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ABSTRACT

Networked interference, also known as the peer effect in social science and spillover
effect in economics, has drawn increasing interest across various domains. This
phenomenon arises when a unit’s treatment and outcome are influenced by the
actions of its peers, posing significant challenges to causal inference, particu-
larly in treatment assignment and effect estimation in real applications, due to the
violation of the SUTVA assumption. While extensive graph models have been
developed to identify treatment effects, these models often rely on structural as-
sumptions about networked interference, assuming it to be identical to the social
network, which can lead to misspecification issues in real applications. To address
these challenges, we propose an Interference-Agnostic Causal Graph Transformer
(CauGramer), which aggregates peers information via L-order Graph Transformer
and employs cross-attention to infer aggregation function for learning interference
representations. By integrating confounder balancing and minimax moment con-
straints, CauGramer fully incorporates peer information, enabling robust treatment
effect estimation. Extensive experiments on two widely-used benchmarks demon-
strate the effectiveness and superiority of CauGramer. The code is available at
https://github.com/anpwu/CauGramer.

1 INTRODUCTION

Causal inference has drawn increasing interest across networked scenarios, such as epidemiology
(Barkley et al., 2020; Benjamin-Chung et al., 2018), marketing (Chae et al., 2017; Krishna & Rajan,
2009), economics (Mas & Moretti, 2009), and social science (Aronow & Samii, 2017; Cornelissen
et al., 2017; Wang et al., 2018). However, one primary problem in causal inference on networked data
stems from networked interference1, in which each unit’s treatment and outcome are influenced by the
actions of its peers (interference nodes). This violation of the Stable Unit Treatment Value Assumption
(SUTVA) poses significant challenges for treatment assignment and effect estimation (Cai et al.,
2023; Jiang & Sun, 2022). For example, in COVID studies (Fisher, 2020; Latkin et al., 2021; Matrajt
et al., 2021), individuals’ decisions to get vaccinated (treatment) not only protect themselves from
COVID but also reduce infection risk (outcome) within their social networks, thereby influencing
the outcomes of others in the community. In this case, both individual and community immunity
responses are influenced by the overall vaccine distribution, making individual-level information
insufficient to identify causal effects. Similar to Jiang & Sun (2022) and Matrajt et al. (2021), given
observational data, we aim to identify treatment effects and answer the counterfactual question:
Would community immunity be stronger if treatments were assigned to a different group of people?

To estimate causal effects under networked interference, conventional network studying typically
assumes that the structure of interference graph2, is known and identical to the social network (Cai

∗Corresponding Authors
1Interference refers to interactions between individuals where one person’s actions can affect others.
2The interference graph represents interactions between individuals, with edges indicating these interactions.

It may have edges not present in the social network, as interference can occur between non-connected individuals.
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Figure 1: Causal Diagrams in Networked Data. (a) Conventional networked settings: interference
graph equals social network with known peer-treatment effect on outcomes; (b) General networked
settings: interference differs from social network with unknown peer-treatment effect.

et al., 2023; Forastiere et al., 2021; Qu et al., 2021; Liu et al., 2023; Ma et al., 2021; Ma & Tresp, 2021).
As shown in Figure 1(a), given a known interference graph and assuming conditional independence
between a unit’s treatment and its neighbors’ treatments, some semi-parametric estimators propose
networked propensity score methods to infer causal effects (marked in red line) of both the unit’s
treatment and its neighbors’ treatments (Chin, 2019; Ma & Tresp, 2021). Moreover, inspired by
representation learning Shalit et al. (2017), recent works develop representation balancing methods
and targeted maximum likelihood estimators for better effect estimation on networked data (Jiang
& Sun, 2022; Cai et al., 2023; Chen et al., 2024). However, these works still follow the structural
assumption that the interference graph is identical to the social network, which induces estimation
bias in real-world networks, like how influenza viruses do not spread strictly along social networks.

Additionally, most existing works assume that the interference of neighbors’ treatments on a unit’s
outcome is captured through a specified summary function, commonly defined as neighborhood
exposure Z = Agg(TNeighbor) (Forastiere et al., 2021; Qu et al., 2021; Jiang & Sun, 2022; Ma &
Tresp, 2021; Cai et al., 2023; Chen et al., 2024).Typically, this aggregation is performed using a
sum or average function, which mismatches the true data generation process (DGP) in real-world
applications, leading to model misspecification and additional bias in causal effect estimation.

Therefore, in this paper, we study causal inference problems under an unknown interference graph and
an unknown summary function, as illustrated in Figure 1(b). In such scenarios, a unit’s treatment may
be influenced by peers’ treatments (marked in dashed line). To achieve robust causal estimation under
the unknown interference setting, we develop an interference-agnostic Causal Graph Transformer
(CauGramer) framework. First, although the interference graph is unknown, all interference nodes
must exist within the L-order neighbor network (L is sufficiently large). Thus, we can aggregate peer
information (interference) using an L-layer Graph Transformer. Second, the complex interaction
between two nodes is unknown. Unlike traditional methods that consider only self-attention, we
model the interference function by treating self and peer features as linear-query and GCN-key pairs,
designing a cross-attention mechanism to capture these interactions, which also broader the receptive
field to learn complex sequential interference representations. Finally, by integrating confounder
balancing and minimax moment constraints, our CauGramer fully incorporates peer information,
enabling robust treatment effect estimation. Extensive experiments on two widely-used benchmarks
demonstrate the superior performance of CauGramer. The contributions are summarized as follows:

• We formalize the treatment effects estimation problem under an unknown interference graph,
which is not the same as the social network, and the structural function is unknown, noting
that the interference graph may have edges not present in social network.

• To achieve robust causal inference under unknown interference, we propose an interference-
agnostic CauGramer, which aggregates peer information through L-order networks and
designs cross-attention to capture complex-sequential intervention functions. Moreover,
balancing and bridge moment constraints are developed to ensure robust causal prediction.

• To illustrate the effectiveness and superiority of CauGramer, we conduct extensive
experiments on two real-world networks with pseudo-real in scenarios involving
unknown interference, latent variables, and limited budgets on treatments.
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Table 1: Characteristics of Representative Algorithms on Observational Networked Data.

Settings Effects Prior Sub-Modules

Method Interference Unmeasured Main Peer Total Graph Summary Reweighting Representation Attention

CNE (Veitch et al., 2019) P ✓ ✓ ✓
NetDeconf (Guo et al., 2020) P ✓ ✓ ✓

DRLearner (Leung & Loupos, 2022) ✓ ✓ ✓ ✓ ✓ ✓
Net-TMLE (Ogburn et al., 2024) ✓ ✓ ✓ ✓ ✓

GDML (Khatami et al., 2024) ✓ ✓ ✓ ✓ ✓ ✓ ✓
G-HSIC (Ma & Tresp, 2021) ✓ ✓ ✓ ✓ ✓
SPNet (Huang et al., 2023) ✓ P ✓ ✓ ✓ ✓ ✓

RRNet (Cai et al., 2023) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NetEst (Jiang & Sun, 2022) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Uncertainty (Bhattacharya et al., 2020) ✓ ✓
UNITE (Lin et al., 2024) ✓ ✓ ✓

CauGramer (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓
- In observational networked data, we consider two settings with networked Interference or Unmeasured Confounders, three causal effects (Main, Peer, and Total

effects), two forms of prior knowledge (interference Graph and Summary function), and three sub-modules (Reweighting, Representation, Attention), where ✓
indicates that the methods consider the corresponding term. For the unmeasured confounders setting, ”P” denotes that CNE, NetDeconf, and SPNet only adjust
partial unmeasured confounders embedded in the structural network and unit information.

2 RELATED WORK

In the causal inference on i.i.d. data, conventional methods typically utilized prognostic or propensity
scores for matching, stratification, reweighting, and doubly robust techniques to control confounding
effects (Bang & Robins, 2005; Hansen, 2008; Lee & Lee, 2022; Li et al., 2016; Rosenbaum, 1987;
Rosenbaum & Rubin, 1983; Stuart et al., 2013; Yao et al., 2021a). With the advances in deep learning,
CFRNet (Johansson et al., 2016; Shalit et al., 2017) first propose learning balanced representations
by directly minimizing the distribution distance between treated and control groups using the Integral
Probability Metric (IPM). Similar to Inverse Propensity Weighting (IPW) (Cai et al., 2023; Forastiere
et al., 2021; Lee & Lee, 2022; Liu et al., 2023; 2016; Qu et al., 2021; Veitch et al., 2019; Zhang et al.,
2023), representation with IPM has inspired numerous representation-based methods in both i.i.d.
data (Hassanpour & Greiner, 2019; 2020; Wu et al., 2022; Yao et al., 2018; 2021b) and networked
data (Cai et al., 2023; Guo et al., 2020; Zhao et al., 2024; Jiang & Sun, 2022; Ma & Tresp, 2021).
Following this, we summarize representative algorithms on observational networked data in Table 1.

Under the assumption of no interference effects, CNE (Veitch et al., 2019) uses semi-supervised
prediction to learn node embeddings for main effects estimation, and NetDeconf (Guo et al., 2020)
leverages graph convolutional networks (GCNs) to captures the hidden confounders for main effect
estimation. However, both approaches overlook interference and peer effects. To address this,
DRLearner (Leung & Loupos, 2022) proposes a doubly robust estimator and explicitly models
interference within a social network. Using targeted maximum likelihood estimation and double
machine learning techniques, Net-TMLE (Ogburn et al., 2024) and GDML (Khatami et al., 2024) rely
on pre-specified exposure mappings and assume interference is limited to direct neighbors. These
strong assumptions often fail to hold in real-world applications. In addition, methods such as G-HSIC
(Ma & Tresp, 2021), SPNet (Huang et al., 2023), RRNet (Cai et al., 2023), and NetEst (Jiang & Sun,
2022) explore causal effects under networked interference but either focus on main causal effects or
require prior knowledge of a summary function. A common limitation across these approaches is the
assumption that the interference graph is known and identical to the social network—a condition that
is difficult to satisfy in practical scenarios.

Under unknown interference graph, Sävje et al. (2021) and Cortez et al. (2022) rely on randomized
controlled trials (RCTs) to study causal effects. Hoshino & Yanagi (2023) assume that the interference
graph is a subgraph of the social network and relies on the random assignment of instrumental vari-
ables (IVs) to ensure valid causal inference. In observational data, Bhattacharya et al. (2020) assumes
that the true data-generating process perfectly corresponds (satisfying Markov and faithfulness condi-
tions) to some unknown chain graph with two restrictions. However, in practical scenarios, structure
learning algorithms often face implementation issues and produce unreliable results due to the size of
the graph and unmet assumptions. Although Lin et al. (2024) proposes the UNITE framework, which
uses L0-norm regularization and GCNs for accurate treatment effect estimation, it only supports the
estimation of AME and IME. Besides, they do not consider that peer treatments can influence the
treatment choices of others in real applications. To address these issues and estimate causal effects
under an unknown interference graph, we propose incorporating GCNs with cross-attention in
the L-layer CauGramer embedding to aggregate L-order neighbor information.
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Notably, our CauGramer differs from Graphormer (Ying et al., 2021), CT (Melnychuk et al., 2022),
CAL (Sui et al., 2022), and SPNet (Huang et al., 2023). Graphormer (Ying et al., 2021) just integrates
the encoder of Transformer (Vaswani et al., 2017) into node, edge, and graph embedding learning for
graph classification, without considering the Transformer decoder. CT (Melnychuk et al., 2022) is
specifically designed for estimating counterfactual outcomes over time not for networked data. CAL
(Sui et al., 2022) designs two soft mask graphs for node attention and edge attention and conducts
implicit backdoor adjustment for graph classification, which suffers from networked interference
and unmeasured confounders. For SPNet (Huang et al., 2023), it utilizes an adaptive learning
weight function based on concatenation of neighbor features and self-features for reweighting, which
fundamentally is not a Transformer framework.

3 TREATMENT EFFECT ESTIMATION UNDER UNKNOWN INTERFERENCE

3.1 PROBLEM SETUP AND NOTATIONS

We first describe our setting by taking the COVID vaccination as a case study (Fisher, 2020; Latkin
et al., 2021; Matrajt et al., 2021). Let X,T, Y denote a unit’s features (e.g., physical fitness), treatment
(e.g., receiving vaccination), and observed outcome (e.g., risk of infection), respectively. As shown
in Figure 1(b), in the presence of networked interference, a unit’s COVID infection risk is not only
influenced by their own vaccination status but also by that of their peers. Therefore, when we study
the causal effects of different vaccine assignments (i.e., treatment) on the community immunity level
(i.e., outcome), we have to take the interference (i.e., peer effects) into consideration. However, in real
applications, the interference graph typically is unknown and is not the same as the social network:
COVID transmission is not strictly limited to social connections, as individuals without social ties
can still interact and potentially spread the virus.

