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In the supplementary materials, we provide a substantial amount
of content that couldn’t be included in the main text due to space
limitations, which can mainly be divided into three sections: 1)
Method Details. We further elaborate on the details of the pro-
posed method, including proofs of theoretical analyses and pseudo
code of the proposed method. 2) Experimental Setting Details.
More detailed information about the datasets and client partitions
are provided, along with thorough implementation details. 3) Sup-
plementary Experiments. We further demonstrate the perfor-
mance of the proposedmethod through supplementary quantitation
and visualization experiments, such as ablation experiments regard-
ing the number of clients and the use of different diffusion models,
quantitation experiments concerning communication, computation
and privacy, more visualization experiments of synthetic datasets,
privacy-related visualization experiments, etc.

1 METHOD DETAILS
Our method focuses on the diffusion-based OSFL methods [17–19],
following the general framework depicted in Figure 1. The core
idea of such methods lies in the guidance regarding the local data
distribution provided by clients. The server’s DM conducts condi-
tional generation based on this guidance, resulting in the synthetic
dataset complies with the client distributions, which is used to train
the aggregated model. Despite their prevalence, such methods often
lack rigorous theoretical analyses. In the main text, we delve into
the relationship between the synthetic data distribution and the
client distribution and provide theoretical analyses. In this section,
we detail our theoretical analyses and provide the pseudocode of
the proposed method in Algorithm 1 and 2.

1.1 Proofs
In this section, we provide a proof of the theoretical analyses in the
main text, regrading the upper bound of the KL divergence between
the distributions of the synthetic dataset and the client datasets.
Firstly, in section 3.1 of the main text, we introduce an assumption:
for the data distribution of the client’s local dataset 𝑝𝑛 (x) and the
data distribution of the DMs 𝑝𝜖𝜃 (x), we have:

Assumption 1 There exists 𝜆 > 0 such that the Kullback-Leibler
divergence from 𝑝𝑛 (x) to 𝑝𝜖𝜃 (x) is bounded above by 𝜆:

𝐾𝐿(𝑝𝜖𝜃 (x)∥𝑝𝑢 (x)) < 𝜆 (1)

Based on this assumption, considering the KL divergence be-
tween the distributions of the original client dataset 𝑝𝑛 (x) and the
synthetic dataset 𝑝𝜖𝜃 (x|d), which is the conditional distribution of
the DMs conditioned on the trained discriptions d, we have:

Theorem 1 For the distribution of client data 𝑝𝑛 (x) and the condi-
tional distribution 𝑝𝜖𝜃 (x|d) of the DM 𝜖𝜃 conditioned the description
d trained on the clients, we have:

Device

Local Data

Device

Local Data

Device

Local Data

Server Pre-trained
Diffusion Model

Synthetic 
Dataset

Image
Feature

Model
Parameters

Descriptions
Guidance

Figure 1: General framework for diffusion-based FLmethods.

𝐾𝐿(𝑝𝑛 (x)∥𝑝𝜖𝜃 (x|d)) =
∫

𝑝𝑛 (x) log
𝑝𝑛 (x)𝑝𝜖𝜃 (d)
𝑝𝜖𝜃 (d|x)𝑝𝜖𝜃 (x)

𝑑x

< 𝜆 + E(log𝑝𝜖𝜃 (d)) −
∫

𝑝𝑛 (x) log𝑝𝜖𝜃 (d|x)𝑑x (2)

Proof. Firstly, based on the definition of KL divergence, we have:

𝐾𝐿(𝑝𝑛 (x)∥𝑝𝜖𝜃 (x|d)) = −
∫

𝑝𝑛 (x) log
𝑝𝜖𝜃 (x|d)
𝑝𝑛 (x)

𝑑x (3)

Based on the Bayes’ theorem, we have:

𝑝𝜖𝜃 (x|d) =
𝑝𝜖𝜃 (d|x)𝑝𝜖𝜃 (x)

