax

q∈Q+∞,ρ− (q̂)

n∑
i=1

qiR̂(f |ei).

Furthermore, q∗
− ∈ Qα,ρ−(q̂) ⊆ Qα,+∞(q̂). Hence the first inequality in (13) holds. □244

Theorem 3 shows the equivalence between group DRO and the variance-based regularization in245

(12). However, the lower bound L(f ; ρ−) still depends on the training data and model. Next we use246

concentration inequalities and the covering numbers of F to derive the uniform results.247

Theorem 4 Suppose that α is a non-positive scalar and V ′
out(f) = V (f) −

∑
i qiVin(f |ei) > 0.248

For each training domain, both q̂i and qi are larger than δ > 0. We write249

ρ′ =
V ′
out(f)

16M2

(
α

1− (n− 1)δ
− 1

)2

.

Let τ > 0 and 0 < η < 1 be two constants. Define250

Fτ,η = {f ∈ F : V (f) ≥ τ, and
Vin(f |ei)
V (f)

≤ η,∀ei ∈ Etr}.

For any f ∈ Fτ,η , the following expansion uniformly holds:251

max
q∈Qα,ρ′ (q̂)

n∑
i=1

qiR̂(f |ei) = L(f ; ρ′),
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with probability at least 1−Nτ,η × p, where Nτ,η = N
(
Fτ,η,

√
1
10 (1− η)τ , ∥ · ∥L∞(X×Y)

)
is the252

covering number of Fτ,η and253

p = exp
(
− m(1− η)2τ

32M2
+

1

16

)
+

(
m+ n− 1
n− 1

)
exp

(
− m(1− η)2τ2

M4

)
+

n∑
i=1

exp
{
− 1

2M2mi

(mi(1− η) + 4η

1 + 3η

)2}
.

4 General Version254

Recall the uncertainty region in (3): {Q : Dϕ(Q∥Q0) ≤ ρ}. In Section 3, Q0 is the ground-truth255

domain distribution. In fact, it can be a selected anchor distribution closed to the target test domain.256

The choice of Q0 can be regarded as a kind of prior knowledge and the hyperparameter ρ represents257

how strong is the confidence in the prior. We formulate the finite-sample optimization problem as258

max
q∈Qα,ρ(q0)

n∑
i=1

qiR̂(f |ei), (15)

where q0 is the conditional distribution of e given e ∈ Etr, which is derived from Q0. In this problem,259

the uncertainty region Qα,ρ(q0) is centered at a discrete distribution q0 rather than the uniform260

distribution or the empirical distribution q̂. Therefore, we can manually select q0 to introduce the261

prior information.262

According to the proof of Theorem 3 in the , the optimization equivalence in Section 3.2 also263

holds when we replace Qα,ρ(q̂) with Qα,ρ(q0). To proceed further, we rewrite L(f ; ρ, q0) =264

R̂(f, q0) +

√
2ρV̂out(f, q0) with265

R̂(f, q0) =

n∑
i=1

q0,iR̂(f |ei) and V̂out(f, q0) =

n∑
i=1

q0,i
(
R̂(f |ei)− R̂(f, q0)

)2
.

Then we restate Theorem 3 as the following general version.266

Theorem 5 Given the training dataset and a function f ∈ F , then for any distribution q0, the267

inequality always holds:268

max
q∈Qα,ρ(q0)

n∑
i=1

qiR̂(f |ei) ≤ L(f ; ρ, q0).

If the between-domain variance V̂out(f, q0) is non-zero, the equality holds if and only if ∀ei ∈ Etr,269

α ≤ q0,i

(√ 2ρ

V̂out(f, q0)

(
R̂(f |ei)− R̂(f, q0)

)
+ 1

)
.

On the other hand, if α is fixed, the equality holds when the radius of Qα,ρ(q0) satisfies270

ρ ≤ mini(α/q0,i − 1)2V̂out(f, q0)

2
(
mini R̂(f |ei)− R̂(f, q0)

)2 .
This result shows the equivalence between the optimization problem (15) and the variance-regularized271

loss L(f ; ρ, q0). Therefore, for unbalanced domains and any given prior q0, we can still use the272

variance-based regularization to approximate the DRO problem. Please refer to the Appendix for the273

complete proof of Theorem 5.274

5 Conclusion275

In this work, we study a variance-based regularization method for domain generalization. We prove276

the guarantees for in-distribution generalization and figure out the potential benefits of our proposed277

method compared to ERM. Our proposed objective function is non-convex and the optimization278

procedure is computationally intractable. The learnt model can be highly dependent on initialization279

or pretraining. In future work, we will consider combining generalization bounds with specific280

optimization algorithms to seek fine-grained generalization guarantees.281
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A Experiments392

In this section, we present empirical evidence to verify our theoretical results that under mild and393

general assumptions, the proposed weighting correction scheme in (5) has better ID generalization394

guarantees than the existing variance-regularized domain generalization methods. By Theorem 4,395

we reformulate the objective function in (5) into a batch version. Then we consider the following two396

settings:397

• Balanced batch. This is the standard operation in DomainBed [18] and is commonly used398

by the existing variance-based regularization methods. In each iteration, the same number399

of data points are randomly drawn from each training domain to form a batch.400

• Unbalanced batch. (Our method) In this setting, we randomly draw data points from each401

training domain with equal proportions, such that the proportion of each domain in one402

batch is the same as the proportion of the domains in the entire training data.403

We consider three variance-regularized domain generalization methods.404

• Variance. The V-REx regularization [25] penalizes the domain-level variance of risk without405

considering the empirical domain distribution. The V-REx estimator is406

f̂ = argmin
f∈F

R̃(f) + λṼout(f),

where407

R̃(f) =
1

n

n∑
i=1

R̂(f |ei) and Ṽout(f) =
1

n

n∑
i=1

(
R̂(f |ei)− R̃(f)

)2

.