To model this problem, we consider the networked data as D = ({xi, ti, yi}Ni=1,A,E), where A
and E represent the adjacency matrices of the observed social network and unknown interference
graph, respectively, and N denotes the total number of units. For each unit i, we have d-dimensional
features xi ∈ X where X ⊂ Rd, binary treatment assignment ti ∈ T where T = {0, 1}, and
the corresponding outcome yi ∈ Y where Y ⊂ R. To distinguish between social networks and
interference graphs, we denote the first-order ‘neighbors’ of i in the social network A as observedNi

and the interacting nodes of i in the interference graph E as unknown ‘peers’ Pi. Then, we denote
the treatment and feature vectors received by unit i’s peers as tPi and xPi . Similarly, we define tNi

and xNi
. Under networked interference, the potential outcome of a unit is influenced not only by

its treatment but also by its peers’ treatments, denoted by y(xi,xPi
, t, tP), where {t, tP} without

subscript i represents the manipulated interventions on the treatment. Then, the causal estimand of
interest can be defined through three parameters: main effects (ME), peer effects (PE), and total
effects (TE) (Cai et al., 2023; Jiang & Sun, 2022). We denote tP = 0P as the full-zero treatments.
Definition 1 (Individual Main Effects (IME)). IME denotes the effects of self-treatment, i.e.,
τIME(xi) = y(xi,xPi

, 1,0P)− y(xi,xPi
, 0,0P).

Definition 2 (Individual Peer Effects (IPE)). IPE denotes the effects of peers’ treatments, i.e.,
τIPE(xi, tP) = y(xi,xPi , 0, tP)− y(xi,xPi , 0,0P) for any tP ∈ T |Pi|.
Definition 3 (Individual Total Effects (ITE)). ITE denotes the combination of main and peer effects,
i.e., τITE(xi, tP) = y(xi,xPi , 1, tP)− y(xi,xPi , 0,0P) for any tP ∈ T |Pi|.

Similarly, average main effects (AME), average peer effects (APE), and average total effects (ATE)
of specific treatment distribution T ∼ πT can be defined, e.g., ATE = EN

i [τITE(xi, tP)]. Given
the observational D = ({xi, ti, yi}Ni=1, A) with unknown interference E, we aim to identify three
treatment effects and seek to answer the counterfactual question “would the community immunity
level be stronger if we assigned treatments to a different group of people”?

3.2 CAUSAL IDENTIFICATION ON UNKNOWN INTERFERENCE GRAPH

To precisely estimate the three treatment effects, i.e., ME, PE, and TE, we first discuss causal
identification under the standard causal assumptions on networked data (Jiang & Sun, 2022).
Assumption 1 (Positivity). The probability of a unit with their peers to receive any treatment pair
(t, tP)) is always positive, i.e., 0 < P(ti = t, tPi = tP | xi,xPi) < 1 for any xi.
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Assumption 2 (Consistency). The potential outcome is the same as the observed outcome under the
same self-treatment and peer-treatments, i.e., yi = y(xi,xPi

, ti, tPi
) for treatment pair (ti, tPi

).
Assumption 3 (Unconfoundedness). The self-treatment and peer-treatments are independent of the
potential outcome given self and peer’ features, i.e., y(xi,xPi , t, tP) ⊥⊥ (t, tP) | (xi,xPi).
Theorem 1 (Causal Identification). Given these assumptions, while the Stable Unit Treatment Value
Assumption (SUTVA) does not hold under networked interference, the treatment effects are identified
as long as we can control the confounders xi and the peers xPi

.

Proof. As shown in Figure 1, when we consider the (unknown) peer interference graph, all common
causes (xi,xPi) of treatment pair (ti, tPi) and outcomes yi have been discovered. Thus, we have:

τITE(xi, tP) = E[y(xi,xPi
, 1, tP) | xi,xPi

]− E[y(xi,xPi
, 0,0P) | xi,xPi

]

= E[y(xi,xPi
, 1, tP) | xi,xPi

, t, tP ]− E[y(xi,xPi
, 0,0P) | xi,xPi

, 0,0P ] (1)
= E[y1,tP | xi,xPi

, t, tP ]− E[y0,0P | xi,xPi
, 0,0P ], (2)

where yt,tP is the observed outcome when the unit and its peers have features xi,xPi and receive the
treatment pair (t, tP). Eq. (1) holds under the Uncounfoundedness, i.e., y(xi,xPi , t, tP) ⊥⊥ (t, tP) |
(xi,xPi). Eq. (2) holds under the Consistency Assumption, i.e., yt,tP = y(xi,xPi , t, tP). Theorem
1 holds for any treatment pair (t, tP) under Positivity Assumption, i.e., P(ti = t, tPi

= tP) > 0.

However, since the interference graph is unknown, we cannot directly model the expectation function
E[yt,tP | xi,xPi , t, tP ]. Nevertheless, under the Unconfoundednes assumption, we know that
y(xi,xPi

, t, tP) ⊥ {ti, tPi
} | {xi,xPi

}. Therefore, if we control for all observed confounders
{xi}ni=1, we can infer to y(xi,xPi

, t, tP) ⊥ {ti, tPi
} | {xi}ni=1. The interaction information in the

interference graph is embedded within the node and network features. To capture this, we propose
using two functions, gx and gt, to represent peer feature and peer treatment information, respectively.
Assumption 4 (Representation). The treatment vector tPi of peer nodes can be captured by a peer
treatment function gt, and the confounder vector xPi by a peer confounder function gx.
Proposition 1 (Interference). If the unknown interference graph E is latent in full graph information
{x, t,A} , then, the outcome E[yt,tP | xi,xPi

, t, tP ] is identified.

Proof. Denote the other non-peer nodes of unit i in the interference graph E as Oi, i.e., all units in
the community can be represented by {i,Pi,Oi}, i.e.,x = {xi,xPi

,xOi
} for any i. Then, we have:

E[yt,tP | xi,xPi
, t, tP ]

(a)
= E[yt,tP | xi,xPi

,xOi
, t, tP , tO]

(b)
= E[yt,tP | gx(x,A), gt(t,A)], (3)

where gx(x,A) a covariate embedding which captures peer features, and gt(t,A) is a treatment
embedding which captures peer treatments. Eq. (a) holds because (xOi

, tOi
) do not interfere with the

outcomes of unit i. Eq. (b) holds when gx(x,A) and gt(t,A) can fully embed peer information.

In this paper, we do not directly recover the interference graph. Instead, we aim to learn two
representation functions gx and gt to aggregate interference information. To avoid over-learning, we
will use a balancing decomposing constraint to remove as much irrelevant information as possible
from gx and gt that does not belong to peer interference nodes.

4 CAUGRAMER: CAUSAL GRAPH TRANSFORMER WITH CROSS-ATTENTION

Following the identification results from the previous sections, under unknown interference graph E,
we propose an interference-agnostic framework, called Causal Graph Transformer (CauGramer), to
learn interference representations Rx = gx(x,A) and Rt = gt(t,A) from observed social network
A and units features (x, t). Despite this advancement, there remain several questions and challenges
in accurately estimating the main effects, peer effects, and total effects of treatment on outcomes:

• What are the characteristics of the interference representations Rx = gx(x,A) and Rt =
gt(t,A), and how can we learn them?

• What is the difference between self-treatment and peer-treatment? How do we balance
confounders for self-treatment and outcomes, as well as for peer-treatment and outcomes?

• How do we unbiasedly estimate the counterfactual regression outcomes?
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Figure 2. An illustration of the proposed framework CauGramer with cross-attention. Different conventional graph attention models
which typically use self-attention on self node features, we reformulates cross-attention mechanisms on graph structures and units
features to model interference representations Rx and Rt.
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Figure 2: An illustration of the proposed CauGramer with cross-attention. Since the interference
graph E is unknown, we use L-layer CauGramer embedding to learn interference representations Rx

and Rt from L-order neighbors in network A with features X . Then we design a bridge function as
minimax constraints to estimate potential outcomes. Ã denotes A with diagonal elements as 1.

These questions motivate the development of our CauGramer framework. Next, we will introduce
CauGramer and provide insights into addressing these challenges. Notably, in this paper, we focus on
estimating treatment effects through the two interference representations but do not reconstruct the
interference graph, as identifying it is pretty hard and unnecessary for identifying treatment effects.

4.1 GCNS WITH CROSS-ATTENTION FOR INTERFERENCE REPRESENTATION LEARNING

Motivation for Cross-Attention: In networked data, traditional GCNs often struggle with limited
receptive fields and information homogenization, making it challenging to capture long-distance
interference. Consequently, conventional studies often only account for interference among first-
order neighbors (Cai et al., 2023; Forastiere et al., 2021; Guo et al., 2020; Jiang & Sun, 2022;
Qu et al., 2021). While Transformer’s variants provide a broader perspective in graph learning
(Rampášek et al., 2022; Sui et al., 2022; Ying et al., 2021), their use of GCN embeddings as input and
attention modeling confined to self-embedding still limits the receptive field, hindering long-distance
interference learning in the topology. To address this, we extend the Transformer to an L-order
neighbor network and use cross-attention to broaden the receptive field for GCNs, enabling them to
learn complex-sequential interference representations. In our CauGramer, as shown in Figure 2, we
use GCNs with different adjacency matrices to capture topological information and construct local
cross-attention for longer interaction sequences, allowing exploration of a larger receptive field and
learning heterogeneous information.

Under networked interference, each unit’s action and outcome are influenced not only by their own
features but also by actions and features of (unknown) peers. For learning interference representation
Rx, as shown in Figure 2, we model cross-attention (QKV pairs (qi,ki,vi)) on self-features (xi),
neighbor-features (xPi

), and combined features (xi, xPi
) to capture interactions between nodes

within and beyond the local neighborhood. Let r(1)x = x denote the input of the first layer, and Ã
represents the adjacency matrix A with diagonal elements as 1. For each attention head in layer h,

r
(h+1)
x = Attention(h)x · V(h)

x = Softmax
(

Q(h)
x ·K(h)′

x√
d

)
· V(h)

x , (4)

Q(h)
x = Linear(h)x (r

(h)
x )W

(h)′
Q , K(h)

x = GCN(h)
xk (r

(h)
x ,A)W

(h)′
K , V(h)

x = GCN(h)
xv (r

(h)
x , Ã)W

(h)′
V . (5)

In the L-layer CauGramer embedding with M -head attention, we use GCNs to aggregate L-order
neighbor information and topology structure, while cross-attention provides broader receptive field
that allows GCNs to embed complex-sequential interference representations, i.e., Rx = gx(x,A).
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Then, we use the final output r(L)
x as the input of the first layer of the peer-treatment representation

network, i.e., r(1)t = r
(L)
x . As shown in Figure 2, we can similarly construct attention heads in layer

h of the treatment representation by considering neighbors’ treatments into GCNs.

r
(h+1)
t = Attention(h)t · V(h)

t = Softmax
(

Q(h)
t ·K(h)′

t√
d

)
· V(h)

t , (6)

Q(h)
t = Linear(h)t (r

(h)
t )W

(h)′
Q , K(h)

t = GCN(h)
tk (r

(h)
t ,A, t)W

(h)′
K , V(h)

t = GCN(h)
tv (r

(h)
t , Ã, t)W

(h)′
V . (7)

Then, we learn peer-treatment representations through L layers with M -head cross-attentions, i.e.,
Rt = gt(t,A). As the network’s depth L increases, the scope of our GCNs with cross-attention
expands, enabling the embedding of all potential interference peers into representations Rx and Rt.

4.2 REPRESENTATION BALANCING FOR ADJUSTING CONFOUNDING BIAS

Motivation for Representation Balancing: The interference representations Rx and Rt, embedding
the information of self-features xi, peer features xPi

and peer treatments tPi
, are common cases

of self-treatment and outcome of interest, which would confound the causal effect estimation. To
estimate main effects and peer effects, inspired by Cai et al. (2023); Guo et al. (2020); Huang et al.
(2023); Jiang & Sun (2022); Ma & Tresp (2021), we also learn balanced representations to adjust
confounders by minimizing IPM of treated and control groups (Johansson et al., 2016; Shalit et al.,
2017). Let r = rx ⊕ rt be the concatenation of rx and rt, we use Wasserstein (Arjovsky et al., 2017;
Cuturi & Doucet, 2014) to measure the discrepancy of distributions:

IPM(r, t) = Wass({ri:ti=0}, {rj:tj=1}), (8)

where {ri:ti=t} refers to the concatenated representation distribution of r = rx ⊕ rt on the samples
with t ∈ {0, 1}. By minimizing IPM(rx, rt, t), we can learn a balanced representation ri and use it
to identify the main effects for self-treatment ti. However, the relationship between peer-treatment
tPi and outcome yi remains confounded by the common causes ri, leading to biased estimates of peer
and total effects. Moreover, the peer-treatment tPi is unknown. Thus, we reformulate the balancing
constraint ri ⊥⊥ tPi to {rj:j∈Pi} ⊥⊥ ti. Recall the GCN structure, where the representation ri
serves as a weighted proxy of peer representations {rj:j∈Pi

}, hence, we maximize predictive power
of {rj:j∈Pi

} on self-treatment ti, while minimizing IPM(rx, rt, t) to ensure {rj:j∈Pi
} ⊥⊥ ti:

Cross Entropy(t̂, t) = − 1
N

∑N
i=1 [ti log (pi) + (1− ti) log (1− pi)], (9)

where pi = σ(ft({rj:j∈Pi})) is feed forward neural networks to estimate self-treatment ti, and σ is
the Sigmoid function. With the balanced ri, the objective function of potential outcome estimation:

Ly = MSE(ŷ,y) + α · IPM(r, t) + β · Cross Entropy(t̂, t), (10)

where ŷi = ti · f1
y (ri) + (1 − ti) · f0

y (ri), f
0
y (ri) and f1

y (ri) are feed-forward neural networks
estimating potential control and treated outcomes. α and β are hyper-parameters to trade off the
representation balancing, treatment, and outcome regression, discussed in Appendix D and E.