𝑝𝜖𝜃 (d)
(4)

From Eq. 3 and Eq. 4, we have:

𝐾𝐿(𝑝𝑛 (x)∥𝑝𝜖𝜃 (x|d)) = −
∫

𝑝𝑛 (x) log
𝑝𝜖𝜃 (x|d)
𝑝𝑛 (x)

𝑑x

= −
∫

𝑝𝑛 (x) log
𝑝𝜖𝜃 (d|x)𝑝𝜖𝜃 (x)
𝑝𝑛 (x)𝑝𝜖𝜃 (d)

𝑑x

=

∫
𝑝𝑛 (x) log

𝑝𝑛 (x)𝑝𝜖𝜃 (d)
𝑝𝜖𝜃 (d|x)𝑝𝜖𝜃 (x)

𝑑x

=

∫
𝑝𝑛 (x) log

𝑝𝑛 (x)
𝑝𝜖𝜃 (x)

𝑑x +
∫

𝑝𝑛 (x) log
𝑝𝜖𝜃 (d)
𝑝𝜖𝜃 (d|x)

𝑑x

= 𝐾𝐿(𝑝𝑛 (x)∥𝑝𝜖𝜃 (x)) +
∫

𝑝𝑛 (x) log
𝑝𝜖𝜃 (d)
𝑝𝜖𝜃 (d|x)

𝑑x (5)

From Eq. 1 and Eq. 5, we have:

𝐾𝐿(𝑝𝑛 (x)∥𝑝𝜖𝜃 (x|d)) < 𝜆 +
∫

𝑝𝑛 (x) log
𝑝𝜖𝜃 (d)
𝑝𝜖𝜃 (d|x)

𝑑x (6)
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Algorithm 1 Client Description Training
Input: The client datasets D𝑛, 𝑛 = 1, . . . , 𝑁 , a pre-trained DM 𝜖𝜃 ,

text features of categories 𝑓𝑐 , 𝑐 ∈ C𝑛
Output: The descriptions of each category within the clients d𝑛,𝑐
1: for client 𝑛 = 1, . . . , 𝑁 do
2: for category 𝑐 ∈ C𝑛 do
3: d𝑛,𝑐 ← 𝑓𝑐
4: for epoch 𝑖 = 1, . . . , 𝑆 do
5: for x in D𝑛 do
6: x0 := x
7: 𝑡 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚({1, ...,𝑇 })
8: 𝜖 ∼ N(0,I)
9: x𝑡 =

√
𝑎𝑡x0 +

√
1 − 𝑎𝑡𝜖

10: L(x𝑡 , d𝑛,𝑐 , 𝑡) = L𝑀𝑆𝐸 (𝜖, 𝜖𝜃 (x𝑡 , 𝑡 |d𝑛,𝑐 ))))
11: update d𝑛,𝑐
12: end for
13: end for
14: end for
15: end for
16: return the descriptions d𝑛,𝑐 , 𝑛 = 1, . . . , 𝑁 , 𝑐 ∈ C𝑛

, where 𝜆 is defined in Assumption 1. Next, we focus on the integral
term within Eq. 6:∫

𝑝𝑛 (x) log
𝑝𝜖𝜃 (d)
𝑝𝜖𝜃 (d|x)

𝑑x

=

∫
𝑝𝑛 (x) log 𝑝𝜖𝜃 (d)𝑑x −

∫
𝑝𝑛 (x) log𝑝𝜖𝜃 (d|x)𝑑x

= E(log 𝑝𝜖𝜃 (d)) −
∫

𝑝𝑛 (x) log𝑝𝜖𝜃 (d|x)𝑑x (7)

Therefore, from Eq. 6 and Eq. 7, we have :

𝐾𝐿(𝑝𝑛 (x)∥𝑝𝜖𝜃 (x|d)) <𝜆 + E(log𝑝𝜖𝜃 (d))

−
∫

𝑝𝑛 (x) log𝑝𝜖𝜃 (d|x)𝑑x (8)

2 EXPERIMENTAL SETTING DETAILS
In this section, we detail the experimental settings of the proposed
method that couldn’t be elaborated on in the main text due to
the space limitations, primarily comprising three parts: 1) Dataset
Details. 2) Client Partition Details. 3) Implementation Details.