• Standard Deviation. We also consider the RVP Regularization [41], which slightly changes408

the penalty term of V-REx into the domain-level standard deviation of risk. Xie et al. [41]409

provides an understanding of generalization from the perspective of quantile regression and410

shows that RVP locally approximates DRO. We remove the scheme of penalty annealing411

since it is not involved in group DRO. The RVP estimator is412

f̂ = argmin
f∈F

R̃(f) + λ

√
Ṽout(f).

• Weighting Correction. Our proposed method introduces the empirical domain distribution413

as a weighting scheme into the objective function. We also remove the scheme of penalty414

annealing. Our proposed estimator is415

f̂ = argmin
f∈F

R̂(f) + λ

√
V̂out(f),

where416

R̂(f) =

n∑
i=1

q̂iR̂(f |ei) and V̂out(f) =

n∑
i=1

q̂i
(
R̂(f |ei)− R̂(f)

)2
.
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Implementation Details. We consider two datasets: PACS [26] and VLCS [37] We use ResNet50417

as neural network architecture [19] and start from a pretrained model on ImageNet [32]. In order418

to fairly evaluate the different regularization, we follow the DomainBed Benchmark to randomly419

select 20 groups of hyperparameter combinations and repeated the experiment three times for each420

hyperparameter group. The model is selected according to the training domain validation accuracy,421

that is the in-distribution validation accuracy. The hyper-parameters includes batch size, learning422

rate, weight decay, iterations of penalty annealing, and the regularization parameter λ. The other423

experimental settings are the same as those in Gulrajani and Lopez-Paz [18].424

The results are reported in Table 1. One can find that the improvement of the weighting correction425

scheme is statistically significant compared to the original VREx method.426

Table 1: The ID prediction accuracy on PACS and VLCS.

PACS

Balance Regularization Method A C P S Avg

× Weighting Correction 96.9 ± 0.1 97.0 ± 0.2 96.4 ± 0.1 97.2 ± 0.2 96.9 ± 0.1
× Standard Deviation 67.4 ± 0.3 54.9 ± 1.0 51.0 ± 1.4 82.4 ± 0.4 63.9 ± 0.2
× Variance 20.5 ± 0.5 19.6 ± 0.2 20.5 ± 0.5 36.7 ± 5.9 24.3 ± 1.7

✓ Standard Deviation 82.0 ± 0.6 81.3 ± 0.1 77.2 ± 0.6 86.1 ± 0.5 81.7 ± 0.4
✓ Variance 97.0 ± 0.1 96.6 ± 0.1 96.2 ± 0.2 97.0 ± 0.2 96.7 ± 0.1

VLCS

Balance Regularization Method C L S V Avg

× Weighting Correction 81.9 ± 0.2 87.6 ± 0.1 85.7 ± 0.3 83.4 ± 0.0 84.7 ± 0.0
× Standard Deviation 43.7 ± 0.0 45.0 ± 0.2 48.2 ± 0.7 46.1 ± 0.5 45.8 ± 0.3
× Variance 53.8 ± 1.5 49.1 ± 0.9 53.3 ± 0.9 52.7 ± 1.7 52.2 ± 0.5

✓ Standard Deviation 48.0 ± 2.3 47.5 ± 0.7 48.9 ± 0.5 53.6 ± 0.4 49.5 ± 0.7
✓ Variance 81.3 ± 0.2 87.3 ± 0.2 85.4 ± 0.5 83.1 ± 0.2 84.3 ± 0.2

B Proof of Theorem 1427

Theorem. Let n ≥ 2 and {zi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi} is an i.i.d sample drawn from P0.. Suppose428

the function set F has cover numbers429

Nϵ = N(F , ϵ, ∥ · ∥L∞(X×Y)),

and for any f ∈ F and z ∈ X × Y , f(z) ∈ [0,M ]. Then we have for every f ∈ F ,430

R(f) ≤ R̂(f) +

√
2V̂out(f)t

m− 1
+

n∑
i=1

√
2(mi − 1)Vin(f |ei)t

m(m− 1)

+

n∑
i=1

2
√
miMt√

m(mi − 1)(m− 1)
+

2(4m− 1)Mt

3m(m− 1)

+
(
2 +

√
2t

m− 1
+

n∑
i=1

√
2(mi − 1)t

m(m− 1)

)
ϵ,

with probability at least 1− (n+ 2)Nϵ exp(−t).431

Proof: By the Bernstein inequality, with probability at least 1− exp(−t),432

R(f) ≤ R̂(f) +

√
2V (f)t

m
+

2Mt

3m
,

holds for any given function f. Furthermore, by Theorem 10 in [27],433 √
V (f) ≤

√
m

m− 1
V̂ (f) +

√
2mM2t

m− 1
,
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holds with probability larger than 1− exp(−t). Then,434

R(f) ≤ R̂(f) +

√
2V̂ (f)t

m− 1
+

2Mt

m− 1
+

2Mt

3m
,

= R̂(f) +

√
2V̂ (f)t

m− 1
+

2(4m− 1)Mt

3m(m− 1)
,

holds with probability larger than 1−2 exp(−t).According to the decomposition of the total variance,435

we know that436

V̂ (f) =
1

m

n∑
i=1

mi∑
j=1

(
f(zi,j)− R̂(f |ei) + R̂(f |ei)− R̂(f)

)2
=

1

m

n∑
i=1

mi∑
j=1

(
f(zi,j)− R̂(f |ei)

)2
+
(
R̂(f |ei)− R̂(f)

)2
=

n∑
i=1

mi

m
V̂in(f |ei) +

n∑
i=1

q̂i
(
R̂(f |ei)− R̂(f)

)2
=

n∑
i=1

mi

m
V̂in(f |ei) + V̂out(f).