We embed interference information into representations but do not need to identify or reconstruct
it. For representation networks r(x, t,A) and outcome regression network ŷ(r, t), we input
the observed variables and use the latent representation r(x, t,A) to predict the outcome, i.e.
E[y|x, t,A] = ŷ(r, t). By maximizing the predictive power of r on y, (i.e., minimizing the
estimation error (MSE(ŷ,y))), we can force the interference information is embed to r(x, t,A).

4.3 BRIDGE MOMENT CONSTRAINTS FOR POTENTIAL OUTCOME PREDICTION

Motivation for Bridge Moment Constraints: There exists a trade-off between representation
balancing and treatment regression. To avoid model misspecification and ensure unbiased estimation,
we construct conditional moment constraints E[y − ŷ | x, t] = 0, ensuring the residual approaches
zero given x and t. Furthermore, we reformulate it as an unconditional maximum moment problem:

y∗ = argmin
ŷ

max
q∈Q

E[(y − ŷ)q(r, t)], q(r, t) = Sigmoid
(
Q · K′) , (11)

where Q = Linear(r) ·W ′
Q, and K = Linear(r) ·W ′

K . Then, q(·) is termed as a “bridge function”,
a transformation links to eliminate confounding effects from the confounders in causal identification.
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Table 2: Results of Constant Treatment Effects Estimation on BlogCatalog (BC) and Flickr Datasets.

BC Effects CFRNet DRLearner NetDeconf G-HSIC SPNet CAL Graphormer RRNet NetEst CauGramer

ϵAVE

AME 0.058±0.03 0.210±0.03 0.075±0.03 0.076±0.04 0.066±0.04 0.083±0.03 0.086±0.06 0.105±0.05 0.076±0.02 0.054±0.03

APE 0.117±0.06 0.207±0.02 0.351±0.09 0.387±0.02 0.223±0.10 0.370±0.07 0.436±0.03 0.229±0.06 0.078±0.02 0.034±0.03

ATE 0.123±0.07 0.064±0.05 0.337±0.09 0.351±0.06 0.203±0.10 0.355±0.08 0.349±0.07 0.296±0.06 0.065±0.03 0.039±0.04

√
ϵPEHE

IME 0.096±0.03 0.545±0.01 0.119±0.05 0.132±0.01 0.100±0.05 0.131±0.03 0.211±0.09 0.152±0.07 0.099±0.03 0.075±0.07

IPE 0.122±0.06 0.220±0.02 0.365±0.09 0.410±0.03 0.230±0.10 0.384±0.07 0.457±0.03 0.238±0.06 0.092±0.01 0.044±0.02

ITE 0.147±0.07 0.514±0.01 0.351±0.09 0.384±0.06 0.213±0.09 0.370±0.08 0.429±0.04 0.311±0.06 0.117±0.01 0.063±0.04

Flickr Effects CFRNet DRLearner NetDeconf G-HSIC SPNet CAL Graphormer RRNet NetEst CauGramer

ϵAVE

AME 0.066±0.04 0.110±0.05 0.088±0.03 0.096±0.03 0.054±0.03 0.090±0.05 0.030±0.03 0.160±0.03 0.063±0.04 0.028±0.03

APE 0.115±0.04 0.211±0.03 0.345±0.06 0.354±0.04 0.121±0.05 0.302±0.04 0.409±0.03 0.268±0.09 0.055±0.03 0.019±0.01

ATE 0.144±0.06 0.117±0.07 0.351±0.05 0.300±0.09 0.131±0.05 0.310±0.06 0.382±0.04 0.374±0.11 0.073±0.05 0.032±0.02

√
ϵPEHE

IME 0.119±0.04 0.517±0.01 0.134±0.05 0.129±0.02 0.079±0.05 0.137±0.07 0.086±0.03 0.229±0.04 0.095±0.05 0.047±0.04

IPE 0.128±0.04 0.240±0.03 0.382±0.07 0.405±0.04 0.131±0.05 0.332±0.05 0.459±0.03 0.294±0.10 0.070±0.03 0.032±0.01

ITE 0.177±0.05 0.531±0.02 0.380±0.05 0.363±0.09 0.142±0.05 0.334±0.06 0.443±0.04 0.405±0.12 0.105±0.05 0.051±0.02

Table 3: Results of Heterogeneous Treatment Effects Estimation with/without Unconfoundedness on
BlogCatalog (BC) and Flickr Datasets. The best is boldface while the second best is underlined.

BC Effects CFRNet DRLearner GDML SPNet NetEst CEVAE CNE UNITE C.G.(UC) C.G.(NC) CauGramer

ϵAVE

AME 0.106±0.03 0.196±0.07 0.166±0.06 0.083±0.06 0.089±0.03 0.081±0.03 0.186±0.04 0.069±0.00 0.109±0.07 0.092±0.07 0.073±0.06
APE 0.092±0.05 0.183±0.03 0.371±0.06 0.212±0.11 0.077±0.02 0.403±0.01 0.519±0.05 - 0.067±0.04 0.055±0.03 0.057±0.04
ATE 0.116±0.07 0.099±0.07 0.537±0.09 0.243±0.11 0.109±0.03 0.349±0.04 1.127±0.06 - 0.077±0.05 0.047±0.03 0.045±0.04

√
ϵPEHE

IME 0.150±0.03 0.544±0.03 0.265±0.08 0.131±0.07 0.147±0.03 0.120±0.03 0.288±0.05 0.194±0.00 0.159±0.10 0.139±0.09 0.090±0.05

IPE 0.229±0.04 0.216±0.03 0.411±0.06 0.246±0.10 0.145±0.01 0.439±0.01 0.552±0.05 - 0.125±0.02 0.117±0.02 0.118±0.02
ITE 0.218±0.04 0.529±0.02 0.607±0.10 0.279±0.10 0.173±0.02 0.398±0.03 0.610±0.06 - 0.149±0.03 0.129±0.02 0.125±0.01

Flickr Effects CFRNet DRLearner GDML SPNet NetEst CEVAE CNE UNITE C.G.(UC) C.G.(NC) CauGramer

ϵAVE

AME 0.091±0.05 0.135±0.08 0.239±0.08 0.096±0.06 0.069±0.05 0.063±0.04 0.168±0.05 0.043±0.00 0.091±0.07 0.073±0.05 0.058±0.05
APE 0.160±0.08 0.216±0.02 0.381±0.02 0.166±0.07 0.067±0.05 0.432±0.05 0.562±0.06 - 0.067±0.02 0.038±0.02 0.030±0.03

ATE 0.201±0.10 0.131±0.07 0.620±0.08 0.203±0.08 0.123±0.07 0.389±0.05 1.055±0.02 - 0.056±0.04 0.032±0.03 0.025±0.03

√
ϵPEHE

IME 0.174±0.06 0.529±0.02 0.359±0.10 0.147±0.07 0.136±0.06 0.139±0.04 0.261±0.06 0.212±0.00 0.141±0.08 0.107±0.06 0.096±0.06

IPE 0.207±0.07 0.264±0.02 0.448±0.02 0.213±0.06 0.156±0.03 0.505±0.05 0.637±0.06 - 0.128±0.01 0.112±0.02 0.111±0.01

ITE 0.274±0.08 0.547±0.02 0.716±0.09 0.252±0.07 0.185±0.05 0.478±0.04 0.669±0.07 - 0.150±0.02 0.127±0.01 0.125±0.01

The detailed explanations of bridge functions are deferred to Appendix D.4. If the model is correctly
specified and properly optimized, the residual ϵ = y − ŷ should be independent of covariates x,
i.e., ϵ ⊥ {x, t}. We have E[q(x, t) · ϵ] = E[q(x, t)] · E[ϵ] = 0 for any bridge functions q(x, t). The
minimax bridge moment constraint in Eq. (11) serves as a residual correction term, ensuring the
residual E[y − ŷ | q(x, t)] = 0 for any q(x, t).

By incorporating this constraint, the objective function for potential outcome estimation becomes:

argmin
t̂,ŷ

max
q∈Q
L = (1− γ)

(
MSE(ŷ,y) + α · IPM(r, t) + β · Cross Entropy(t̂, t)

)
+ γ · E[q(r, t)(y − ŷ)], (12)

where γ is a hyper-parameter serving as an interpolation coefficient. Under unconfoundedness
assumption, when γ = 0, the model degrades to trade-off regression, and when γ = 1, it degrades
to a Conditional Moment model. In the presence of unmeasured confounders, we will collect
negative control variables and embed them into the Eqs. (11) and (12), generalizing CauGramer to
CauGramer(NC) to address unmeasured confounding bias. The details are deferred to Appendix D.4.

The implementation details, pseudo-code, and advances of CauGramer are provided in Appendix
D. Discussion and optimization of Hyper-Parameters {α, β, γ} can be found in Appendix E.

5 EMPIRICAL EXPERIMENTS

To evaluate the performance of our CauGramer on networked data, we conduct extensive experiments
across eight dimensions: (1) Constant Treatment Effects (Table 2), (2) Heterogeneous Treatment
Effects (Table 3), (3) Unknown Interference Graph (Figure 3), (4) Limited Budgets (Figure 4), and
(5) Ablation Study (Table 4) in main text; (6) Hyper-Parameter Optimization (Figure 6 and Table
5), (7) Time Cost (Table 6), and (8) Various Interference Scenarios, including Interference Strength
(Figure 7), Interference Functions (Table 7), and Unmeasured Confounding (Table 8). We include
comparisons against more baselines in Tables 9&10 in Appendix E.

Datasets. In real-world applications, the ground-truth causal relations are unknown, and thus it
is impossible to evaluate the causal estimation performance of CauGramer directly. Therefore,
following existing works (Cai et al., 2023; Guo et al., 2021; 2020; Jiang & Sun, 2022; Ma et al.,
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NetEst CauGramer(NC) CauGramerCFRNet SPNetFive Competing Methods:

Known S.G.1N RandomS.G.2N Known S.G.1N RandomS.G.2N

Known S.G.1N RandomS.G.2N Known S.G.1N RandomS.G.2N

Known S.G.1N RandomS.G.2N Known S.G.1N RandomS.G.2N

𝜖!"# on AME Estimation 𝜖$%&% on IME Estimation

𝜖!"# on APE Estimation 𝜖$%&% on IPE Estimation

𝜖!"# on ATE Estimation 𝜖$%&% on ITE Estimation

BlogCatalog Dataset with Unknown Interference Graph

Known S.G.1N RandomS.G.2N Known S.G.1N RandomS.G.2N

Known S.G.1N RandomS.G.2N Known S.G.1N RandomS.G.2N

Known S.G.1N RandomS.G.2N Known S.G.1N RandomS.G.2N

𝜖!"# on AME Estimation 𝜖$%&% on IME Estimation

𝜖!"# on APE Estimation 𝜖$%&% on IPE Estimation

𝜖!"# on ATE Estimation 𝜖$%&% on ITE Estimation

Flickr Dataset with Unknown Interference Graph

Figure 3: Results on General Networked Data with Unknown Interference Graph and Unknown
Summary Functions: ‘Known’ graph is the same as social networks; ‘S.G.1N’ and ‘S.G.2N’ are
sampled SubGraphs from 1st and 2nd-order neighbors graph; ‘Random’ denotes random graphs.

NetEst

CauGramer(NC)

CauGramer

CFRNet

SPNet

Competing Methods
𝜖!"# of ATE Estimation on BlogCatalog Dataset 𝜖!"# of ATE Estimation on Flickr Dataset

Assigned Budg20% Budg50% Budg80% Budg100% Assigned Budg20% Budg50% Budg80% Budg100%

Figure 4: Results (ϵAVG) of ATE Estimation on Limited Budget for Treatment Distribution: ‘Assigned’
denotes observed treatment, ‘BudgX%’ indicates varying budget allocations for treatment assignment.

2021; Veitch et al., 2019), we use pseudo-real datasets from BlogCatalog (BC) and Flickr, where the
features (x) and social networks (A) are real, while treatments (t), outcomes (y), and interference
(E) are simulated. We use the same data simulation by Jiang & Sun (2022) to evaluate CauGramer’s
performance on original data with known intervention graphs and summary functions for constant
treatment effects. Then, we design a series of generalized heterogeneous treatment effects datasets
with unknown summary functions across various settings. Furthermore, we simulate unmeasured
confounding by removing features. The generation details are deferred to Appendix E.

Baselines. We summarize the characteristics of all competing baselines in Table 1 in Section 2. In
the traditional data (Jiang & Sun, 2022), we compare our methods CauGramer with causal methods
(CFRNet (Shalit et al., 2017), DRLearner (Leung & Loupos, 2022), NetDeconf (Guo et al., 2020),
G-HSIC (Ma & Tresp, 2021), SPNet (Huang et al., 2023), RRNet (Cai et al., 2023), and NetEst (Jiang
& Sun, 2022)) and two Transformer methods (CAL (Sui et al., 2022) and Graphormer (Ying et al.,
2021)). Then, we select top-4 baselines and add four models (GDML (Khatami et al., 2024), CEVAE
(Louizos et al., 2017), CNE (Veitch et al., 2019) and UNITE (Lin et al., 2024)) in general network
settings. For the sake of fairness, we modify all non-interference methods by incorporating neighbors’
treatment and social networks as additional input. For unmeasured confounders, we provide two
variants: C.G.(UC) randomly selects and removes two features from the input as unmeasured
confounders and C.G.(NC) incorporates NCs as proxies for address unmeasured confounding effects.