2.1 Dataset Details
Our experiments are conducted on three datasets: DomainNet [8],
OpenImage [4] and NICO++ [20]. DomainNet comprises six do-
mains: clipart, infograph, painting, quickdraw, real, and sketch. Each
domain has 345 categories. Following the partition in FedDISC [17],
according to the hierarchy of categories provided by OpenImage,
OpenImage is partitioned into 20 supercategories, with each su-
percategory comprising 6 fine-grained subclasses, serving as the
six data domains for each category. The detailed partition of Open-
Image is demonstrated in Table 1. NICO++ involves 60 categories,
with each category having six common domains shared across cat-
egories and six unique domains specific to each category. These
two scenarios are respectively referred to as the Unique NICO++

Algorithm 2 Server Image Generation
Input: The Diffusion Model 𝜖𝜃 , the text features of categories 𝑓𝑐 ,

the trained local descriptions d𝑛,𝑐 , 𝑛 = 1, . . . , 𝑁 , 𝑐 ∈ C𝑛
Output: The aggregated model w𝑔 , the synthetic dataset {𝑥𝑛,𝑐𝑖

}.
1: for client 𝑛 = 1, . . . , 𝑁 do
2: for category 𝑐 ∈ C𝑛 do
3: for 𝑖 = 1, . . . , 𝑅 do
4: x𝑇 ∼ N(0,I)
5: for timestep 𝑡 = T, . . . , 1 do
6: 𝜖𝑡 ∼ N(0,I)
7: 𝜖𝜃 (x𝑡 |𝑓𝑐 , d𝑛,𝑐 ) = 𝜖𝜃 (x𝑡 |d𝑛,𝑐 )) + 𝜖𝜃 (x𝑡 |𝑓𝑐 ))
8: update x𝑡−1 with Eq. 6 of the main text
9: end for
10: x̂𝑛,𝑐

𝑖
← x0

11: end for
12: end for
13: end for
14: train the aggregated model w𝑔 with L𝑎𝑔𝑔 (x̂𝑛,𝑐𝑖

, 𝑐).
15: return w𝑔 and {x̂𝑛,𝑐

𝑖
}

(NICO++_U) and Common NICO++ (NICO++_C) datasets. For
instance, in Common NICO++, both the Cat and Dog categories
encompass 6 data domains: autumn, dim, grass, outdoor, rock, and
water. In Unique NICO++, the Cat class comprises 6 unique data
domains: Eating, In Cave, In Mud, Jumping, Maine Cat, andWalking,
while the Dog class comprises 6 distinct data domains: Lying, Pug
Dog, Running, Sticking Out Tongue, Teddy Dog, andWearing Clothes.

The example images of each dataset are presented in figure 2.
As mentioned in the main text, this figure clearly illustrates the
emphases on the partition of data domains across different datasets
is different. DomainNet primarily focuses on image style, Open-
Image concentrates on fine-grained subcategories within each su-
percategory, Common NICO++ prioritizes image backgrounds, and
Unique NICO++ places its emphasis on specific object attributes.
The datasets we employ comprehensively simulate various types of
differences that may exist among clients, thereby further enhancing
the practicality of the proposed method.

