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Abstract

With the rapid development of large language
models (LLMs), handling long context has be-
come one of the vital abilities in LLMs. Such
long-context ability is accompanied by diffi-
culties in deployment, especially due to the
increased consumption of KV cache. There
is certain work aiming to optimize the mem-
ory footprint of KV cache, inspired by the
observation that attention heads can be cate-
gorized into retrieval heads that are of great
significance and streaming heads that are of
less significance. Typically, identifying the
streaming heads and and waiving the KV cache
in the streaming heads would largely reduce
the overhead without hurting the performance
that much. However, since employing both
retrieval and streaming heads in one layer de-
composes one large round of attention compu-
tation into two small ones, it may unexpectedly
bring extra latency on accessing and indexing
tensors. Based on this intuition, we impose
an important improvement to the identification
process of retrieval and streaming heads, in
which we design a criterion that enforces exclu-
sively retrieval or streaming heads gathered in
one unique layer. In this way, we further elimi-
nate the extra latency and only incur negligible
performance degradation. Our method named
ZIGZAGATTENTION is competitive among con-
sidered baselines owing to reduced latency and
comparable performance.

1 Introduction

In recent years, large language models
(LLMs) (Dubey et al., 2024; Liu et al., 2024)
have demonstrated significant potential across
diverse domains (Chiang et al., 2023). However,
the generation process of LLMs is inherently
sequential. The sequential nature inevitably leads
to substantial serving latency, particularly in
scenarios involving long contexts.

The primary challenge of serving LLMs for long-
context applications lies in the O(n?)—where n

denotes the sequence length—complexity of atten-
tion (Vaswani, 2017). The inference can be divided
into two phases, i.e., prefilling phase and decod-
ing phase. Essentially, in the decoding phase, a
linear increase in memory would be natural due
to the use of the key-value (KV) cache technique,
which stores intermediate representations of previ-
ously seen tokens to reduce latency. In long-context
scenarios, the memory of the KV cache can even
exceed that of the model itself (Liu et al., 2023).

To address the memory burden imposed by KV
cache, numerous approaches have been proposed to
optimize the KV cache from various perspectives.
Among these, DuoAttention (Xiao et al., 2024) is a
very typical representative. DuoAttention intends
to identify retrieval heads (Wu et al., 2024) that
are of great importance for long-context modeling
and streaming heads (Xiao et al., 2023) that are of
less importance, and predominantly waive the KV
cache in the streaming heads. In doing so, DuoAt-
tention has largely preserved the long-context ca-
pabilities of LLMs while improving computational
efficiency.

However, DuoAttention requires processing at-
tention computations twice separately for retrieval
heads and streaming heads within one layer. Un-
fortunately, such separation necessitates additional
memory accessing and introduces unwanted tensor
indexing, leading to increased latency. This over-
head becomes pronounced particularly along the
expansion of context. Based on the intuition, we
propose a valuable rearrangement of the retrieval
and streaming heads. By enforcing either retrieval
or streaming heads mutually exclusive across lay-
ers, we can perform one attention computation at
each layer, thereby avoiding extra latency associ-
ated with redundant memory accessing and tensor
indexing.

On an extensive set of experiments ranging from
LongBench to Needle-in-a-Haystack, our proposed
method ZIGZAGATTENTION achieves competitive



performance while significantly reduced latency.

2 ZIGZAGATTENTION

2.1 Preliminary

To identify retrieval and streaming heads in a LLM,
DuoAttention firstly plugs an importance score
a € [0,1] onto each attention head, secondly
employs a distillation-driven training on a syn-
thetic dataset curated in the form of long-context
passkey retrieval, and finally determines retrieval
and streaming heads based on the descending or-
der of the converged o values and a predefined
quantile.

Specifically, « for each head is initialized to 1,
and constrained to the range [0, 1]. During the train-
ing, it performs attention computation twice in each
forward pass: one using full attention (correspond-
ing to retrieval head), and another using streaming
attention (corresponding to streaming head). This
is formalized as follows:

attention; ; = oy ; - full_attention +
(1 — «y ;) - streaming_attention
ey
where 7 and j denote the layer index and the at-
tention head index within a layer, respectively. A
synthetic dataset is used, with passkeys inserted at
varying depths in the sequence, as the training task.
The distillation-like training objective is formulated

as follows:
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where K represents the dimension of hidden states,
T denotes the total sequence length, and R means
to the response length of the sequence. hgy and
hix refer to the final hidden states from the stan-
dard full attention and the mixed attention com-
puted in Equation 1, respectively. To ensure spar-
sity in «, an additional L regularization term (Tib-
shirani, 1996) is added:
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where L is the number of layers in the model, and
H is the number of attention heads per layer. The
final loss function is formulated as:

Eduo = Edist + /\ﬁreg (4)

where A is a coefficient controlling the impact of
the regularization term. After training, the attention
heads are sorted based on their final « values. By
specifying a custom sparsity quantile, the heads
can be categorized as either full attention (retrieval
heads) or streaming attention (streaming heads).