Evaluations. In the experiments, we aim to estimate the ME, PE, and TE of treatments on individual
and population level. In population, we use the Mean Absolute Error (MAE) on AME, APE, and
ATE as metric, i.e., ϵAVG = ∥τ̂ − τ∥, where τ and τ̂ are the true and estimated average effects. In
individual, we use rooted Precision in Estimation of Heterogeneous Effect (PEHE) on IME, IPE, and
ITE, i.e., √ϵPEHE =

√
1
N

∑N
i=1(τ̂i − τi)2. We conduct 10 replications to report (mean±std) results.

Results. We compare our method with the baselines for estimating treatment effects with known
interference graphs in Tables 2 and 3. First, the proposed CauGramer consistently outperforms all
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Table 4: Ablation studies on CauGramer (α, β, γ) by setting α = 0 (no balancing constraints),
β = 0 (no peer treatment constraints), and γ = 0 (no moment constraints). ‘w/o CA’ indicates no
cross-attention. We report ϵAVE on AME, APE, ATE, and

√
ϵPEHE on IME, IPE, ITE.

BlogCatalog(BC) AME APE ATE IME IPE ITE
CauGramer (0.0,0.0,0.0) 0.093±0.01 0.072±0.02 0.089±0.06 0.147±0.05 0.139±0.01 0.189±0.04

CauGramer (0.0,0.4,0.2) 0.118±0.10 0.061±0.03 0.116±0.07 0.209±0.13 0.133±0.02 0.216±0.06

CauGramer (0.8,0.0,0.2) 0.085±0.08 0.061±0.04 0.066±0.06 0.126±0.11 0.120±0.02 0.132±0.03
CauGramer (0.8,0.4,0.0) 0.080±0.09 0.064±0.04 0.069±0.05 0.123±0.12 0.121±0.02 0.142±0.03

CauGramer (0.8,0.4,0.2) w/o CA 0.104±0.06 0.067±0.02 0.072±0.05 0.154±0.08 0.125±0.01 0.142±0.03

CauGramer (0.8,0.4,0.2) 0.073±0.06 0.057±0.04 0.045±0.04 0.090±0.05 0.118±0.02 0.125±0.01

Flickr AME APE ATE IME IPE ITE
CauGramer (0.0,0.0,0.0) 0.080±0.07 0.050±0.05 0.131±0.06 0.127±0.09 0.130±0.02 0.209±0.04

CauGramer (0.0,0.4,0.2) 0.087±0.07 0.213±0.15 0.309±0.03 0.146±0.08 0.303±0.13 0.384±0.16

CauGramer (0.8,0.0,0.2) 0.066±0.03 0.028±0.01 0.028±0.03 0.118±0.04 0.112±0.01 0.128±0.01
CauGramer (0.8,0.4,0.0) 0.078±0.03 0.041±0.02 0.051±0.03 0.149±0.04 0.141±0.01 0.160±0.01

CauGramer (0.8,0.4,0.2) w/o CA 0.100±0.11 0.135±0.16 0.174±0.19 0.190±0.13 0.221±0.13 0.265±0.15

CauGramer (0.8,0.4,0.2) 0.058±0.05 0.030±0.03 0.025±0.03 0.096±0.06 0.111±0.01 0.125±0.01

baselines, because our Causal Graph Transformer with Minimax Moment Constraints improves the
computation graph with Cross-Attention and provides double guarantees to address confounding bias.
Second, when NCs are available and latent variables exit, while C.G.(UC) suffers from unmeasured
confounding, C.G.(NC) significantly improves performance, even approaching that of CauGramer. In
this case, the moment constraint in C.G.(NC) acts as a bridge function. By comparing our C.G.(NC)
and CauGramer method to the optimal baseline in Tables 2 and 3, when the interference graph is
known, we observe a decrease in ϵAVG and ϵPEHE of {39%, 56%} and {46%, 51%} on constant total
effect estimation for BlogCatalog and Flickr datasets, a decrease in ϵAVG and ϵPEHE of {55%, 80%}
and {28%, 32%} on heterogeneous total effect estimation, highlighting the superiority of our method.

Abalation Studies. As shown in Table 4, we denote different ablation versions as CauGramer(α, β,
γ), where hyperparameters α controls balancing constraints, β handles peer treatments constraints and
γ manages moment constraints. ‘w/o CA’ indicates CauGramer without the cross-attention module.
The results in Table 4 demonstrate that each component contributes effectively to causal effect
estimation. In Appendix E.2, we further discuss the hyperparameter optimization for CauGramer.

Scaling to Unknown Interference Graph and Limited Budgets. Figure 3 shows the performance
of our methods on unknown interference across BlogCatalog and Flickr datasets. Across 1st and
2nd-order SubGraphs (‘S.G.1N’ and ‘S.G.2N’) and ‘Random’ Graphs, CauGramers consistently
outperform all baselines. Especially on ‘S.G.1N’, our method shows a TE estimation improvement of
over 35%. In Figure 4, across treatment assignment budgets from 20% to 100%, we observe robust
performance with ATE estimation errors below 0.1 on both datasets. Conversely, other methods
display notably increasing estimation errors as the budget changes.

Time Complexity Analysis. CauGramer suffers from the same limitation as other graph transformers,
namely the quadratic complexity of the attention computation. However, unlike Graphormer and
its variants, which rely on computationally expensive full graph attention mechanisms through self-
attention, CauGramer computes cross-attention only from its 1-hop neighbors’ embeddings. Its time
cost decreases as node degree decreases. Empirically, we report the average training times of various
methods in a single execution on both datasets in Table 6 in Appendix E.3. CauGramer significantly
reduces single execution training time compared to most baselines, keeping it under 180 seconds.

6 CONCLUSION

In networked interference settings, many graph models developed to identify treatment effects rely
on the structural assumption of a known interference graph and aggregation function, which may not
hold true in real-world applications and can result in model misspecification. To address this issue,
we study causal inference problems under unknown interference and propose a CauGramer, which
learns interference representations and infers causal effects without relying on structural assumptions.
By integrating confounder balancing and minimax moment constraints, CauGramer fully incorporates
peer information, enabling robust treatment effect estimation.
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A BROADER IMPACTS

This paper proposes a novel Causal Graph Transformer algorithm, named CauGramer, which
extends the computation graph of Transformer to networked data and uses GCN with cross-attention
to learn complex intervention representations. By fully embedding peer information, the balancing
constraints and minimax moment constraints provide double guarantees for causal prediction. This
advancement in Transformer improves the interpretability and generalization performance of the
model across various networked scenarios, such as epidemiology, marketing, and social science. For
instance, in COVID vaccination, when vaccine resources are limited, CauGramer can identify the
causal effects of different treatment distributions on groups and then allocate vaccinations precisely,
maximizing community immunity with limited resources. Additionally, it supports evaluating the
impact of community skills training on the labor market and estimating the effects of public policies
on social groups, such as housing distributions on community stability and economic development.

However, in real social problems, treatment distributions that maximize treatment effects on the
population might not be the optimal choice for certain individuals. When individual treatment effects
and community treatment effects conflict, we should make decisions based on the specific situation
rather than relying solely on model results. Overall, CauGramer advances the Transformer framework
for networked data, providing new lines for further research on causal Transformers in the machine
learning field. We will also explore its application to more ML tasks, using it to accelerate large
models with Transformers and eliminate large model illusions through causal prediction.

B LIMITATIONS AND FUTURE DIRECTIONS

Unknown Social Network: CauGramer relies on a known social network for information aggregation.
In practice, however, such networks may not always be accessible due to privacy concerns or
application-specific constraints. Nevertheless, as demonstrated in Figure 3, CauGramer remains
robust even when the provided network is entirely unrelated to the ‘Random’ interference graph. It
still learns causal effects effectively and outperforms existing methods, suggesting that any connected
graph—even one that is randomly generated and independent of the interference graph—can help
aggregate interference information. In future work, we aim to address this limitation by developing
strategies to construct efficient connected graphs directly from the data. This would further reduce
dependence on a predefined social network and enhance the method’s applicability to scenarios
without network availability.

Negative Controls Availability: In the presence of latent confounding variables, although the
proposed CauGramer can readily generalize to address unmeasured confounding by constructing
bridge functions of negative controls, identifying negative controls remains a challenging task,
requiring expert knowledge and extensive experimental data support. Fortunately, with increasing
attention from practitioners to this technique, negative controls are becoming more accessible through
web technologies, user profiles, and digitized records (Hu et al., 2023). To further study unmeasured
confounding, we plan to explore techniques like instrumental variable (IV) regression, variational
autoencoders (VAEs), and sensitivity analysis in future work.

C THE DIFFERENCE OF OUR ALGORITHMS WITH TRADITIONAL METHODS

Our CauGramer is different with the following algorithms:

1. Leung & Loupos (2022): This paper introduces a non-parametric approach for estimating
causal effects, specifically treatment and spillover effects, using observational data from a
known social network. It proposes a doubly robust learner to model causal effect where in-
terference decreases with network distance, accounting for peer influences on both outcomes
and treatment selection. Unlike prior studies that rely on low-dimensional representa-
tions of confounding, the authors introduce a high-dimensional network unconfoundedness
condition, utilizing graph neural networks (GNNs) to estimate these confounders effectively.

2. Ogburn et al. (2024): This paper introduces a semiparametric approach for handling de-
pendencies caused by information transmission and latent similarities between nodes. It
assumes a known interference graph with interference limited to direct neighbors and relies
on prior knowledge of two structural functions, sC and sX , to summarize covariate and
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treatment interferences. Given these strong assumptions, Net-TMLE leverages structural
equation modeling and targeted maximum likelihood estimation to estimate causal effects,
supporting inference for static, dynamic, and stochastic interventions in social networks.

3. Khatami et al. (2024): Assuming the interference graph and exposure mapping are known,
this paper proposes constructing a focal set, where all units’ neighborhoods are non-
overlapping, to ensure independence among analyzed units and enable consistent estimation
of causal effects in social networks. By combining graph machine learning approaches with
the Double Machine Learning (GDML) framework, this method represents a significant
advancement in causal inference. It integrates Graph Neural Networks (GNNs) to esti-
mate propensity scores and outcome models while addressing challenges like interference,
high-dimensional confounding, and model misspecification.

4. Sävje et al. (2021): This paper study average treatment effects estimation in randomized
experiments with unknown and arbitrary interference among units. The authors propose
the Expected Average Treatment Effect (EATE) as a generalized estimand that incorporates
potential spillover effects by marginalizing all possible treatment assignments. While their
study provides a theoretical and experimental analysis using existing methods, it does not
introduce new algorithms to address unknown interference. Furthermore, their analysis is
based on randomized controlled trials (RCTs). In contrast, our paper focuses on addressing
the challenge of unknown interference in observational data.

5. Cortez et al. (2022): Under unknown network structures, Cortez et al. (2022) extend the
work of Yu et al. (2022) by generalizing causal inference methods from linear to polynomial
models, enabling the estimation of total treatment effects (TTE) under more complex and
non-linear network interactions. They introduce a staggered rollout experimental design,
which incrementally applies treatments and collects observations, eliminating the need
for prior knowledge of the network structure. However, a limitation of their approach
is its reliance on multiple randomized trials (i.e., the staggered rollout design) to gather
observations at different stages.

6. Hoshino & Yanagi (2023): This paper studies causal inference models in which individuals
interact within a social network and may not comply with the assigned treatments. It poten-
tially assumes that the interference arises through the social network, where the structure
of interference may depend on local or approximate neighborhood interactions. Based
on this, the paper introduces Instrumental Exposure Mapping (IEM), a low-dimensional
representation of potentially complex spillover effects, to estimate Intention-to-Treat (ITT)
and Local Average Treatment Effects (LATE) for compliers, accounting for both direct and
indirect effects while explicitly handling the challenges of noncompliance and unknown
interference. However, this paper assumes that the interference graph is a subgraph of the
social network and relies on the random assignment of instrumental variables (IVs), as well
as the independence of IVs across individuals, to ensure valid causal inference.

7. Bhattacharya et al. (2020): Under interference and network uncertainty, this paper proposes
methods that integrate structure learning and causal inference techniques to estimate causal
effects. Their algorithms rely on structure learning to first learn graphical models and then
estimate the Population Average Overall Effect (PAOE), a variant of the Average Total Effect.
They address network uncertainty under partial interference through structure learning and
then use the auto-g-computation algorithm to estimate the PAOE. This method rely on the
assumption that the true data-generating process corresponds perfectly (satisfying Markov
and faithfulness conditions) to some unknown chain graph, with two restrictions. This paper
does not release its code.

8. Lin et al. (2024): Under unknown interference, the UNITE algorithm uses a Graph Structure
Learner (GSL) to infer the hidden interference structure by constructing a complete graph
and imposing L0-norm regularization to identify significant connections. With the inferred
structure, Graph Convolutional Networks (GCNs) are employed to learn an aggregation func-
tion and model the interference from neighboring units, effectively capturing the interference
patterns and enabling accurate treatment effect estimation.