Hence, with probability larger than 1− 2 exp(−t),437

R(f) ≤ R̂(f) +

√
2V̂out(f)t

m− 1
+

n∑
i=1

√
2miV̂in(f |ei)t
m(m− 1)

+
2(4m− 1)Mt

3m(m− 1)
.

By applying Theorem 10 in [27],438 √
Vin(f |ei) ≥

√
mi

mi − 1
V̂in(f |ei)−

√
2miM2t

mi − 1
,

holds with probability smaller than exp(−t). Hence we have,439

R(f) ≤ R̂(f) +

√
2V̂out(f)t

m− 1
+

n∑
i=1

√
2(mi − 1)Vin(f |ei)t

m(m− 1)

+

n∑
i=1

2
√
miMt√

m(mi − 1)(m− 1)
+

2(4m− 1)Mt

3m(m− 1)
,

holds with probability larger than 1− (2 + n) exp(−t).440

Next, we consider a set of functions {f1, . . . , fNϵ}, which is a minimal ϵ-cover of the function space441

F of size442

Nϵ = N(F , ϵ, ∥ · ∥L∞(X×Y)).

Then, for any f ∈ F , there exists f j , 1 ≤ j ≤ Nϵ such that ∥f − f j∥L∞(X×Y) ≤ ϵ. Therefore,443

R(f) ≤ R(f j) + ϵ

≤ R̂(f j) +

√
2V̂out(f j)t

m− 1
+

n∑
i=1

√
2(mi − 1)Vin(f j |ei)t

m(m− 1)

+

n∑
i=1

2
√
miMt√

m(mi − 1)(m− 1)
+

2(4m− 1)Mt

3m(m− 1)
+ ϵ,

with probability larger than 1− (2 + n) exp(−t). Notice that R̂(f j) ≤ R̂(f) + ϵ and444 √
V̂out(f j) ≤

√
V̂out(f) +

√
V̂out(f j − f) ≤

√
V̂out(f) + ϵ,√

V̂in(f j |ei) ≤
√
V̂in(f |ei) +

√
V̂in(f j − f |ei) ≤

√
V̂in(f |ei) + ϵ.
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Therefore, for every f ∈ F ,445

R(f) ≤ R̂(f) +

√
2V̂out(f)t

m− 1
+

n∑
i=1

√
2(mi − 1)Vin(f |ei)t

m(m− 1)

+

n∑
i=1

2
√
miMt√

m(mi − 1)(m− 1)
+

2(4m− 1)Mt

3m(m− 1)

+
(
2 +

√
2t

m− 1
+

n∑
i=1

√
2(mi − 1)t

m(m− 1)

)
ϵ,

holds with probability at least 1− (n+ 2)Nϵ exp(−t).446

□447

Let448

t = log
(n+ 2)Nϵ

δ
, and λ =

√
2t

m− 1
.

Then we have, with probability at least 1− δ,449

R(f) ≤ R̂(f) + λ

√
V̂out(f) +

n∑
i=1

λ

√
(mi − 1)Vin(f |ei)

m

+

n∑
i=1

√
(m− 1)miMλ2√
m(mi − 1)

+
(4m− 1)Mλ2

3m

+
(
2 +

√
2t

m− 1
+

n∑
i=1

√
2(mi − 1)t

m(m− 1)

)
ϵ,

for every f ∈ F . Hence Theorem 1 is proved.450

□451

C More results for Theorem 1452

In this section, we use the local Rademacher complexity [5] to present the generalization of the453

proposed variance-based regularization. We start with the definition of the sub-root function, which454

can be used to bound the local Rademacher complexity.455

Definition 6 ([5], Definition 3.1) A function ψ : [0,∞) → [0,∞) is sub-root if it is non-negative,456

non-decreasing and if r 7→ ψ(r)/
√
r is non-increasing for r > 0.457

For any nontrivial sub-root function ψ, i.e., not the constant function ψ ≡ 0, it is continuous and has458

a unique positive fix point r∗ = ψ(r∗) . In addition, for all r > 0, r ≥ ψ(r) if and only if r∗ ≤ r.459

We consider the local Rademacher complexity:460

E
[
Rn({cf(z) : f ∈ F , c ∈ [0, 1], and Ez∼P [c

2f2(z)] ≤ r})
]

(16)

which is also used by [16]. Here the notation E in (16) takes the expectations with respect to the461

Rademacher random variables. We denote a sub-root function ψm(r) as an upper bound of the462

localized Rademacher complexity:463

ψm(r) ≥ E
[
Rn({cf(z) : f ∈ F , c ∈ [0, 1], and Ez∼P [c

2f2(z)] ≤ r})
]
. (17)

The solution of ψm(r) = r is denoted as r∗m. When the distribution P is replaced by Pei , the upper464

bound sub-root function and the corresponding fixed point are written as ψm,i and r∗m,i.465

Theorem 7 Let F be a collection of bounded functions f : X × Y → [0,M ] satisfying the localiza-466

tion inequality (17) for some sub-root function ψm(r) (ψm,i(r)) with root r∗m (r∗m,i). Let467

Bm =
1

m
(t+ log⌈log m

t
⌉) and Cm = 2((2e+ 84M)Bm + 36r∗m),
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where ⌈·⌉ stands for the ceiling function. Then, for every f ∈ F ,468

R(f) ≤ (1 +
√
2Cm)

(
R̂(f) +

√
2Cm

1 +
√
2Cm

√
V̂out(f)