2.2 Client Partition Details
Client Partition. The client partitioning is primarily aimed at
reflecting the non-IID of data across various clients. In federated
learning, there are primarily two types of non-IID data: feature
distribution skew and label distribution skew [3]. We address these
two scenarios separately in our client partition. For feature distri-
bution skew, we conduct experiments on all four datasets. For each
dataset, we allocate the six data domains of all categories to six
clients, with each client possessing data from one unique domain
for all categories. Regarding label distribution skew, experiments
are conducted on Common NICO++ and Unique NICO++ datasets.
Each 10 categories of the total 60 categories is grouped, resulting
in six clients. Each client owns all data from 10 categories. As men-
tioned in the main text, there is no data overlap between clients
in all partitions. Therefore, our partitioning maximizes the degree
of non-IIDness among client data and considers various non-IID
scenarios.
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Supercategory Baked Goods Bird Building Carnivore Clothing Drink Fruit Furniture Home appliance Human body
Client0 Pretzel Woodpecker Convenience Store Bear Shorts Beer Apple Chair Washing Machine Human Eye
Client1 Bagel Parrot House Leopard Dress Cocktail Lemon Desk Toaster Skull
Client2 Muffin Magpie Tower Fox Swimwear Coffee Banana Couch Oven Human Mouth
Client3 Cookie Eagle Office Building Tiger Brassiere Juice Strawberry Wardrobe Blender Human Ear
Client4 Bread Falcon Castle Lion Tiara Tea Peach Bed Gas Stove Human Nose
Client5 Croissant Sparrow Skyscraper Otter Shirt Wine Pineapple Shelf Mechanical Fan Human Foot

Supercategory Kitchen Utensil Land Vehicle Musical Instrument Office Supplies Plant Reptile Sports Equipment (Ball) Toy Vegetable Weapon
Client0 Spatula Ambulance Drum Pen Maple Dinosaur Football Doll Potato Knife
Client1 Spoon Cart Guitar Poster Willow Lizard Tennis Ball Balloon Carrot Axe
Client2 Fork Bus Harp Calculator Rose Snake Baseball Dice Broccoli Sword
Client3 Knife Van Piano Whiteboard Lily Tortoise Golf Ball Flying Disc Cabbage Handgun
Client4 Whisk Truck Violin Box Common Sunflower Crocodile Rugby Ball Kite Bell Pepper Shotgun
Client5 Cutting Board Car Accordion Envelope Houseplant Sea Turtle Volleyball Teddy Bear Pumpkin Dagger

Table 1: The client partition on the OpenImage dataset.

DomainNet
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Sketch
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OpenImage
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Couch
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Common NICO++
Cat

Autumn

Dim

Grass

Outdoor

Water

Rock

Unique NICO++
Cat

Eating

In Cave

In Mud

Jumping

Walking

Maine Cat

Figure 2: The example images of used datasets.

The Number of Images. The number of images on each client
is important in our experimental setting, since we need to compare
the performance of the proposed method with Ceiling, the per-
formance ceiling of centralized training, involving the direct com-
parison between the synthetic dataset and original client dataset.
Considering the cost of generation, we set the number of images

generated with the guidance of each description to 30 in most ex-
periments except the ablation experiments about the number of
images in the Section 4.3 of the main text. The total number of
images in each category of the synthetic dataset is 180. To ensure
the fairness in comparing the synthetic dataset with the original
client dataset, the maximum number of images for each category
in each client local dataset is also set to 30, as same as the image
number for each category in each data domain of the synthetic
dataset.

The Number of Clients. Regarding the number of clients, it’s
worth noticing that in FedDEO, each client is entirely independent
of the other clients. When the total number of images of the syn-
thetic dataset is consistent, increasing the number of clients do
not introduce interference between clients and affect the perfor-
mance of the proposed method. Therefore, in the majority of our
experiments, we set the number of clients to 6.

Nevertheless, we still conduct experiments related to the number
of clients to demonstrate the practicality of the proposedmethod for
a large number of clients. Following the commonly used Dirichlet
distribution in partitioning non-IID clients [2], in the feature distri-
bution skew scenario, for the 6 domains of the Common NICO++
and Unique NICO++ datasets, we sample 5, 10, and 30 clients per
domain from 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝛼 = 1.0) according to the categories. Con-
sequently, the total number of clients changes from the original 6
to 30, 60, and 180. The clients simultaneously exhibit feature dis-
tribution skew and label distribution skew. The number of images
in each category of the client local dataset remains 30. To ensure
fairness in comparison across different numbers of clients, the total
number of images in each category of the synthetic dataset remains
180, shifting the number of the generated images guided by each
description from 30 to 6, 3, and 1. For example, when the number
of clients is 180, each description trained on each client guides the
generation of 1 image in the synthetic dataset on the server. We
present detailed experimental results and analysis in the subsequent
supplementary experiments section.