DRLearner (Leung & Loupos, 2022) proposes a doubly robust estimator and explicitly models
interference within a social network. Using targeted maximum likelihood estimation and double
machine learning techniques, Net-TMLE (Ogburn et al., 2024) and GDML (Khatami et al., 2024) rely
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on pre-specified exposure mappings and assume interference is limited to direct neighbors. Under the
unknown interference graph, Sävje et al. (2021) and Cortez et al. (2022) rely on randomized controlled
trials (RCTs) to study causal effects. Hoshino & Yanagi (2023) assume that the interference graph is
a subgraph of the social network and relies on the random assignment of instrumental variables (IVs)
to ensure valid causal inference. In observational data, Bhattacharya et al. (2020) assumes that the
true data-generating process perfectly corresponds (satisfying Markov and faithfulness conditions) to
some unknown chain graph with two restrictions. However, in practical scenarios, structure learning
algorithms often face implementation issues and produce unreliable results due to the size of the
graph and unmet assumptions. Although Lin et al. (2024) proposes the UNITE framework, which
uses L0-norm regularization and GCNs for accurate treatment effect estimation, it only supports the
estimation of AME and IME. Besides, they do not consider that peer treatments can influence the
treatment choices of others in real applications. To address these issues and estimate causal effects
under an unknown interference graph, we propose incorporating GCNs with cross-attention in the
L-layer CauGramer embedding to aggregate L-order neighbor information.

D IMPLEMENTATION DETAILS, PSEUDO-CODE, AND ADVANCES

In this paper, inspired by the powerful Transformer (Vaswani et al., 2017), we propose an interference-
agnostic Causal Graph Transformer (CauGramer) framework, which extends the computation
graph of the Transformer to an L-order neighbor network and uses cross-attention to provide a
broader receptive field for GCNs (Kipf & Welling, 2016), enabling them to learn complex-sequential
interference representations. Under the generalized networked setting with Unconfoundedness (Figure
5(a)), by fully embedding peer information, the proposed balancing constraints and minimax moment
constraints can provide double guarantees for causal prediction to estimate the main, peer, and total
effects. However, when the Unconfoundedness Assumption is violated, the outcome regression (Eq.
(1)) would be confounded by unmeasured confounders (denoted by (U )). To generalize CauGramer
for settings with unmeasured confounders (UCs), we propose incorporating negative control variables
(NCs) into the unconditional maximum moment optimization and integrating this into the objective
function (Eq. (12)). This adaptation directly extends CauGramer to CauGramer(NC) for such
settings. Appendix D.1 describes the key definitions and assumptions of CauGramer; Appendix D.2
details its implementation; Appendix D.4 introduces the negative controls and bridge functions for
CauGramer(NC); and we discuss CauGramer’s advances and limitations in Appendices D.5 and B.

D.1 KEY DEFINITIONS AND ASSUMPTIONS OF CAUGRAMER

In this subsection, we will clarify the definitions of confounders and potential outcomes, as well as
the required assumptions in CauGramer. We start by reviewing the causal diagrams of the proposed
generalized networked setting. As shown in Figure 1, in social networked data, both the self-treatment
and peer-treatment of a unit influence the self-outcome. We define the effect of self-treatment on
self-outcome as main effect, denoted as τM (xi,xPi) : {xi,xPi} → yi, which is a function of
self-features and peer-features. Next, we define the peer-treatment effect of peer j on unit i’s outcome
as the heterogeneous peer effect, denoted as τP (xi,xj) : {xi,xj} → yi where j ∈ Pi, which is a
function of the features of unit i and peer j. Finally, we further define the potential control outcome
under (ti, tPi

) = (0,0Pi
) as µ0(xi,xj) : {xi,xPi

} → yi. The formal definitions are as follows:

Definition (Potential Control Outcomes). y(xi,xPi , 0,0P) = µ0(xi,xj).

Definition (Potential Treated Outcomes). y(xi,xPi
, ti, tPi

) = µ0(xi,xj) + ti · τM (xi,xPi
) +∑

j∈Pi
[tj · τP (xi,xj)].

Definition (Observed Outcomes). yi = ti · y(xi,xPi
, ti, tPi

) + (1− ti) · y(xi,xPi
, 0,0P).

In networked interference, the challenge is that we can only observe the outcome for the treatment
assignment that was actually applied, and not for all potential treatment assignments simultaneously.
This means we cannot directly observe what would have happened under different treatment distri-
bution. Besides, in observational data, as shown in Figure 1(b), some variables are common causes
of both the treatment and the outcome of interest. These variables are confounders—extraneous
variables whose presence affects the relationship between the variables being studied and introduces
confounding bias (Pearl, 2009) when imbalanced confounders exist.
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Definition (Confounders to Main Effect). Confounders to Main Effect are variables that influence
both self-treatment and self-outcome, potentially creating a spurious association that can distort the
main effect estimation. In this paper, Confounders of ti and yi are {xi,xPi

, tPi
}.

Definition (Confounders to Peer Effect). Confounders to Peer Effect are variables that influence both
peer-treatment and self-outcome, potentially creating a spurious association that can distort the peer
effect estimation. In this paper, Confounders of tPi and yi are {xi,xPi , ti}.
To eliminate confounding bias for estimating main effects and peer effects, inspired by Cai et al.
(2023); Guo et al. (2020); Huang et al. (2023); Jiang & Sun (2022); Ma & Tresp (2021), we propose
representation balancing to adjust confounders by minimizing IPM (Eq. (10)) of treated and control
groups (Johansson et al., 2016; Shalit et al., 2017):

Ly = MSE(ŷ,y) + α · IPM(r, t) + β · Cross Entropy(t̂, t),
where α and β are hyper-parameters to trade off the representation balancing and outcome regression.

To precisely estimate treatment effects, i.e., ME, PE, and TE, we first make the standard causal
assumptions on networked data (Forastiere et al., 2021; Jiang & Sun, 2022).

Assumption (Positivity). The probability of a unit with their peers to receive any treatment pair
(t, tP)) is always positive, i.e., 0 < P(ti = t, tPi

= tP | xi,xPi
) < 1 for any xi.

Assumption (Consistency). The potential outcome is the same as the observed outcome under the
same self-treatment and peer-treatments, i.e., yi = y(xi,xPi , ti, tPi) for treatment pair (ti, tPi).

Assumption (Unconfoundedness). The self-treatment and peer-treatments are independent of the
potential outcome given self and peer’ features, i.e., y(xi,xPi

, t, tP) ⊥⊥ (t, tP) | (xi,xPi
).

Assumption (Representation). The treatment vector tPi
of peer nodes can be captured by a peer

treatment function gt, and the confounder vector xPi
by a peer confounder function gx.

As shown in Figure 1, under unconfoundedness assumption, all confounders have been observed.
When we control {xi,xPi , tPi}, the main effect of ti on yi is identified; when we control
{xi,xPi , ti}, the peer effect of tPi on yi is identified.

Positivity assumption requires that the probability of receiving any treatment among a unit and their
peers is always positive, i.e., there are no circumstances under which a treatment cannot be applied.
It’s fundamental to causal inference because if there are conditions where a treatment is completely
unavailable, it becomes impossible to draw any inference about its effects from the data. Consistency
assumption states that under the same self-treatment and peer-treatments, the observed outcome
is consistent with the potential outcome. This assumption is also crucial in causal inference as it
provides the basis for inferring causal effects from observational data.

D.2 IMPLEMENTATION DETAILS AND PSEUDO-CODE

As shown in Figure 2, the overall architecture of our model consists of the following components:

• The interference representation Rx = gx(x,A) of self-features and peer-features. In this
paper, we propose a L-layers (default: 2) M -heads (default: 3) cross-attention GCN to learn
the representation Rx = gx(x,A). In each attention head, all neural networks consist of
one layer comprising 32 hidden units. We then perform cross-attention computation, which
yields the concatenation of M head embeddings, followed by a feed-forward network to
output a 32-dimensional representation.
• The interference representation Rt = gt(t,A) of self-treatments and peer-treatments.

In this paper, we propose a L-layers (default: L = 1 for main results and L = 2 for
unknown interference graph in Figure 3) M -heads (default: 3) cross-attention GCN to
learn the representation Rt = gt(t,A). The process for learning the treatment interference
representation Rt is similar to that of the feature interference representation Rx, except that
the GCN employs treatments t to mask node information in each attention. The feed-forward
network then outputs a 32-dimensional representation.
• The treatments and outcomes regression networks {ft, f0

y , f
1
y }. First, we concatenate the

representations R = Rx ⊕Rt. Then, we use three two-layer linear networks, where each
layer comprises 64 hidden units, to regress treatments T and potential outcomes {Y0,Y1}.
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Algorithm 1 CauGramer: Causal Graph Transformer

Input: The observed features xi, treatment ti, and outcomes yi; Social network A; Hyper-
parameters {α, β, γ}; The num of training epochs I = 300; Steps {K,S} = {150, 2}.
Output: Representations {gx, gt}, one bridge function q, one treatment estimators ft, and two
potential outcome estimators {f0

y , f
1
y }.

Loss Function: L = (1− γ)
(
MSE(ŷ,y) + α · IPM(r, t) + β · Cross Entropy(t̂, t)

)
+ γ · E[WA(y − ŷ)].

Initialize networks {gx, gt, q, ft, f0
y , f

1
y }.

for i = 1, 2, · · · , I do
rx = gx(x,A), rt = gt(t,A);
r = rx ⊕ rt;
WA = q(r, t), t̂ = σ(ft({rj:j∈Pi

})), ŷ0 = f0
y (r) and ŷ1 = f1

y (r);
ŷ = t · ŷ1 + (1− t) · ŷ0;
Cross Entropy(t̂, t) = − 1

N

∑N
i=1

[
ti log

(
t̂i
)
+ (1− ti) log

(
1− t̂i

)]
;

IPM(r, t) = Wass({ri:ti=0}, {rj:tj=1}), MSE(ŷ,y) = 1
N

∑N
i=1 (ŷi − yi)

2;
if i < K or i % S == 0 then

Update {gx, gt, ft, f0
y , f

1
y } ← Adam(L);

else
Update {q} ← Adam(− 1

N

∑N
i=1(q(ri, ti) · (ŷi − yi)));

end if
end for
return Networks {gx, gt, q, ft, f0

y , f
1
y }.

• The bridge function WA = q(r, t). We input the concatenated representation R into a
single-layer linear network to obtain Query and Key separately. Then, they are fed into
MatMul operations to obtain the attention-based bridge function.

In the whole architecture of CauGramer, we use the ReLU activation function and set the dropout
rate to 0.1 to mitigate overfitting. Then, the objective function is:

argmin
t̂,ŷ

max
WA

L = (1− γ)
(
MSE(ŷ,y) + α · IPM(r, t) + β · Cross Entropy(t̂, t)

)
+ γ · E[WA(y − ŷ)]

where WA = q(r, t), t̂ = σ(ft({rj:j∈Pi
})), ŷi = ti · f1

y (ri) + (1 − ti) · f0
y (ri). Then, we adopt

Adam optimization with a learning rate of 0.01 and set epochs to 300 to alternately train WA and
{T̂ , Ŷ0, Ŷ1}. During the optimization of WA, we keep the parameters in the representation networks
{gx(·), gt(·)} and treatment and outcome regression networks {ft(·), f0

y (·), f1
y (·)} fixed. Conversely,

we keep the parameters in q(·) fixed while optimizing the representation networks and treatment and
outcome regression networks. The pseudo-code is placed in Algorithm 1.

Hardware used: (1) MacBook Pro with Apple M2 Pro. (2) Ubuntu 16.04.3 LTS operating system
with 2 * Intel Xeon E5-2660 v3 @ 2.60GHz CPU (40 CPU cores, 10 cores per physical CPU, 2
threads per core), 256 GB of RAM, and 4 * GeForce GTX TITAN X GPU with 12GB of VRAM.

Software used: Python 3.9 with numpy 1.26.4, scipy 1.13.0, pandas 2.2.2, torch 2.3.0, scikit-learn
1.4.2, openpyxl 3.1.2, torch geometric 2.5.2, torch-scatter 1.1.0.

D.3 BRIDGE FUNCTION: ENFORCING RESIDUAL INDEPENDENCE

The core intuition behind the bridge function is that it enforces independence between the residual
y − ŷ and the variables {x, t}:

1. Independence (y − ŷ(x, t)) ⊥ {x, t} is equivalent to (y − ŷ(x, t)) ⊥ q(x, t) for all q(·).
2. This equivalence implies that Pr(y − ŷ(x, t), q(x, t)) = Pr(y − ŷ(x, t)) ×

Pr(q(x, t)) for all q(·).
3. As a result, we have: E[(y− ŷ(x, t)) · q(x, t)] = E[y− ŷ(x, t)] ·E[q(x, t)] = 0 for all q(·).
4. This leads to the minimax formulation: minŷ maxq∈Q E[(y − ŷ) · q(x, t)], where:
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• maxq∈Q detects any dependency between the residual and the covariates.
• minŷ adjusts the predictions ŷ to eliminate this dependency.

“The model being correctly specified and properly optimized” is a sufficient condition for “the
residual is independent of covariates x”. Conversely, if the residual is not independent of {x, t}, this
indicates that the model suffers from misspecification. The bridge function serves to mitigate such
misspecification issues by enforcing the independence of the residual and the covariates.