)
+

√√√√3

2
Cm

n∑
i=1

mi

m
E[f2(z)|ei]

+

√√√√144CmM2

n∑
i=1

mi

m
r∗m,i + Cm

nMt

m
(4 +

7

3
M)

+

√
144CmM2r∗m +

CmMt

m
(4 +

7

3
M) + 6r∗m + 14MBm,

with probability at least 1− (2 + n) exp(−t).469

Proof: Before proving the theorem, we state a useful lemma that provides a version of uniform470

Bernstein’s inequality by measuring the complexity of the localized functions that near the optimum471

of an empirical risk.472

Lemma 8 [[16], Lemma 17 and Lemma 18] Let F be a collection of bounded functions f : X ×Y →473

[0,M ] satisfying the localization inequality (17) for some sub-root function ψm(r) with root r∗m. Let474

Bm =
1

m
(t+ log⌈log m

t
⌉) and η > 0.

Then with probability at least 1− exp(−t), for every f ∈ F ,475

R(f)− R̂(f)| ≤ (
√

2eBm + 6

√
r∗m +

7

3
MBm)

√
E[f2] + 6r∗m + 14MBm, (18)

476

E[f2] ≤ Ê[f2] +
1

η
Ê[f2] + 72M2(1 + η)r∗m +

Mt

m
(4 +

7

3
M), (19)

and477

Ê[f2] ≤ E[f2] +
η

η + 1
E[f2] + 72M2(1 + η)r∗m +

Mt

m
(4 +

7

3
M), (20)

where Ê[f2(z)] = 1
m

∑n
i=1

∑mi

j=1 f
2(zi,j).478

Proof: Please refer to Appendix D.1 and D.2 of [16] for a complete proof of the lemma.479

□480

Now we turn to the proof of Theorem 7. We denote Cm = 2((2e+ 84M)Bm + 36r∗m). It is easy to481

see that482

(
√
2eBm + 6

√
r∗m + 7MBm/3)

2

= 2eBm + (36r∗m + 84MBm) + 2
√
2eBm

√
36r∗m + 84MBm

≤ 2(2eBm + 36r∗m + 84MBm) = 2Cm.

Then the inequality (18) implies that for every f ∈ F ,483

R(f) ≤ R̂(f) +
√
CmE[f2(z)] + 6r∗m + 14MBm,

holds with probability at least 1− exp(−t). By (19) with η = 1, we have for all f ∈ F ,484

R(f) ≤ R̂(f) +

√
2CmÊ[f2(z)] +

√
144CmM2r∗m +

CmMt

m
(4 +

7

3
M) + 6r∗m + 14MBm,
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with probability at least 1− 2 exp(−t). Notice that485

Ê[f2(z)] =
1

m

n∑
i=1

mi∑
j=1

(
f(zi,j)− R̂(f |ei) + R̂(f |ei)− R̂(f) + R̂(f)

)2
=

1

m

n∑
i=1

mi∑
j=1

(
f(zi,j)− R̂(f |ei)

)2
+
(
R̂(f |ei)− R̂(f)

)2
+ R̂(f)2

= R̂(f)2 + V̂out(f) +

n∑
i=1

mi

m
V̂in(f |ei).

Then we have486

R(f) ≤ (1 +
√
2Cm)R̂(f) +

√
2CmV̂out(f) +

√√√√Cm

n∑
i=1

mi

m
V̂in(f |ei)

+

√
144CmM2r∗m +

CmMt

m
(4 +

7

3
M) + 6r∗m + 14MBm.

Next we deal with the upper bound of V̂in(f |ei). We denote

Ê[f2|ei] =
1

mi

mi∑
j=1

f2(zi,j).

According to (20), for every f ∈ F ,487

Ê[f2(z)|ei] ≤ 2η + 1

η + 1
E[f2(z)|ei] + 72M2(1 + η)r∗m,i +

Mt

mi
(4 +

7

3
M),

holds with probability at least 1− exp(−t). Let η = 1. Then, for every f ∈ F ,488

R(f) ≤ (1 +
√

2Cm)R̂(f) +

√
2CmV̂out(f) +

√√√√3

2
Cm

n∑
i=1

mi

m
E[f2(z)|ei]

+

√√√√144CmM2

n∑
i=1

mi

m
r∗m,i + Cm

nMt

m
(4 +

7

3
M)

+

√
144CmM2r∗m +

CmMt

m
(4 +

7

3
M) + 6r∗m + 14MBm,

with probability at least 1− (2 + n) exp(−t).489

□490

D Proof of Corollary 2491

Corollary. Let n ≥ 2 and {zi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi} is an i.i.d sample. Suppose the function set492

F has cover numbers493

Nϵ = N(F , ϵ, ∥ · ∥L∞(X×Y)),

and for any f ∈ F and z ∈ X × Y , f(z) ∈ [0,M ]. Let494

t = log
2Nϵ + 2

δ
, and λ =

√
2t

m− 1
.