2.3 Implementation Details
In our experiments, we mainly use ResNet-18 [1] as the model
structure of the aggregated model. The pre-trained DM we mainly
used is Stable-diffusion-v1.5 from the HuggingFacemodel repository,
which includes a corresponding CLIP text encoder used in our
method to extract text features 𝑓𝑐 for the name of each category
𝑐 . We also use Stable-diffusion-v2.1 from the HuggingFace model
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Common NICO++
Number of Clients autumn dim grass outdoor rock water average

6 71.03 58.02 73.33 68.53 68.16 63.04 67.01
30 69.37 59.17 73.75 68.44 69.56 63.07 67.22
60 70.48 57.69 72.65 67.18 68.49 63.69 66.69
180 69.13 58.91 72.52 67.64 68.77 62.39 66.56

Unique NICO++
Number of Clients domain 0 domain 1 domain 2 domain 3 domain 4 domain 5 average

6 81.25 86.19 82.94 79.94 83.85 80.27 82.40
30 82.45 86.93 81.79 78.12 81.25 79.81 81.72
60 81.26 85.02 81.51 79.72 82.95 79.32 81.63
180 81.78 85.21 80.60 78.46 82.63 78.98 81.27

Table 2: The ablation experiments regarding the number of
clients on Common NICO++ and Unique NICO++.

repository and the pre-trained Latent Diffusion Model [11] from
Github. The Stable-diffusion-v1.5 and Stable-diffusion-v2.1 are pre-
trained on the LAION-5B dataset [12] and the Latent Diffusion
Model is pre-trained on the LAION-400M dataset [13]. Both datasets
are large-scale image-text paired datasets, covering a wide range
of image distributions encountered in daily life to satisfy Eq. 1.
All experiments are conducted with four NVIDIA GeForce RTX
3090 GPUs. Regarding specific hyperparameters, we use the SGD
optimizer with a learning rate of 10. When the learning rate is
too low, the changes in the descriptions are minimal, making it
challenging to achieve effective learning. As mentioned above, the
number of images 𝑅 generated per descriptor is set to 30, and he
number 𝑆 of training epochs for client descriptors is 10 in most
of our experiments except the related ablation experiments. The
relevant hyperparameters for the diffusion generation process are
set to their default values. The number of inference steps is 50, and
the guidance scale of the generation is 3.

3 SUPPLEMENTARY EXPERIMENTS
We primarily conduct supplementary experiments targeting three
aspects that are not detailed in the main text because of the space
limitation: 1) Ablation Experiments. Experiments regarding the
number of clients and the used pre-trained diffusion models. 2)
Supplementary of the Discussions. Experiments regarding the
discussions in the main text, including experiments on communi-
cation , computation, and privacy. 3) More visualization experi-
ments. Experiments to further illustrate the quality and diversity
of the synthetic dataset.

3.1 Ablation Experiments
As mentioned in the main text, to further demonstrate the perfor-
mance of the proposed method, we conduct ablation experiments
about the number of images in the synthetic dataset, the number
of training epochs for the local descriptions, the used pre-trained
DMs, and the number of clients. The first two types of ablation
experiments are already presented in the main text. In this section,
we focus on discussing the remaining two factors that impact the
performance of the proposed method.