D.4 BRIDGE FUNCTIONS WITH NEGATIVE CONTROLS FOR CAUGRAMER(NC)

𝑋!"#$ 𝑋%""&!
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(b) Causal Diagram for Negative Controls

Figure 5: Causal Diagram for Negative Controls and Generalized Networked Settings.
However, in real applications, numerous latent variables may exist, leading to a violation of the
Unconfoundedness Assumption. These unmeasured variables can influence both the treatment and the
outcome, posing additional challenges for causal inference. When this assumption is violated, negative
control variables (NCs) typically are used for detection, reduction, and correction of confounding bias
(Kallus et al., 2021; Shi et al., 2020). As shown in the causal diagram in Figure 5(b), negative control
variables are variables that are not direct causes of the outcome or are not caused by the treatment,
and they are becoming more accessible through web technologies, user profiles, and digitized records
(Hu et al., 2023).

Definition (Negative Controls (NCs)). Negative Controls comprise two types: NC exposures (NCE,
denoted by z) and NC outcomes (NCO, denoted by w). NCE z cannot directly affect the outcome y,
and neither NCE z nor the treatment t can affect the NCO w, i.e. z ⊥⊥ y | (x,u), z ⊥⊥ w | (x,u),
t ⊥⊥ w | (x,u) and (z,w)⊥̸⊥ (x,u).

From the causal diagram and definition of negative controls, NCEs Z are proxy variables that are
linked to the treatment T through the same unmeasured confounders U , and NCOs W are influenced
by the same unmeasured confounders U as the outcome Y . Then, Miao et al. (2018) and Kallus et al.
(2021) construct a bridge function q(z, t,x) for the treatment regression using NCE z, and a bridge
function h(w, t,x) for the outcome regression using NCO w:

E[t | x]
E[t | x,u]

= E[E[t | x]q(z, t,x) | (t,x,u)], E[y | t,x,u] = E[h(w, t,x) | t,x,u]. (13)

The main goal of bridge functions is to learn transformation links between observed variables and
negative controls to eliminate confounding effects from the same unmeasured confounders in causal
identification. In the presence of unmeasured confounders, we propose using bridge functions
optimization to generalize the unconditional maximum moment optimization in Eq. (11). This
directly extends our CauGramer to CauGramer(NC) for addressing unmeasured confounders.

Theorem 2. When negative control variables are available, the treatment effects are identified from
the bridge functions q(z, t,x) and h(w, t,x) (Kallus et al., 2021).

ĥ = argmin
h∈H

max
q∈Q′

E[q(z, t,x)(h(w, t,x)− y)], (14)

q̂ = argmin
q∈Q

max
h∈H′

E[E[t | x]q(z, t,x)h(w, t,x)−
∫

h(w, t,x)E[t | x]dµ(t)]. (15)

where µ is the base measure associated with treatments t, and H and Q are hypothesis spaces.
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The proof can be found in Kallus et al. (2021). In our CauGramer, we design a cross-attention
moment constraint through a minimax game to make residual independence from input features:

y∗ = argmin
ŷ

max
q∈Q

E[q(r, t)(y − ŷ)], q(r, t) = Sigmoid
(
Q · K′) ,

The negative control variables (z, w) can be directly embedded into our maximum moment optimiza-
tion in the above moment constraint and generalized it as follows:

y∗ = argmin
ŷ

max
q∈Q

E[q(r(z,x), t)(y − ŷ(r(w,x), t))], q(r(z,x), t) = Sigmoid
(
Q · K′) , (16)

This allows us to transform the moment optimization into a bridge optimization problem, thereby
generalizing CauGramer to CauGramer(NC) and enabling it to address unmeasured confounders
without incurring additional computational costs.

D.5 ADVANCES OF CAUGRAMER

In networked data, traditional Graph neural network (GNN) and its variants (e.g., GCN) often face
limitations related to the size of the receptive field and suffer from information homogenization.

• Receptive Field Size: In GNNs, the receptive field refers to the scope of neighboring nodes
or edges that influence the representation of a unit. As the network deepens, the receptive
field may not expand sufficiently to capture information from distant nodes or edges, leading
to limited attention and limited receptive field.
• Information Homogenization: Deepening GNNs can lead to the problem of information

homogenization, where the representations of different nodes become increasingly similar
as they pass through multiple layers. This can cause loss of important structural or relational
information present in the graph.

These constraints pose challenges for traditional GNNs and GCNs in capturing long-distance interfer-
ence information within graph topologies. Consequently, conventional network interference studies
often only account for interference among first-order neighbors (Cai et al., 2023; Forastiere et al.,
2021; Guo et al., 2020; Huang et al., 2023; Jiang & Sun, 2022; Lee & Lee, 2022; Liu et al., 2016;
2023; Ma & Tresp, 2021; Qu et al., 2021; Veitch et al., 2019; Zhao et al., 2025; 2024).

Transformers provide a broader perspective to GNNs, overcoming the traditional GNN limitation
of receptive field size and enabling the capture of distant node information through their attention
mechanism. While recent Transformer variants have achieved superior performance in graph learning
(Rampášek et al., 2022; Sui et al., 2022; Ying et al., 2021), they rely on modeling full graph attention
through self-attention, which models attention (Query, Key and Value) within the self-embedding,
which poses further issues:

• Using embedding from GNNs as input for Transformers, the self-attention mechanism may
still struggle to capture the long-distance information of the graph.
• By modeling self-attention mechanisms only on the self-embedding of each unit, these

models may fail to capture networked interference.
• Storing and processing the attention weights for every pair of nodes or edges in the graph

requires substantial memory resources.
• Modeling full graph attention using self-attention mechanisms can incur substantial compu-

tational costs, particularly for large graphs.

These works still suffer from the limited receptive field and high memory and computation costs,
and they cannot address the networked interference problem. To address these issues, we propose
an interference-agnostic Causal Graph Transformer (CauGramer) framework, which extends the
computation graph of the Transformer to an L-order neighbor network and uses cross-attention to
provide a broader receptive field for GCNs (Kipf & Welling, 2016), enabling them to learn complex-
sequential interference representations. As shown in Figure 2, in each embedding layer, we construct
cross-attention to learn Query qi, Key ki, and Value vi from self-features (xi), neighbor-features
(xPi ), and combined features (xi, xPi ), respectively, rather than just modeling self-attention on only
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each unit’s own embedding. This allows us to capture interactions between nodes within and beyond
the local neighborhood, rather than focusing solely on each unit’s own embedding.

In the L-layer CauGramer embedding with M -head attention, we use GCNs to aggregate L-order
neighbor information and topology structure, while cross-attention provides a broader receptive field
in GCNs for learning complex-sequential interference representations. As the network’s depth L
increases, the scope of our GCNs with cross-attention expands, enabling the embedding of all potential
interference peers into representations Rx and Rt. Furthermore, we reformulate the Transformer
decoder with cross-attention minimax constraints to precisely estimate the main, peer, and total effects.
When negative control variables are available, the minimax constraint in the objective function (Eq.
(12)) of CauGramer acts as the bridge function in Theorem 2, thereby empowering CauGramer to
generalize effectively and address the challenges posed by unmeasured confounders.

E DATASETS, SUPPLEMENTAL EXPERIMENTS, AND HYPER-PARAMETERS

In this section, we introduce the dataset details used in this paper, conduct hyper-parameter opti-
mization analysis (Figure 6 and Table 5), and time-cost analysis (Table 6). Additionally, we present
supplementary experiments to demonstrate the robustness of CauGramer under various scenarios,
including interference strength (Figure 7), interference functions (Table 7), unmeasured confound-
ing (Table 8). Furthermore, we include comparisons against additional baselines, including graph
Transformers and conventional networked methods, in Tables 9 and 10.

E.1 DATASETS DETAILS

In real-world applications, the ground-truth causal relations are unknown, and thus it is impossible to
evaluate the causal estimation performance of CauGramer directly. Therefore, following existing
works (Veitch et al., 2019; Jiang & Sun, 2022; Guo et al., 2020; 2021; Ma et al., 2021; Cai et al.,
2023), we generate semi-synthetic data from BlogCatalog (BC) and Flickr datasets 3, where the
features (x) and social networks (A) are real, while treatments (t), outcomes (y), and interference
(E) are simulated:

• BlogCatalog (BC) (Guo et al., 2020; Jiang & Sun, 2022). BlogCatalog (BC) is an online
community that offers blog services, where each blogger represents a study unit within the
dataset. The relationships between these units form the social network, with each edge
denoting a social link. The features are bag-of-words representations of keywords in the
bloggers’ descriptions.
• Flickr (Guo et al., 2020; Jiang & Sun, 2022). Flickr is an online social network providing

image and video sharing services. The dataset is constructed by forming links between
images that share common metadata. In this dataset, each instance is a user, and each edge
represents the social relationship between two users. The features of each user represent a
list of tags indicating their interests.

We use the same linear discriminant analysis (LDA) and the same data simulation by Jiang & Sun
(2022) on BlogCatalog and Flickr datasets. Moreover, Jiang & Sun (2022) use METIS (Karypis
& Kumar, 1998) to partition the original networks into three sub-networks as train/valid/test data
with 2482, 2461, and 2358 samples in Flickr, and 1784, 1716, and 1696 samples in BlogCatalog.
In the testing data, we will randomly sample binary treatments from a Bernoulli distribution with a
probability of 0.5 to simulate manipulation operations. Then, we use the same data simulation by
Jiang & Sun (2022) to evaluate CauGramer’s performance on original data with known intervention
graphs and summary functions for constant treatment effects. Then, we design a series of generalized
heterogeneous treatment effects datasets with unknown summary functions across various settings.

For the conventional networked setting with known interference graph and known summary
function (Table 2), similar to Jiang & Sun (2022), we generate the treatments and potential outcomes
with known intervention graphs (A = E) and summary functions (zi = 1

|Ni|
∑

j∈Ni
tj), as follows.

Let pti = σ(w
(1)
x · xi), p

t
Ni

= 1
|Ni|

∑
j∈Ni

ptj , p
y
i = σ(w

(2)
x · xi), p

y
Ni

= 1
|Ni|

∑
j∈Ni

pyj , where

3The BlogCatalog and Flickr datasets are available at: https://github.com/songjiang0909/
Causal-Inference-on-Networked-Data.
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{w(1)
x ,w

(2)
x } are random coefficient vectors sampled from uniform distribution U(−1.0, 1.0).

ti = 1(pti + ptNi
> pti + ptNi

), zi =
1

|Ni|
∑
j∈Ni

tj , yi = ti + zi + pyi + 0.5pyNi
+ ϵi, (17)

where 1 is an indicator function, pti and ptNi
denote the average value of pti and ptNi

. The variable
ϵi ∼ N (0, 0.1) denotes a measurement error.

For the generalized networked setting with known interference graph and unknown summary
function (Table 3), under interference graph E, we use the same functions by Cai et al. (2023); Jiang
& Sun (2022) to define:

pti = σ(w(1)
x · xi), ptPi

=
1

|Pi|
∑
j∈Pi

ptj , pyi = σ(w(2)
x · xi), pyPi

=
1

|Pi|
∑
j∈Pi

pyj ,

zNCE
i = σ(w(3)

x · xi)−
1

|Pi|
∑
j∈Pi

σ(w(3)
x · xj), w

NCO
i = σ(w(4)

x · xi)−
1

|Pi|
∑
j∈Pi

σ(w(4)
x · xj),

where {w(1)
x ,w

(2)
x ,w

(3)
x ,w

(4)
x } are random coefficient vectors sampled from uniform distribution

U(−1.0, 1.0), zNCE
i and wNCO

i are NCs. Then, we generate treatments based on the priority level
si = x

(1)
i + x

(2)
i , where x

(1)
i and x

(2)
i denotes the 1st and 2nd variable in the feature of unit i.

mi = pti + ptPi
, t̃i = mi +

1

|Pi|
∑
j∈Pi

tj ∗ 1 (sj > si) , ti = 1
(
σ(t̃i) > mi

)
. (18)

In the treatment generation process, we simulate treatment interference based on the priority level si to
avoid cycles. Then, we simulate outcomes with heterogeneous effects under networked interference.

yi = ti · τ IME
i + τ · τ IPE

i + pyi + 0.5pyNi
+ ϵi, (19)

τ IME
i =

√
1 + pyi − pyNi

, τ IPE
i =

1

|Pi|
∑
j∈Pi

tj ∗ ∥xi − xj∥22, (20)

where ∥xi − xj∥22 denotes the squared Euclidean distance, and ρ ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}
represents the different interference level in the Figure 7.

Moreover, to simulate an unmeasured confounder setting (Table 3), we will randomly select two
variables as latent variables and remove them in the feature of unit i. In Table 3, CauGramer(UC)
directly employs models with missing variables to estimate treatment effects, while CauGramer(NC)
uses {zNCE

i , wNCO
i } as NCs to identify treatment effects.

In the generalized networked data with unknown interference graph and unknown summary
functions (Figure 3), we design three interference graphs E which are not the same as the social
network A. ‘S.G.1N’ and ‘S.G.2N’ represent subgraphs from graphs composed of 1st and 2nd-
order neighbors marked by Euclidean distance (0.1 < ∥x(:5)

i − x
(:5)
j ∥22 < 0.2), respectively, while

‘Random’ denotes randomly generated graphs by Euclidean distance (0.20 < ∥x(:5)
i −x

(:5)
j ∥22 < 0.25).

Additionally, for comparison, we denote the ‘Known’ graph as the social network. Then, we use
these interference graphs to simulate data by the above simulation process (Eqs. (18) and (19)).