Then, with probability at least 1− δ,495

R(f̂)−R(f∗) ≤ 2λ

√
(m− 1)V (f∗)

m
+

n∑
i=1

λ

√
miV̂in(f̂ |ei)

m

+
(
2 + λ+

n∑
i=1

λ

√
mi

m

)
ϵ+ λ2

4(4m− 1)M

3m
.
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Proof: According to the proof of Theorem 1,496

R(f) ≤ R̂(f) +

√
2V̂out(f)t

m− 1
+

n∑
i=1

√
2miV̂in(f |ei)t
m(m− 1)

+
2(4m− 1)Mt

3m(m− 1)
,

holds with probability larger than 1− 2 exp(−t). Next, we consider a set of functions {f1, . . . , fNϵ},497

which is a minimal ϵ-cover of the function space F of size Nϵ = N(F , ϵ, ∥ · ∥L∞(X×Y)). Then, for498

any f ∈ F , there exists f j , 1 ≤ j ≤ Nϵ such that ∥f − f j∥L∞(X×Y) ≤ ϵ. Therefore,499

R(f) ≤ R(f j) + ϵ

≤ R̂(f j) +

√
2V̂out(f j)t

m− 1
+

n∑
i=1

√
2miV̂in(f j |ei)t
m(m− 1)

+
2(4m− 1)Mt

3m(m− 1)
+ ϵ,

with probability larger than 1− (2 + n) exp(−t). Notice that R̂(f j) ≤ R̂(f) + ϵ and500 √
V̂out(f j) ≤

√
V̂out(f) +

√
V̂out(f j − f) ≤

√
V̂out(f) + ϵ,√

V̂in(f j |ei) ≤
√
V̂in(f |ei) +

√
V̂in(f j − f |ei) ≤

√
V̂in(f |ei) + ϵ.

Therefore, for every f ∈ F ,501

R(f) ≤ R̂(f) +

√
2V̂out(f)t

m− 1
+

n∑
i=1

√
2miV̂in(f |ei)t
m(m− 1)

(21)

+
2(4m− 1)Mt

3m(m− 1)
+

(
2 +

√
2t

m− 1
+

n∑
i=1

√
2mit

m(m− 1)

)
ϵ,

holds with probability at least 1− 2Nϵ exp(−t). Since502

f̂ = argmin
f∈F

R̂(f) +

√
2V̂out(f)t

m− 1
,

then we have503

R̂(f̂) +

√
2V̂out(f̂)t

m− 1
≤ R̂(f∗) +

√
2V̂out(f∗)t

m− 1
.

By the Bernstein inequality, with probability at least 1− exp(−t),504

R̂(f∗) ≤ R(f∗) +

√
2V (f∗)t

m
+

2Mt

3m
. (22)

By Theorem 10 in [27],505 √
V̂out(f∗) ≤

√
V̂ (f∗) ≤

√
m− 1

m
V (f∗) +

√
2M2t

m− 1
, (23)

holds with probability larger than 1− exp(−t). Combining (21), (22) and (23),506

R(f̂) ≤ R(f∗) + 2

√
2V (f∗)t

m
+

n∑
i=1

√
2miV̂in(f̂ |ei)t
m(m− 1)

+
2Mt

3m
+

2Mt

m− 1
+

2(4m− 1)Mt

3m(m− 1)

+
(
2 +

√
2t

m− 1
+

n∑
i=1

√
2mit

m(m− 1)

)
ϵ,

holds with probability larger than 1− (2Nϵ + 2) exp(−t).507

□508
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E Proof of Theorem 3509

Theorem Suppose the training dataset D and a function f ∈ F are given. Let ρ+ be the largest510

distance between q ∈ Qα(q̂,+∞) and511

ρ− =
mini(α/q̂i − 1)2V̂out(f)

2
(
mini R̂(f |ei)− R̂(f)

)2 .
Then we have512

L(f ; ρ−) ≤ max
q∈Qα,+∞(q̂)

n∑
i=1

qiR̂(f |ei) ≤ L(f ; ρ+).

In this section, we decompose the complete proof into the three steps.513

Step 1. Given a training dataset and a function f ∈ F , the following inequality always holds:514

max
q∈Qα,ρ(q̂)

n∑
i=1

qiR̂(f |ei) ≤ R̂(f) +

√
2ρV̂out(f). (24)

Proof: Since
∑n

i=1 qi = 1 and
∑n

i=1 q̂i = 1, we have515

n∑
i=1

qiR̂(f |ei) =

n∑
i=1

(qi − q̂i)R̂(f |ei) +
n∑

i=1

q̂iR̂(f |ei)

= R̂(f) +

n∑
i=1

(qi − q̂i)R̂(f |ei).

Since
∑n

i=1(qi − q̂i)C = 0 holds for any constant C,516

n∑
i=1

(qi − q̂i)R̂(f |ei) =

n∑
i=1

(qi − q̂i)
(
R̂(f |ei)− R̂(f)

)
.

Thus the max problem in (24) is equivalent to maximize517

max
q∈Qα,ρ(q̂)

n∑
i=1

(qi − q̂i)
(
R̂(f |ei)− R̂(f)

)
.

By the Cauchy-Schwarz inequality,518

n∑
i=1

(qi − q̂i)
(
R̂(f |ei)− R̂(f)

)
=

n∑
i=1

qi − q̂i√
q̂i

√
q̂i
(
R̂(f |ei)− R̂(f)

)
≤

√√√√ n∑
i=1

(qi − q̂i)2

q̂i
×

√√√√ n∑
i=1

q̂i
(
R̂(f |ei)− R̂(f)

)2
≤

√
2ρ×

√
V̂out(f)

□519

Step 2. If the between-domain variance V̂out(f) is non-zero, the equality holds if and only if520

∀ei ∈ Etr,521

α ≤ q̂i

(√ 2ρ

V̂out(f)

(
R̂(f |ei)− R̂(f)

)
+ 1

)
.
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On the other hand, if α is fixed, the equality holds when the radius of Qα,ρ(q̂) satisfies522

ρ ≤ (α/q̂i − 1)2V̂out(f)

2
(
mini R̂(f |ei)− R̂(f)

)2 .
Proof: The equality in (24) is attained if and only if the following requirements hold at the same time:523

(i) There exists a constant c such that ∀1 ≤ i ≤ n,524

qi − q̂i√
q̂i

= c
√
q̂i
(
R̂(f |ei)− R̂(f)

)
.