The Number of Clients. Following the experimental setting
in Section 2.2 of the supplementary materials, we conduct ablation
experiments on the number of clients in Common NICO++ and
Unique NICO++ datasets. The experimental results are presented
in Table 2. From the results, it can be observed that increasing the
number of clients has almost no effect on the performance of our

Common NICO++
autumn dim grass outdoor rock water average

SD-v1.5 71.03 58.02 73.33 68.53 68.16 63.04 67.01
SD-v2.1 71.62 58.51 72.56 69.93 69.24 63.16 67.50
LDM 67.82 56.25 69.89 66.45 64.88 60.97 64.37

Unique NICO++
domain 0 domain 1 domain 2 domain 3 domain 4 domain 5 average

SD-v1.5 81.25 86.19 82.94 79.94 83.85 80.27 82.40
SD-v2.1 81.12 86.57 83.7 80.87 84.63 80.94 82.97
LDM 76.21 84.75 81.77 79.93 82.91 79.42 80.83

Table 3: The ablation experiments regarding the used diffu-
sion model on Common NICO++ and Unique NICO++.

Size of Downloaded Files
CLIP-based Federated Fine-tuning FedDISC FGL FedDEO

1.71𝐺𝐵 1.74𝐺𝐵 1.88𝐺𝐵 1.72𝐺𝐵
Table 4: Comparison about the download communication
costs, where CLIP-based Federated Fine-tuningMethods have
different problem settings and are only used for reference.
We directly compare the total size of files that clients need
to download from the server across different methods.

Client Computation Costs (GFLOPS)
CLIP-based Federated Fine-tuning FedDISC FGL FedDEO

493.5 334.73 227.34 365.72
Table 5: Comparison about the client computation costs,
where CLIP-based Federated Fine-tuning Methods have dif-
ferent problem settings and are only used for reference.

method. This is because the proposed method independently treats
each client. Each client trains its local description separately, and
the generation of each image on the server is also guided separately
by each local descriptions. These experimental results further un-
derscore the practicality of the proposed method in scenarios with
a large number of clients.

The Used Diffusion Models. Due to the utilization of the syn-
thetic datasets for training the aggregated model, the pre-trained
diffusion model employed for generating the synthetic datasets
constitutes a crucial component of our method. However, this does
not imply that our method heavily relies on the specific diffusion
model. On the one hand, as mentioned in Section 3.1 of the main
text, we only require some overlap between the diffusion models’
distributions and the client distributions, which is readily achiev-
able with the pre-trained diffusion models fine-tuned on large-
scale image datasets such as LAION-5B [12]. Even if the clients
focus on some professional fields, such as medical images, it is
entirely feasible to pre-train the specialized DMs on the server
firstly. On the other hand, compared to other diffusion-based OSFL
methods [17–19], the process of training client descriptions in our
method serves as an effective means to facilitate the adaptation
of the diffusion model to client data, resembling various federated
fine-tuning methods [9, 14, 16]. Consequently, this significantly
alleviates our method’s reliance on the used diffusion models.
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FID between Different Datasets
Clipart Infograph Painting Quickdraw Real_A Real_B Sketch Synthetic

Real_A 284.39 228.44 221.01 297.37 0 131.48 195.74 133.22

Table 6: Comparison of the FID between datasets.

To substantiate this claim, we conduct ablation experiments on
three commonly used diffusion models, Stable-diffusion-v1.5, Stable-
diffusion-v2.1, and Latent Diffusion Model (LDM). The experimental
results are provided in Table 3. From the table, it is evident that: 1)
Different diffusion models are capable of training high-performing
aggregated models using our method. 2) Despite the utilization of
LDM to train the aggregated models outperforming the Ceiling, its
overall performance is inferior. This is primarily attributed to the
relatively smaller scale of LAION-400Mused during the pre-training
of LDM, resulting in lower overlap with the client distributions. 3)
The best performance is achieved with Stable-diffusion-v2.1, mainly
because, although both Stable-diffusion-v1.5 and Stable-diffusion-
v2.1 are pre-trained on LAION-5B, Stable-diffusion-v2.1 has more
parameters and relatively better generation quality. These results
demonstrate that the proposed method is not limited to the specific
used diffusion model, thereby validating its practicality.