Then, in the limited budget experiments (Figure 4), treatment sources like COVID vaccinations
are limited, requiring treatment assignment to adhere to varying budget constraints (‘BudgX%’)
rather than predefined treatment assignment policies (‘Assigned’). Given the training data generated
by equations (18) and (19), in testing data generation, we randomly sample binary treatments from
a Bernoulli distribution with a probability of {20%, 50%, 80%, 100%} to simulate different budget
on treatment sources. This enables us to evaluate the performance of the proposed CauGramer in
estimating treatment effects under varying budget constraints.

For different interference levels (Figure 7)), we adjust the coefficient ρ ranging from
{0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0} in equation (19) to simulate various levels of interference.

24



Published as a conference paper at ICLR 2025

Hyper-Parameter 𝛼 Hyper-Parameter 𝛾

Hyper-Parameter 𝛼 Hyper-Parameter 𝛾

𝜖!"#" on ITE Estimation with varying {𝛼, 𝛽} 𝜖!"#" on ITE Estimation with varying 𝛾

𝜖$%& on ATE Estimation with varying 𝛾𝜖$%& on ATE Estimation with varying {𝛼, 𝛽}

𝜖 !
"
#

𝜖 $
%&

%

Pa
ra

m
. 𝛽

Pa
ra

m
. 𝛽

Figure 6: Hyper-Parameter Optimization on Flickr Dataset: CauGramer optimizes three hyper-
parameters, {α, β, γ} ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. The minimum regression error on the validation
data indicates the optimal hyper-parameters ({α, β, γ} = {0.8, 0.4, 0.2}) for ITE estimation, marked
by the red dashed box and lines. A higher value on α might improve ATE estimation performance.

E.2 HYPER-PARAMETERS OPTIMIZATION

We first review the objective function (Eq. (12)) of the proposed CauGramer:

argmin
t̂,ŷ

max
q∈Q
L = (1− γ)

(
MSE(ŷ,y) + α · IPM(r, t) + β · Cross Entropy(t̂, t)

)
+ γ · E[q(r, t)(y − ŷ)].

In our CauGramer, there are three hyper-parameters, i.e., {α, β, γ} ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.
Among them, α and β jointly control representation balancing for adjusting confounding bias in
the estimation of main treatment effects and peer-treatment effects. Additionally, β serves for
aggregating neighbors’ representations by maximizing the predictive power of rj:j∈Pi on self-
treatment ti. Through learning representations with reduced Inter-Profile Matching (IPM) distance
between treated and control units, α and β facilitate a bias-variance trade-off. The hyper-parameter
γ serves as an interpolation coefficient, where γ = 0 corresponds to outcome regression with
representation balancing, and γ = 1 represents a conditional moment model. By adjusting γ, we
integrate the Conditional Moment model into the objective function, providing dual guarantees to
mitigate confounding bias effectively.

In this paper, we adopt the minimum regression error on the validation data to determine the
optimal hyper-parameters {α, β, γ} ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. First, We search for α, β ∈
0.0, 0.2, 0.4, 0.6, 0.8, 1.0 to identify the hyper-parameter combination corresponding to the minimum
validation error, while fixing γ = 0.2. Subsequently, utilizing the optimal parameters α, β determined
from the previous search, we further explore γ ∈ 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 to identify the hyper-
parameter combination corresponding to the minimum validation error. Considering the Flickr dataset
as an example, as depicted in Figure 6, we determine the hyper-parameters that correspond to the
smallest validation regression error, which also indicates the smallest

√
ϵPEHE on the Flickr dataset,

marked by the red box and lines. The optimal hyper-parameters are α, β, γ = 0.8, 0.4, 0.2 for both
the BlogCatalog and Flickr datasets.

Furthermore, as shown in Table 5, we can use a grid search on the validation dataset to choose
the optimal L value and M value in CauGramer with L-layer and M -layer. In this paper, we
propose a L-layers (default: 2) M -heads (default: 3) cross-attention GCN to learn the representation
Rx = gx(x,A). For interference information, we propose a L-layers (default: L = 1 for main
results and L = 2 for unknown interference graph in Figure 3) M -heads (default: 3) cross-attention
GCN to learn the representation Rt = gt(t,A).
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Table 5: Hyper-Parameter Optimization on Flickr Dataset: CauGramer with L-layer and M -heads.

Flickr AME APE ATE IME IPE ITE
L=1, M=3 0.039±0.02 0.320±0.10 0.290±0.07 0.066±0.02 0.358±0.09 0.339±0.07

L=2, M=2 0.093±0.05 0.230±0.11 0.203±0.15 0.137±0.07 0.282±0.09 0.281±0.12

L=2, M=3 0.074±0.05 0.223±0.06 0.203±0.07 0.114±0.07 0.222±0.06 0.270±0.08

L=2, M=4 0.048±0.05 0.260±0.09 0.228±0.08 0.083±0.07 0.305±0.08 0.288±0.06

L=3, M=3 0.112±0.07 0.437±0.08 0.458±0.09 0.166±0.09 0.467±0.07 0.488±0.09

Table 6: Training Time(s) of Various Methods in A Single Execution on Both Datasets.

Method BlogCatalog Flickr Method BlogCatalog Flickr

CFRNet 20.9s 35.3s DRlearner 29.7s 33.9s
NetDeconf 53.9s 101.6s G-HSIC 508.7s 1054.3s

SPNet 460.2s 815.8s CAL 108.8s 204.1s
Graphormer 788.5s 1225.4s RRNet 628.4s 1119.1s

CEVAE 74.0s 106.5s NetEst 1226.5 2125.1s
GraphGPS 66.4s 124.4s SAT 104.3s 225.7s

GDML 8.4s 24.4s UNITE 76.3s 111.7s
CNE 66.5s 105.9s CauGramer 79.7s 155.5s

E.3 TIME COST ANALYSIS

For each experiment, we conduct 10 independent replications to analyze the average running time
(in seconds) for the proposed model in a single execution and compare it to baselines. From the
results in Table 6, we observe that among all transformer-based methods (CAL, SPNet, Graphormer),
CauGramer exhibits the shortest running time (79.7s on BlogCatalog data, 155.5s on Flickr data).
Unlike traditional Transformer variants, which rely on computationally expensive full graph attention
mechanisms through self-attention, CauGramer adopts a more streamlined approach. By redesigning
the computation graph of the Transformer, CauGramer effectively models sequential-structure inter-
ference representations using GCN with cross-attention, bypassing the need for full graph attention
through self-attention. Moreover, compared to the optimal baseline NetEst, CauGramer achieves a
notable speedup, being 12 times faster. This highlights CauGramer’s performance and computational
efficiency in graph-based modeling tasks.

E.4 SUPPLEMENTAL EXPERIMENTS ACROSS VARIOUS INTERFERENCE FORMS

The experiments presented in Tables 2 and 3, as well as Figures 3 and 4, in the main text, have
demonstrated the superiority of CauGramer over existing methods, whether in conventional networked
settings or in generalized networked settings with or without unmeasured confounders, and under
limited budget constraints. To simulate more complex real-world applications, we further conduct
additional experiments on varying interference levels ρ ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}.
We report the estimation errors of Average Total Effect (ATE) and Individual Total Effect
(ITE) of treatment on BlogCatalog and Flickr datasets across varying interference levels ρ ∈
{0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. As shown in Figure 7, as the interference level increases, the pro-
posed CauGramer algorithm consistently outperforms existing methods. When NCs are accessible,
CauGramer(NC) effectively eliminates unmeasured confounding bias, approaching the performance
of CauGramer trained on full data. For causal effect estimation, we notice that all baselines’ errors
increase with higher interference levels. However, CauGramer and its variant CauGramer(NC)
exhibit superior performance in predicting the individual total effects of treatment. Moreover, in
ATE estimation, both CauGramer and CauGramer(NC) remain robust, with errors consistently below
0.1 or 0.05 on the BlogCatalog and Flickr datasets. This demonstrates that our CauGramer can
learn complex intervention representations. By fully embedding peer information, the balancing
constraints and minimax moment constraints provide accurate causal prediction. Consequently, even
under large interference, the proposed CauGramer maintains low estimation errors, showcasing its
causal robustness and effectiveness in mitigating confounding bias.
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Figure 7: Results (ϵAVG and
√
ϵPEHE) of Total Effect Estimation on BlogCatalog and Flickr Datasets

across Varying Intervention Level ρ ∈ {0.2, 0.4, 0.8, 1.0, 1.5, 2.0}.

Table 7: Results of the Proposed CauGramer across Various Interferences: (1) aggregation interference
Jiang & Sun (2022) (Eq. (17): τi = 1

|Ni|
∑

j∈Ni
tj) ; (2) interaction interference (Eq. (20): τi =

1
|Pi|

∑
j∈Pi

tj ∗ ∥xi − xj∥22); (3) external interference (Eq. (21): τi = 1
|Pi|

∑
j∈Pi

sin(tj ∗ ∥xj∥22)).

BC Interference AME APE ATE IME IPE ITE
SPNet Eq. (17) 0.066±0.04 0.223±0.10 0.203±0.10 0.100±0.05 0.230±0.10 0.213±0.09

NetEst Eq. (17) 0.076±0.02 0.078±0.02 0.065±0.03 0.099±0.03 0.092±0.01 0.117±0.01

CauGramer Eq. (17) 0.054±0.03 0.034±0.03 0.039±0.04 0.075±0.07 0.044±0.02 0.063±0.04

SPNet Eq. (20) 0.083±0.06 0.212±0.11 0.243±0.11 0.131±0.07 0.246±0.10 0.279±0.10

NetEst Eq. (20) 0.089±0.03 0.077±0.02 0.109±0.03 0.147±0.03 0.145±0.01 0.173±0.02

CauGramer Eq. (20) 0.073±0.06 0.057±0.04 0.045±0.04 0.090±0.05 0.118±0.02 0.125±0.01

SPNet Eq. (21) 0.121±0.06 0.273±0.09 0.273±0.10 0.179±0.08 0.283±0.09 0.284±0.10

NetEstimator Eq. (21) 0.083±0.04 0.064±0.01 0.072±0.02 0.121±0.05 0.078±0.01 0.108±0.02

CauGramer Eq. (21) 0.063±0.07 0.039±0.02 0.052±0.03 0.108±0.09 0.051±0.02 0.074±0.03

Flickr Interference AME APE ATE IME IPE ITE
SPNet Eq. (17) 0.054±0.03 0.121±0.05 0.131±0.05 0.079±0.05 0.131±0.05 0.142±0.05

NetEst Eq. (17) 0.063±0.04 0.055±0.03 0.073±0.05 0.095±0.05 0.070±0.03 0.105±0.05

CauGramer Eq. (17) 0.028±0.03 0.019±0.01 0.032±0.02 0.047±0.04 0.032±0.01 0.051±0.02

SPNet Eq. (20) 0.096±0.06 0.166±0.07 0.203±0.08 0.147±0.07 0.213±0.06 0.252±0.07

NetEst Eq. (20) 0.069±0.05 0.067±0.05 0.123±0.07 0.136±0.06 0.156±0.03 0.185±0.05

CauGramer Eq. (20) 0.058±0.05 0.030±0.03 0.025±0.03 0.096±0.06 0.111±0.01 0.125±0.01

SPNet Eq. (21) 0.088±0.04 0.202±0.05 0.204±0.04 0.136±0.05 0.219±0.05 0.223±0.04

NetEstimator Eq. (21) 0.060±0.04 0.073±0.02 0.073±0.04 0.102±0.04 0.093±0.02 0.114±0.02

CauGramer Eq. (21) 0.057±0.02 0.010±0.01 0.046±0.01 0.097±0.03 0.040±0.00 0.086±0.02

Additionally, in Tables 2 and 3, we simulate two different forms of interference using Eqs. (17)
and (20). Eq. (17) represents aggregation interference, commonly used in traditional networked
interference works (Cai et al., 2023; Jiang & Sun, 2022; Ma & Tresp, 2021). Eq. (20) simulates
heterogeneous interaction interference, based on the difference between self-attributes and peer
attributes within the k-hop subgraph. In this section, we simulate an external interference using only
peer information within the k-hop subgraph, mimicking constant external influences:

τ IPE
i =

1

|Pi|
∑
j∈Pi

tj ∗ ∥xj∥22, (21)

We integrate experiments across various interference forms (Eqs. (17), (20), and (21)) into Table 7.
Under various interference forms, the proposed CauGramer remains the best method for estimating
the main effects, peer effects, and total effects of treatment.
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Table 8: Results of the Proposed CauGramer under Various Unmeasured Confounders (UCs). Differ-
ent subscripts on x[··· ] denote masked variables, while NULL indicates all variables are observable.