(ii) The χ2 divergence between q and q̂ achieves ρ, that is525

n∑
i=1

(qi − q̂i)
2

q̂i
= 2ρ.

It is easy to see526

c2
n∑

i=1

q̂i
(
R̂(f |ei)− R̂(f)

)2
= 2ρ ⇒ c =

√
2ρ

V̂out(f)
.

Then the discrete distribution q satisfies (i) is527

qi =

√
2ρ

V̂out(f)
q̂i
(
R̂(f |ei)− R̂(f)

)
+ q̂i.

Since q belongs to Qα,ρ(q̂), the only constraint here is qi ≥ α, ∀ei which holds if and only if528

∀ei ∈ Etr,529

α ≤ q̂i

(√ 2ρ

V̂out(f)

(
R̂(f |ei)− R̂(f)

)
+ 1

)
.

On the other hand, if α is fixed and non-positive, the constraint implies that the radius ρ of Qα,ρ(q̂)530

should be sufficiently small:531

α ≤ q̂i

(√ 2ρ

V̂out(f)

(
R̂(f |ei)− R̂(f)

)
+ 1

)
,

⇔ α

q̂i
− 1 ≤

√
2ρ

V̂out(f)

(
R̂(f |ei)− R̂(f)

)
,

⇐ α/q̂i − 1

mini
(
R̂(f |ei)− R̂(f)

) ≥
√

2ρ

V̂out(f)
,

⇐ ρ ≤ mini(α/q̂i − 1)2V̂out(f)

2
(
mini R̂(f |ei)− R̂(f)

)2 .
Hence the proof is finished.532

□533

Step 3. Proof of (13) in Theorem 3.534

Proof: First, ρ+ is the largest distance between q̂ and q ∈ Qα,+∞(q̂). Therefore,535

Qα,+∞(q̂) = Qα,ρ+
(q̂) ⊆ Q+∞,ρ+

(q̂).

Hence the second inequality in (13) is trivial. Let q∗ be the solution:536

q∗
− = argmax

q∈Q+∞,ρ− (q̂)

n∑
i=1

qiR̂(f |ei),
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According to Step 2,537

max
q∈Q+∞,ρ− (q̂)

n∑
i=1

qiR̂(f |ei) = L(f ; ρ−),

and538

q∗
− ∈ Q+∞,ρ−(q̂) = Qα,ρ−(q̂) ⊆ Qα,+∞(q̂).

Hence the first inequality in (13) is proved.539

□540

F Proof of Theorem 4541

In this section, we start with a preliminary result.542

Theorem 9 Suppose that α is a non-positive scalar and543

V ′
out(f) = V (f)−

n∑
i=1

qiVin(f |ei) > 0.

For each training domain, both q̂i and qi are larger than δ > 0. Let544

ρ′ =
V ′
out(f)

8M2

(
α

1− (n− 1)δ
− 1

)2

.

If n > 2 and m is sufficiently large such that545

m

4
V ′
out(f) > V (f),

then, given f ∈ F , the following expansion uniformly holds:546

max
q∈Qα,ρ′ (q̂)

n∑
i=1

qiR̂(f |ei) = L(f ; ρ′),

with probability at least547

1− exp
(
−

(
m
4 V

′
out(f)− V (f)

)2
2M2(m− 1)V (f)

)
−

(
m+ n− 1
n− 1

)
exp

(
− mV ′

out(f)
2

M4

)
−

n∑
i=1

exp
(
−

(Vin(f |ei) + mi

4 V
′
out(f))

2

2M2mi(Vin(f |ei) + 1
4V

′
out(f))

2

)
.

Proof: Note that R̂(f |e) ∈ [0,M ] for any f ∈ F and e ∈ Etr. Thus for any training data D,548 (
min
i
R̂(f |ei)− R̂(f)

)2 ≤M2.

In addition, since α ≤ 0 and qi, q̂i ≥ δ,549

min
i

(
α

q̂i
− 1

)2

≤
(

α

1− (n− 1)δ
− 1

)2

.

Hence, to satisfying550

ρ′ ≤ mini(α/q̂i − 1)2V̂out(f)

2
(
mini R̂(f |ei)− R̂(f)

)2 ,
it suffices to show that551

V̂out(f) ≥
1

4
V ′
out(f).
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Notice that552

V̂out(f) = V̂ (f)−
n∑

i=1

q̂iV̂in(f |ei) = V ′
out(f) + I1 + I2 + I3,

where553

I1 = V̂ (f)− V (f),

I2 = −
n∑

i=1

(q̂i − qi)V̂in(f |ei),

I3 = −
n∑

i=1

qi
(
V̂in(f |ei)− Vin(f |ei)

)
.

By Theorem 10 in [27], for any δ > 0,554

P
( m

m− 1
V̂ (f) < V (f)− δ

)
≤ exp

(
− (m− 1)δ2

2M2V (f)

)
.

We take555

δ =
m

4(m− 1)
V ′
out(f)−

1

m− 1
V (f).

Therefore,556

P
(
I1 < −1

4
V ′
out(f)

)
= P

(
V̂ (f) < V (f)− 1

4
V ′
out(f)

)
≤ exp

(
−

(
m
4 V

′
out(f)− V (f)

)2
2M2(m− 1)V (f)

)
.

For the term I2,557

|I2| ≤
n∑

i=1

∣∣q̂i − qi
∣∣V̂in(f |ei) ≤ ∥q̂ − q∥1

M2

4
.

According to the Pinkser’s inequality and the method of types [15], for any δ > 0,558

∥q̂ − q∥1 ≤
√
2DKL(q̂∥q) < δ

with probability at least559

1−
(
m+ n− 1
n− 1

)
exp

(
−mδ2

)
.