3.2 Supplementary of the Discussions
In the discussion section of the main text, we present quantitation of
the uploaded communication and visualization experiments about
the privacy-sensitive information of the clients. In this section, we
conduct supplementary experiments to further discuss the perfor-
mance of the proposed method in terms of communication costs,
computation costs, and privacy concerns.

Communication Costs. In the main text, we categorize the
communication costs involved in the federated learning into the
upload communication costs and the download communication
costs. We clearly demonstrate that our method exhibits significant
advantages concerning the upload communication costs through
the quantification in the main text. As for downloading, the analysis
in the main text also demonstrate that the download communica-
tion costs introduced by the proposed method is entirely acceptable.
Here, we delve deeper into the discussion regarding the download
communication costs and further prove the performance of the pro-
posedmethod regarding communication. In Table 4, we quantify the
download communication costs in our proposed method and com-
pared it with other federated learning methods based on foundation
models. It is evident from the table that the download communi-
cation cost in FedDEO is less than FGL [19] and FedDISC [17],
which need to download BLIP [5], CLIP [10], and some prototypes,
with almost no difference compared to other CLIP-based federated
fine-tuning methods such as FedAPT [14]. It is worth noting that
lightweight diffusion models have become a major research focus
regarding the diffusion model [6, 7, 21], which can be readily ap-
plied in our method to further reduce the download communication
costs. These results demonstrate the performance of the proposed
method in terms of communication cost.

Computation Costs. As mentioned in the main text, we divide
the computation costs into the server computation costs and the
client computation costs. Regarding the server computation costs,

Common NICO++
𝜇 autumn dim grass outdoor rock water average
0 71.03 58.02 73.33 68.53 68.16 63.04 67.01
0.1 70.45 57.68 73.17 68.21 68.26 62.97 66.79
0.3 68.53 55.02 71.34 62.30 64.39 61.57 63.85
0.5 60.28 49.14 62.80 57.36 58.62 52.47 56.77

Unique NICO++
𝜇 domain 0 domain 1 domain 2 domain 3 domain 4 domain 5 average
0 81.25 86.19 82.94 79.94 83.85 80.27 82.40
0.1 81.5 85.71 82.73 79.74 83.31 80.38 82.22
0.3 77.87 82.22 79.08 75.75 80.86 78.79 79.095
0.5 73.58 75.66 75.01 71.55 76.25 72.43 74.08

Table 7: Ablation experiments of the noised descriptions.

our method is essentially consistent with other diffusion-based
OSFL methods, such as FedDISC, FedCADO, and FGL, hence we
do not perform quantitative comparisons. Although these meth-
ods entail significant server computational costs, in the federated
learning framework, it is typically assumed that the server pos-
sesses sufficient computational resources to complete the model
aggregation task. Therefore, the increase in server computation
costs in the diffusion-based OSFL methods is acceptable. Regarding
clients, although the client computation costs involved in FedDEO
is inevitably higher than that of FedDISC and FGL due to the ne-
cessity of training descriptions on the clients. Since FedDEO fixes
all parameters of the DM and only trains the local descriptions,
the client computation costs of FedDEO is comparable to various
federated fine-tuning methods [9, 14, 16], making it entirely accept-
able, which is demonstrated by the detailed quantitation of client
computational costs in Table 5. Furthermore, there are substantial
researches regarding how to perform the inference and training of
diffusion models in scenarios with severely limited computation
resources, such as on mobile devices [7, 21]. These efforts can also
be readily integrated into our proposed method, effectively reduc-
ing the client computation costs. Therefore, our method does not
exhibit disadvantages in terms of computation costs compared to
other methods.

Privacy Concerns. Based the discussion in the main text regard-
ing privacy, in this section, we make further discussions regarding
the privacy concerns, including the quantitation of the datasets
based on FID, the upload of noised descriptions, and additional
visualization experiments.