As we can observe in DuoAttention, if a quantile
is defined to categorize attention heads, different at-
tention heads are likely to coexist within one layer.
This kind of allocation may introduce extra latency
due to the need for separate computations for each
type of attention head.

2.2 Transport Optimization

To alleviate the need of two rounds of attention
computations, we consider the most straightfor-
ward way to achieve so. That is, leveraging the
converged « values from DuoAttention, and defin-
ing the transition from DuoAttention to ZIGZA-
GATTENTION a transport optimization problem.
Provided that the original sparsity (or say the pro-
portion of streaming heads) in DuoAttention is
s, accordingly in ZIGZAGATTENTION, the num-
ber of layers corresponding to all streaming heads
should be p where p/L = s, and the number of
layers corresponding to all retrieval heads should
beq= L —p.

In the transport optimization problem, there is a
operation set O = o; ; comprising of totally L - H
operations need to be carried out, and three op-
erations are defined: 1) maintaining the type of
attention head 0(?), 2) turning a retrieval head to
streaming one o(!), and reversely turning a stream-
ing head to retrieval one o(?). Ideally, shifting from
aretrieval head to streaming head would lead to per-
formance decline, while shifting from a streaming
head would lead to performance boost. Thereby,
the optimization objective is shown below:
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Enumeratively, the number of possible combina-
tions under the subjection p + ¢ = L is (f) Once
one of these combinations is used, then the opera-
tion set O should also be determined. Since (/) is



computationally trackable, we empirically examine
each of them one by one and uncover the one yield-
ing the minimum. w € [0, 1] represents a scaling
factor, which is determined through grid search to
identify its optimal value.

2.3 Fine-tuning for Enhanced Ability

After optimization, we observe that while the per-
formance is comparable to the baseline, optionally,
fine-tuning with minimal training cost can further
enhance performance on certain benchmarks, par-
ticularly retrieval tasks.

For fine-tuning, we adopt the previously used
training scheme in DuoAttention and plug the
layer-wise aus onto layers rather than heads us-
ing the optimal combination from the aforemen-
tioned transport optimization. The fine-tuning
yields ays, which reflects the importance of layers
rather than individual attention heads. By leverag-
ing these trained results, we can sparsify the model
to achieve improved performance.

3 Experiments
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Figure 1: Per token decoding latency. The prefilling
length here is set to 16k, and the decoding length varies
from 1k to 32k.
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Figure 2: Per token prefilling latency. The decoding
length here is set to 1k, and the prefilling length varies
from 1k to 32k.

3.1 Settings

We conduct experiments using the long-context ex-
tension version of the LLaMA-3-8B (Dubey et al.,

2024; Pekelis et al., 2024) model and evaluate
its performance on both long-context and short-
context benchmarks to ensure a comprehensive as-
sessment. For long-context benchmarks, we se-
lect LongBench (Bai et al., 2023) and Needle-in-a-
Haystack (Kamradt, 2024), while for short-context
benchmarks, we choose MMLU (Hendrycks et al.,
2020), BBH (Suzgun et al., 2022), and DROP (Dua
et al., 2019). To evaluate efficiency, we test the
model’s performance across various combinations
of prefilling and decoding lengths to minimize the
impact of measurement errors. The primary train-
ing settings are aligned with those used in DuoAt-
tention.

3.2 Efficiency Results

The results are illustrated in Figure 1, while
DuoAttention demonstrates lower latency and bet-
ter performance compared to the original model,
Z1GZAGATTENTION achieves even lower latency
across all decoding lengths. ZIGZAGATTENTION
achieves up to 37% acceleration in 1k context
length.