We take δ = V ′
out(f)/M

2. Then we know560

P
(
I2 < −1

4
V ′
out(f)

)
≤

(
m+ n− 1
n− 1

)
exp

(
− mV ′

out(f)
2

M4

)
.

Next, we deal with I3. By Theorem 10 in [27], for any δ > 0 and any ei ∈ Etr,561

P
( m

m− 1
V̂in(f |ei) > Vin(f |ei) + δ

)
≤ exp

(
− (mi − 1)δ2

2M2(Vin(f |ei) + δ)

)
.

Let562

δ =
1

mi − 1
Vin(f |ei) +

mi

4(mi − 1)
V ′
out(f).

Then we have563

P
(
V̂in(f |ei) > Vin(f |ei) +

1

4
V ′
out(f)

)
= P

( m

m− 1
V̂in(f |ei) > Vin(f |ei) + δ

)
≤ exp

(
−

(Vin(f |ei) + mi

4 V
′
out(f))

2

2M2mi(Vin(f |ei) + 1
4V

′
out(f))

2

)
.
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Therefore I3 < − 1
4V

′
out(f) with probability smaller thant564

n∑
i=1

exp
(
−

(Vin(f |ei) + mi

4 V
′
out(f))

2

2M2mi(Vin(f |ei) + 1
4V

′
out(f))

2

)
Combining the results of I1, I2 and I3, we have565

V̂out(f) ≥
1

4
V ′
out(f),

with probability larger than566

1− exp
(
−

(
m
4 V

′
out(f)− V (f)

)2
2M2(m− 1)V (f)

)
−

(
m+ n− 1
n− 1

)
exp

(
− mV ′

out(f)
2

M4

)
−

n∑
i=1

exp
(
−

(Vin(f |ei) + mi

4 V
′
out(f))

2

2M2mi(Vin(f |ei) + 1
4V

′
out(f))

2

)
.

Hence the proof is finished.567

□568

Next, we extend Theorem 9 to a more general variant with respect to the family of functions F .569

Theorem. Suppose that α is a non-positive scalar and V ′
out(f) = V (f)−

∑
i qiVin(f |ei) > 0. For570

each training domain, both q̂i and qi are larger than δ > 0. We write571

ρ′ =
V ′
out(f)

16M2

(
α

1− (n− 1)δ
− 1

)2

.

Let τ > 0 and 0 < η < 1 be two constants. Define572

Fτ,η = {f ∈ F : V (f) ≥ τ, and
Vin(f |ei)
V (f)

≤ η,∀ei ∈ Etr}.

For any f ∈ Fτ,η , the following expansion uniformly holds:573

max
q∈Qα,ρ′ (q̂)

n∑
i=1

qiR̂(f |ei) = L(f ; ρ′),

with probability at least 1−Nτ,η × p, where Nτ,η = N
(
Fτ,η,

√
1
10 (1− η)τ , ∥ · ∥L∞(X×Y)

)
is the574

covering number of Fτ,η and575

p = exp
(
− m(1− η)2τ

32M2
+

1

16

)
+

(
m+ n− 1
n− 1

)
exp

(
− m(1− η)2τ2

M4

)
+

n∑
i=1

exp
{
− 1

2M2mi

(mi(1− η) + 4η

1 + 3η

)2}
.

Proof: We consider a set of functions {f1, . . . , fN}, which is a minimal ϵ-cover of Fτ,η of size576

Nτ,η = N(Fτ,η, ϵ, ∥ · ∥L∞(X×Y)).

Define the event577

E =
{
V̂out(f

i) ≥ 1

4
V ′
out(f

i), for i = 1, . . . , N
}
.

Recall the proof of Theorem 3 and the terms I1 to I3. For any f ∈ Fτ,η ,578

P
(
I1 < −1

4
V ′
out(f)

)
≤ exp

(
−

(
m
4 V

′
out(f)− V (f)

)2
2M2(m− 1)V (f)

)
= exp

(
− m2V ′

out(f)
2

32M2(m− 1)V (f)
+

mV ′
out(f)

4M2(m− 1)
− V (f)

2M2(m− 1)

)
≤ exp

(
− m2V ′

out(f)
2

32M2(m− 1)V (f)
+

1

16

)
≤ exp

(
− m(1− η)2τ

32M2
+

1

16

)
.
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For the term I2,579

P
(
I2 < −1

4
V ′
out(f)

)
≤

(
m+ n− 1
n− 1

)
exp

(
− mV ′

out(f)
2

M4

)
≤

(
m+ n− 1
n− 1

)
exp

(
− m(1− η)2τ2

M4

)
.

For any ei ∈ Etr,580

−
(Vin(f |ei) + mi

4 V
′
out(f))

2

2M2mi(Vin(f |ei) + 1
4V

′
out(f))

2
= − 1

2M2mi

( mi−1
4 V ′

out(f)

Vin(f |ei) + 1
4V

′
out(f)

+ 1
)2

= − 1

2M2mi

( mi − 1

4Vin(f |ei)
V ′
out(f)

+ 1
+ 1

)2

≤ − 1

2M2mi

( mi − 1

4 η
1−η + 1

+ 1
)2

= − 1

2M2mi

( (mi − 1)(1− η)

1 + 3η
+ 1

)2

= − 1

2M2mi

(mi(1− η) + 4η

1 + 3η

)2

Therefore, for the term I3,581

P
(
I3 < −1

4
V ′
out(f)

)
≤

n∑
i=1

exp
{
− 1

2M2mi

(mi(1− η) + 4η

1 + 3η

)2}
.