BC UCs AME APE ATE IME IPE ITE
CauGramer(UC) x[1,3,5,7,8,9] 0.128±0.10 0.073±0.04 0.094±0.04 0.182±0.14 0.131±0.02 0.166±0.04

CauGramer(UC) x[1,3,5,7] 0.111±0.07 0.074±0.03 0.080±0.04 0.167±0.10 0.125±0.02 0.157±0.03

CauGramer(UC) x[6,7,8,9] 0.111±0.07 0.074±0.04 0.087±0.06 0.163±0.09 0.127±0.02 0.162±0.04

CauGramer(UC) x[8,9] 0.109±0.07 0.067±0.04 0.077±0.05 0.159±0.10 0.125±0.02 0.149±0.03

CauGramer(NC) x[1,3,5,7,8,9] 0.092±0.06 0.068±0.02 0.057±0.04 0.134±0.08 0.122±0.02 0.134±0.03

CauGramer(NC) x[1,3,5,7] 0.099±0.06 0.047±0.03 0.061±0.04 0.148±0.08 0.109±0.01 0.137±0.03

CauGramer(NC) x[6,7,8,9] 0.085±0.07 0.057±0.03 0.062±0.05 0.138±0.10 0.123±0.02 0.137±0.03

CauGramer(NC) x[8,9] 0.092±0.07 0.055±0.03 0.047±0.03 0.139±0.09 0.117±0.02 0.129±0.02

SPNet NULL 0.083±0.06 0.212±0.11 0.243±0.11 0.131±0.07 0.246±0.10 0.279±0.10

NetEst NULL 0.089±0.03 0.077±0.02 0.109±0.03 0.147±0.03 0.145±0.01 0.173±0.02

CauGramer NULL 0.073±0.06 0.057±0.04 0.045±0.04 0.090±0.05 0.118±0.02 0.125±0.01

Flickr UCs AME APE ATE IME IPE ITE
CauGramer(UC) x[1,3,5,7,8,9] 0.082±0.04 0.055±0.03 0.080±0.04 0.125±0.06 0.124±0.01 0.153±0.01

CauGramer(UC) x[1,3,5,7] 0.096±0.04 0.062±0.01 0.065±0.04 0.140±0.06 0.130±0.01 0.155±0.01

CauGramer(UC) x[6,7,8,9] 0.153±0.05 0.063±0.03 0.071±0.06 0.220±0.07 0.127±0.02 0.159±0.04

CauGramer(UC) x[8,9] 0.091±0.07 0.067±0.02 0.056±0.04 0.141±0.08 0.128±0.01 0.150±0.02

CauGramer(NC) x[1,3,5,7,8,9] 0.081±0.03 0.035±0.02 0.051±0.02 0.124±0.04 0.114±0.01 0.140±0.01

CauGramer(NC) x[1,3,5,7] 0.063±0.03 0.038±0.02 0.062±0.06 0.101±0.03 0.115±0.01 0.146±0.04

CauGramer(NC) x[6,7,8,9] 0.067±0.03 0.034±0.01 0.043±0.01 0.110±0.03 0.113±0.00 0.134±0.01

CauGramer(NC) x[8,9] 0.073±0.05 0.038±0.02 0.032±0.03 0.107±0.06 0.112±0.02 0.127±0.01

SPNet NULL 0.096±0.06 0.166±0.07 0.203±0.08 0.147±0.07 0.213±0.06 0.252±0.07

NetEst NULL 0.069±0.05 0.067±0.05 0.123±0.07 0.136±0.06 0.156±0.03 0.185±0.05

CauGramer NULL 0.058±0.05 0.030±0.03 0.025±0.03 0.096±0.06 0.111±0.01 0.125±0.01

E.5 SUPPLEMENTAL EXPERIMENTS ACROSS VARIOUS FORMS OF LATENT VARIABLES

In the presence of unmeasured confounders (UCs), we propose using bridge functions of negative
control variables (minmaxE[q(z,x, t)·(y−ŷ(w,x, t))] in Eq. (14)) to generalize the unconditional
maximum moment optimization in Eq. (11) as minmaxE[q(r(x), t) · (y − ŷ(r(x), t))]. This
extends our CauGramer to CauGramer(NC) for settings with latent variables. Then, we mask
different variables (x[8,9], x[6,7,8,9], x[1,3,5,7], x[1,3,5,7,8,9]) from the observational data, where the
subscripts x[··· ] denote masked variables, to simulate various unmeasured confounders settings. The
results in Table 8 demonstrate the superiority of CauGramer(NC). Even with more than five latent
variables, the estimation error of CauGramer(NC) remains lower than that of the two most competing
methods, SPNet and NetEst.

E.6 SUPPLEMENTAL EXPERIMENTS WITH MORE GRAPH TRANSFORMER BASELINES

We further conduct comparisons with four competing graph Transformer methods, including SAT
(Chen et al., 2022), GraphGPS (Rampášek et al., 2022), CAL (Sui et al., 2022), and Graphormer
(Ying et al., 2021), and reported ϵAVG of AME, APE and ATE and

√
ϵPEHE of IME, IPE and ITE on

the BlogCatalog (BC) and Flickr datasets in the Table 9.

• SAT (Chen et al., 2022) incorporates structural information into self-attention by extracting
a subgraph representation rooted at each node before computing attention.

• GraphGPS (Rampášek et al., 2022) proposes a hybrid MPNN+Transformer architecture, in
which we use GCNs to support the MPNNs.

• CAL (Sui et al., 2022) designs two soft mask graphs for node attention and edge attention
and conducts implicit backdoor adjustment for graph tasks.

• Graphormer (Ying et al., 2021) integrates the encoder of Transformer (Vaswani et al., 2017)
into node, edge, and graph embedding learning for graph tasks.
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Table 9: More Baselines Combining Transformer and GCN. For the sake of fairness, we add a
deconfounder module (+Deconf) to these frameworks for treatment effect estimation.

BlogCatalog(BC) AME APE ATE IME IPE ITE
Graphormer+Deconf 0.068±0.02 0.365±0.02 0.362±0.08 0.153±0.03 0.394±0.02 0.418±0.08

CAL+Deconf 0.151±0.03 0.308±0.05 0.364±0.07 0.230±0.04 0.333±0.06 0.385±0.07

GraphGPS+Deconf 0.091±0.09 0.195±0.013 0.247±0.17 0.142±0.12 0.224±0.17 0.279±0.22
SAT+Deconf 0.176±0.15 0.102±0.08 0.188±0.15 0.251±0.17 0.155±0.07 0.305±0.19

CauGramer 0.073±0.06 0.057±0.04 0.045±0.04 0.090±0.09 0.118±0.02 0.125±0.01

Flickr AME APE ATE IME IPE ITE
Graphormer+Deconf 0.055±0.03 0.421±0.02 0.388±0.02 0.112±0.03 0.482±0.02 0.465±0.01

CAL+Deconf 0.109±0.04 0.340±0.05 0.365±0.05 0.177±0.06 0.388±0.05 0.402±0.06

GraphGPS+Deconf 0.138±0.14 0.261±0.06 0.325±0.26 0.199±0.19 0.307±0.06 0.362±0.000

SAT+Deconf 0.089±0.08 0.211±0.05 0.178±0.09 0.168±0.13 0.259±0.05 0.294±0.18
CauGramer 0.058±0.05 0.030±0.03 0.025±0.03 0.096±0.06 0.111±0.01 0.125±0.01

Table 10: Recent Baselines on Networked Datasets.

BlogCatalog(BC) AME APE ATE IME IPE ITE
DRLearner 0.196±0.07 0.183±0.03 0.099±0.07 0.544±0.03 0.216±0.03 0.529±0.02

GDML 0.166±0.06 0.371±0.06 0.537±0.09 0.265±0.08 0.411±0.06 0.607±0.10

GDML w/o FSet 0.069±0.04 0.344±0.04 0.412±0.04 0.152±0.04 0.384±0.04 0.471±0.04

UNITE 0.069±0.00 0.345±0.01 0.263±0.00 0.194±0.00 0.346±0.08 0.269±0.01
CauGramer 0.073±0.06 0.057±0.04 0.045±0.04 0.090±0.09 0.118±0.02 0.125±0.01

Flickr AME APE ATE IME IPE ITE
DRLearner 0.135±0.08 0.216±0.02 0.131±0.07 0.529±0.02 0.264±0.02 0.547±0.02

GDML 0.239±0.08 0.381±0.02 0.620±0.08 0.359±0.10 0.448±0.02 0.716±0.09

GDML w/o FSet 0.067±0.04 0.363±0.07 0.428±0.09 0.174±0.03 0.426±0.07 0.511±0.08

UNITE 0.043±0.00 0.335±0.01 0.297±0.00 0.212±0.00 0.335±0.01 0.287±0.01
CauGramer 0.058±0.05 0.030±0.03 0.025±0.03 0.096±0.06 0.111±0.01 0.125±0.01

For the sake of fairness, we add a deconfounder module (+Deconf) to these frameworks for treatment
effect estimation. The results in Table 9 demonstrate the superiority of CauGramer, which achieves
the best performance across all metrics on both datasets.

E.7 FURTHER DISCUSSION ON RECENT BASELINES ON NETWORKED DATA

In this subsection, we further discuss the comparisons with four competing non-i.i.d. methods
on networked data, including DRLearner (Leung & Loupos, 2022), GDML and GDML w/o FSet
(Khatami et al., 2024), and UNITE (Lin et al., 2024). Then we reporte ϵAVG of AME, APE and ATE
and
√
ϵPEHE of IME, IPE and ITE on the BlogCatalog (BC) and Flickr datasets in the Table 10.

From Table 10, we have the following observations: (1) DRLearner performs well for population-level
estimates but exhibits significant errors in individual-level estimates. This is because Doubly Robust
methods were originally designed to address confounding bias at the population level, rather than
to capture fine-grained individual-level heterogeneity. (2) GDML relies on a focal set where all
units’ neighborhoods are non-overlapping. To construct the focal set, we randomly select a node,
remove it along with its second-order neighbors, and repeat this process until no more nodes can
be added. However, in densely connected graphs, the focal set contains very few nodes. On the
two datasets we used, the focal set for GDML included only about 100 nodes, making it difficult to
achieve accurate causal effect estimation. (3) To address this limitation, we provided an additional
baseline, GDML w/o FS, which does not use a focal set and instead encompasses the entire dataset.
While GDML w/o FS performs well in estimating the average main effect, it falls short on the other
five metrics compared to our proposed CauGramer. (4) The UNITE provided by Lin et al. (2024)
only supports the estimation of AME and IME. While UNITE shows a slight improvement over
our method in terms of the Average Main Effect (AME), its performance significantly drops at the
individual level. In contrast, our method consistently excels across all six metrics, demonstrating
a more balanced capability in capturing both average and individual-level effects. These results
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underscore the strengths of CauGramer, particularly its ability to handle complex individual-level
heterogeneity and interference effects while maintaining superior performance across all metrics.

P.S. UNITE (Lin et al., 2024) uses all units features X and treatments T to learn a Graph Structure
Learner (GSL). It then employs two learned outcome predictors to predict treated and control
outcomes. If the inputs are changed, the learned graph structure and its associated weights will
also change, leading to potential additional bias in the fixed outcome predictors without further
assumptions. These results show that UNITE struggles with peer effects (APE/IPE) and total effects
(ATE/ITE) due to changes in the graph structure and its weights, which likely render the fixed
outcome predictors ineffective. Consistent with the original UNITE (Lin et al., 2024) paper, which
focuses on average treatment effects and individual treatment effects, we report only AME and IME
for UNITE in the main text.

F SUPPLEMENTARY RELATED WORK IN NETWORKED INTERFERENCE

Unmeasured Confounders. Our work is related to the unmeasured confounders. As shown in Table
1, CNE (Veitch et al., 2019), NetDeconf (Guo et al., 2020), and SPNet (Huang et al., 2023) only
consider partial unmeasured confounders embedded in the structural network and unit information,
and cannot address the missing key variables, which can influence both treatment and outcomes,
within self-features or peer-features. In our CauGramer, we incorporate bridge moment constraints to
reduce confounding effects. Moreover, when negative controls are available (Miao et al., 2018; Hu
et al., 2023; Shi et al., 2020), CauGramer can extend to address unmeasured confounders by bridges.

Partial Interference. The partial interference, characterized by a partition of units into numerous
disjoint clusters (e.g., households), with interference confined to units (”neighbors”) within the same
cluster, was initially explored in the works of Halloran & Struchiner (1995); Sobel (2006); Hudgens
& Halloran (2008) under random treatment assignments in two-stage randomized experiments.
Following this, a series of works account for nonrandom treatment assignments in observational
data under partial interference (Barkley et al., 2020; Liu et al., 2016; Qu et al., 2021). Rather than
utilizing the framework employing the α-allocation strategy, Qu et al. (2021) define the estimands
under the conditional exchangeability framework and derive the semi-parametric efficiency bound. In
our CauGramer, we relax the partial interference assumption and study heterogeneous interference
effects under an unknown interference graph.

Exposure Mapping. This paper is also related to exposure mapping, which is another general
way to deal with network interference through experimental designs or treatment assignments
(Aronow & Samii, 2017; Tortu et al., 2020). Aronow & Samii (2017) is the first to introduce the
exposure mapping framework, pioneering the estimation of average unit-level causal effects from
randomized experiments under networked interference. The exposure mapping relates treatments
assigned to exposures received based on inverse probability weighting (Aronow & Samii, 2017).
Unlike traditional methods relying on randomized trials (Aronow & Samii, 2017; Owusu, 2023;
Yuan & Altenburger, 2023), Tortu et al. (2020) extend the exposure mapping framework about causal
inference under network interference in observational studies, allowing for multi-valued treatments
and weighted interference networks. While Tortu et al. (2020) proposes a parametric estimation
approach, our CauGramer automatically model unknown interference effects.

Unknown Network Structure. The most related work to our paper are those by Yu et al. (2022);
Cortez et al. (2022). Under unknown network structure, Yu et al. (2022) propose a simple estimator
and an efficient randomized design for total treatment effect estimation under a heterogeneous linear
interference model (Eckles et al., 2017). Building on this, Cortez et al. (2022) generalize their findings
to polynomial models. In this paper, we propose a CauGramer algorithm to estimate the main effect,
peer effect, and total effect of treatments in observation networked data under an unknown network.
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