Figure 2 compares the per-token prefilling la-
tency between ZIGZAGATTENTION and DuoAt-
tention, since ZIGZAGATTENTION do not modify
the prefilling stage, our method maintains normal
prefilling speed. This confirms that ZIGZAGAT-
TENTION does not introduce additional latency dur-
ing the prefilling stage.

3.3 Long Context Benchmark

For this evaluation, we applied a 50% sparsity level
for the LLaMA-3-8B model and set the sink size
to 128 and window length to 256 for streaming
attention.

LongBench The results for selected datasets are
presented in Table 1, while average scores across
all tasks are shown in Table 2. From Table 1, im-
portantly, there is no significant decline in metrics
compared to the original model, demonstrating that
ZIGZAGATTENTION can effectively manage long-
context situations. As shown in Table 2, ZIGZA-
GATTENTION scores are only marginally lower,
compared to DuoAttention and the original model.

Needle-in-a-Haystack (NIAH) Figure 3 illus-
trates that ZIGZAGATTENTION performs excep-
tionally well across various context lengths ranging
from 40k to 280k tokens. The results indicate that
Z1GZAGATTENTION successfully discards unim-
portant KV caches during inference, without any
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LM-3 26.84  29.32 52.86  40.87 28.86 24.68 34.25 24.58 27.8 71.0 87.7 41.95 1.0 79.0 3791 37.71
DA 2572 2835 49.75 43.28 29.9 23.41 32.34 24.69 28.06 72.0 86.85 41.97 1.5 83.12 3833 395
ZA 22.53 237 49.89 38.53 23.61 21.21 30.62 24.16 27.12 71.0 82.22 40.85 1.0 85.0 4538 447

Table 1: Evaluation results on LongBench. Here "LM-3" refers to the results of LLaMA-3-8B long context extension
version, "DA" refers to DuoAttention, "ZA" refers to ZigZag Attention. The best result except LM-3 in a task is
shown in bold font and the second result is shown with underline.

Method Budget LongBench
LM-3 100% 39.78
DA 50% 39.45
ZA 50% 38.44

Table 2: The average scores on overall LongBench.
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Figure 3: Results on NIAH varies from 40k to 280k.

performance degradation in complex long-context
retrieval tasks.

3.4 Short Context Benchmark

MMLU BBH DROP
Method - Budget 5-shot  3-shot 3-shot
LM-3 100% 62.31 4195 44.18
DA 50% 62.56 42.14 42.07
ZA 50% 62.31 42.03 43.50

Table 3: Evaluation results on MMLU, BBH and DROP
benchmarks.

As shown in Table 3, ZIGZAGATTENTION
demonstrates performance comparable to that of
the base model LL.aMA-3 across these important
benchmarks. This indicates that the ZIGZAGAT-
TENTION mechanism does not impair the model’s
basic capabilities.

3.5 Ablation Study

Impact of w Changes in w can alter the combi-
nation of layers, potentially affecting the model’s
performance in long-context situations and bench-
marks. Specifically, when w is set to 0.2, 0.3, or

w  Budget LongBench
0.1 50% 38.44
0.5 50% 37.59
0.6 50% 37.08
0.7 50% 37.05
0.8 50% 35.27
09 50% 36.02

Table 4: The average scores on overall LongBench.

0.4, the final combinations are identical to those
obtained with w = 0.1. In Table 4, it is evident
that w = 0.1 yields the optimal combination with
the best performance across multiple tasks in long-
context benchmarks.
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Figure 4: Results for after training in ZA. We success-
fully extent the context length to 600k.

Context Length Extension with Fine-tuning
As shown in Figure 4, the fine-tuning allowed us
to extend the context length from 280k tokens to
600k tokens with minimal additional training.

4 Conclusion

In this paper, we introduced ZIGZAGATTENTION,
a method built upon DuoAttention and designed
to address the challenges of handling long-context
situations. Our results demonstrate that ZIGZA-
GATTENTION achieves performance comparable
to the original model, indicating that it can sig-
nificantly lower latency without degrading model
capabilities.



Limitations

In this paper, we propose ZIGZAGATTENTION to
accelerate model inference. However, the current
method has certain limitations. In terms of effi-
ciency, the speedup ratio decreases for longer de-
coding lengths compared to shorter ones, resulting
in less significant performance improvements. For
retrieval tasks, ZIGZAGATTENTION achieves an
overall score of around 0.9 but still exhibits per-
formance degradation relative to other methods.
Nevertheless, these limitations highlight key areas
for further analysis and provide a clear direction
for future research.
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