Furthermore, we have for any f ∈ Fτ,η ,582

V̂out(f) ≥
1

4
V ′
out(f),

with probability larger than 1− p, where583

p = exp
(
− m(1− η)2τ

32M2
+

1

16

)
+

(
m+ n− 1
n− 1

)
exp

(
− m(1− η)2τ2

M4

)
+

n∑
i=1

exp
{
− 1

2M2mi

(mi(1− η) + 4η

1 + 3η

)2}
.

Then, combining the results of {f j , j = 1, . . . , N},584

P (E) ≥ 1−N(Fτ,η, ϵ, ∥ · ∥L∞(X×Y))× p.

Given the event E, for any f ∈ F , there exists f j such that

∥f − f j∥L∞(X×Y) ≤ ϵ.

Hence,585

V̂out(f) ≥ V̂out(f
j)− ϵ2

≥ 1

4
V ′
out(f

j)− ϵ2 ≥ 1

4
V ′
out(f)−

5

4
ϵ2.

We take586

ϵ =

√
1

10
(1− η)τ .

Then,587

V̂out(f) ≥
1

4
V ′
out(f)−

5

4
ϵ2 ≥ 1

8
V ′
out(f).

Hence the proof is finished.588

□589
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G Proof of Theorem 5590

Theorem. Given the training dataset and a function f ∈ F , then for any anchor distribution q0, the591

inequality always holds:592

max
q∈Qα(q0,ρ)

n∑
i=1

qiR̂(f |ei) ≤ R̂(f, q0) +

√
2ρV̂out(f, q0),

where593

R̂(f, q0) =
1

n

n∑
i=1

q0,iR̂(f |ei),

V̂out(f, q0) =

n∑
i=1

q0,i
(
R̂(f |ei)− R̂(f)

)2
.

If the between-domain variance V̂out(f, q0) is non-zero, the equality holds if and only if ∀ei ∈ Etr,594

α ≤ q0,i

(√ 2ρ

V̂out(f, q0)

(
R̂(f |ei)− R̂(f, q0)

)
+ 1

)
.

On the other hand, if α is fixed, the equality holds when the radius of Qα(q0, ρ) satisfies,595

ρ ≤ mini(α/q0,i − 1)2V̂out(f, q0)

2
(
mini R̂(f |ei)− R̂(f, q0)

)2 .
The proof here is similar to that of Theorem 3.596

Proof: Since
∑n

i=1 qi = 1 and
∑n

i=1 q0,i = 1, we have597

n∑
i=1

qiR̂(f |ei) =

n∑
i=1

q0,iR̂(f |ei) +
n∑

i=1

(qi − q0,i)R̂(f |ei)

= R̂(f, q0) +

n∑
i=1

(qi − q0,i)R̂(f |ei).

Since
∑n

i=1(qi − q̂i) = 0, then we have598

n∑
i=1

(qi − q0,i)R̂(f |ei) =

n∑
i=1

(qi − q0,i)
(
R̂(f |ei)− R̂(f, q0)

)
.

Thus the max problem with respect to q is equivalent to maximize599

max
q∈Qα(q0,ρ)

n∑
i=1

(qi − q0,i)
(
R̂(f |ei)− R̂(f, q0)

)
.

By the Cauchy-Schwarz inequality,600

n∑
i=1

(qi − q0,i)
(
R̂(f |ei)− R̂(f, q0)

)
=

n∑
i=1

qi − q0,i√
q0,i

√
q0,i

(
R̂(f |ei)− R̂(f, q0)

)
≤

√√√√ n∑
i=1

(qi − q0,i)2

q0,i
×

√√√√ n∑
i=1

q0,i
(
R̂(f |ei)− R̂(f, q0)

)2
≤

√
2ρ×

√
V̂out(f, q0)

The equality is attained if and only if the following requirements hold at the same time:601
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(i) There exists a constant c such that ∀1 ≤ i ≤ n,602

qi − q0,i√
q0,i

= c
√
q0,i

(
R̂(f |ei)− R̂(f, q0)

)
.

(ii) The χ2 divergence between q and q0 achieves ρ:603

n∑
i=1

(qi − q0,i)
2

q0,i
= 2ρ.

It is easy to see604

c2
n∑

i=1

q0,i
(
R̂(f |ei)− R̂(f, q0)

)2
= 2ρ ⇒ c =

√
2ρ

V̂out(f, q0)
.

Then the discrete distribution q satisfies (i) is605

qi =

√
2ρ

V̂out(f, q0)
q0,i

(
R̂(f |ei)− R̂(f, q0)

)
+ q0,i.

Since q belongs to Qα(q0, ρ), the constraint here is qi ≥ α, ∀ei which holds if and only if606

α ≤ q0,i

(√ 2ρ

V̂out(f)

(
R̂(f |ei)− R̂(f)

)
+ 1

)
, ∀ei ∈ Etr.

On the other hand, if α is fixed and non-positive, the constraint implies that the radius ρ of Qα(q0, ρ)607

should be sufficiently small:608

α ≤ q0,i

(√ 2ρ

V̂out(f, q0)

(
R̂(f |ei)− R̂(f, q0)

)
+ 1

)
⇔ α

q0,i
− 1 ≤

√
2ρ

V̂out(f, q0)

(
R̂(f |ei)− R̂(f, q0)

)
,

⇐ α/q0,i − 1

mini
(
R̂(f |ei)− R̂(f, q0)

) ≥
√

2ρ

V̂out(f, q0)
,

⇐ ρ ≤ mini(α/q0,i − 1)2V̂out(f, q0)

2
(
mini R̂(f |ei)− R̂(f, q0)

)2 .
Hence the proof is finished.609

□610
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