To quantify the privacy-leakage risk of the synthetic datasets,
we compared the Frechet Inception Distance (FID) between the
synthetic dataset and the client local datasets for categories that
may contain privacy-sensitive information, such as the "Face" cat-
egory in DomainNet. Specifically, because the "Real" domain is
most relevant to privacy leakage, we divided the dataset of the
"Real" domain into two non-overlapping parts, denoted as Real_A
and Real_B, to represent the FID between the datasets without
privacy leakage but with the same style. And we calculated the
FID between Real_A and datasets from other domains, as well as
the "Real" domain of the Synthetic dataset. Additionally, we collect
photos of the same person with different styles from the internet,
divide these photos into two groups, and compute the FID between
these groups, serving as a threshold for potential privacy leakage.
We conduct several experiments and find that this threshold of FID
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Figure 3: Visualization of samples generated by adding vary-
ing scales of noise to descriptions. Samples within the same
row are generated with the same initial noise.
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Figure 4: The visualization of privacy-sensitive information-
related categories.

is approximately around 80. These results are presented in Table 6.
From the table, it can be observed that the FID between Real_A
and the synthetic dataset is neither too low, which could suggest
the presence of identical images leading to privacy leakage, nor
too high, indicating the generation of images with significantly dif-
ferent styles. These quantitation results demonstrate that with the
guidance of local descriptions, the server can generate the synthetic
dataset complies with the client distributions without leaking the
the privacy-sensitive information.

Furthermore, as a commonly used method to implement differ-
ential privacy [15], we add noise to the local descriptions before
uploading them. To obtain the noised description d̂𝑛,𝑐 from the
trained local description d𝑛,𝑐 , we use the following formula:

d̂𝑛,𝑐 =
d𝑛,𝑐 + 𝜇𝜖
1 + 𝜇 (9)

where 𝜖 is the noise sampled from the standard Gaussian distribu-
tion N(0,I), and 𝜇 is a hyperparameter used to control the scale
of the added noise. We conduct ablation experiments on Common
NICO++ and Unique NICO++ for different 𝜇, and the results are
presented in Table 7. The experimental results show that the minor
scales of noise addition do not significantly affect the guidance
provided by the descriptions. Even with increased scale of noise
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Figure 5: Visualization of generated samples on DomainNet.

addition, the performance of the trained aggregated model is close
to the performance ceiling of centralized training. Additionally, we
visualized the generation results under different 𝜇, as shown in
Figure 3. The results indicate that although increasing the scale
of noise addition result in the partial loss of information in the
descriptions and erroneous guidance, consequently resulting in
relatively indistinct generated images, the descriptions still guide
the diffusion model in generating synthetic data with accurate se-
mantics and predominantly consistent style. These quantitation
and visualization results demonstrate that the proposed method
has strong robustness against noise addition, enabling the differ-
ential privacy through the noise-added local descriptions without
significantly compromising performance.

Besides, similar to the visualization experiments in the main text,
we conduct additional visualization experiments to illustrate the
performance of the proposed method in privacy protection. The
visualization results are shown in Figure 4, further illustrate that the
synthetic datasets only share similar styles and identical semantics
with the original client datasets. It is almost impossible to extract
specific privacy-sensitive information from the descriptions, which
aiming to characterize the overall distribution.
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Figure 6: Visualization of generated samples on OpenImage.

3.3 More Visualization Experiments
Similar to the main text, we conduct additional visualization experi-
ments to illustrate the quality and diversity of the synthetic dataset
generated by the proposed method. The experimental results are
presented in Figure 5, Figure 6, Figure 7, and Figure 8. These vi-
sualizations further illustrate that the generated synthetic dataset
complies with different client distributions when there are differ-
ences in style, subcategory, or background among clients, while
being semantically correct. The synthetic dataset demonstrates
diversity and quality comparable to the original client datasets,
which directly contributes to the performance of the trained aggre-
gated model outperforming the performance ceiling of centralized
training.
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