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A.1 Summary

Table 4: Abbreviation.

of Abbreviation and Notation

Table 5: Notation.

MFGs Mean-Field Games t time coordinate
SB Schrodinger Bridge s reversed time coordinate
DeepRL Deep Reinforcement Learning u(t,z)  value function
PDEs Partial Differential Equations p(t,z)  marginal distribution
HIB Hamilton-Jacobi-Bellman P0, Prarger  1Nitial/target distributions
FP Fokker-Plank H Hamiltonian function
SDEs Stochastic Differential Equations F MF interaction function
FBSDEs Forward-Backward SDEs f MF base drift
IPF Iterative Proportional Fitting o diffusion scaler
MF interaction Mean-field interaction (U, \f;) solution to SB PDEs
nonlinear FK  nonlinear Feynman-Kac (Y, Z) nonlinear FK of ¥
TD Temporal Difference (f/’ 2) nonlinear FK of ¥
TD, TD target for Yy
ﬁt TD target for }A’t
0 Parameter of Y (and Z)
10} Parameter of Y (and 7 )

A.2 Review of Nonlinear FK Lemma and SB-FBSDE

Lemma 5 (Nonlinear Feynman-Kac Lemma [18, 44, 45]). Let v = v(z,t) be a function that is twice
continuously differentiable in x € R and once differentiable int € [0,T), i.e., v € C>1 (R, [0, T)).
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Consider the following second-order parabolic PDE,

v + 1Tr(v% Gz, t)G(z,t) ")+ Vo f(z,t) + h(z,v,G(z,t) Vo, t) =0, v(T,z) = p(z),

ot 2
19)

where V2 denotes the Hessian operator w.r.t. = and the functions f, G, h, and o satisfy proper
regularity conditions. Specifically, (i) f, G, h, and ¢ are continuous, (ii) f(x,t) and G(z,t) are
uniformly Lipschitz in x, and (iii) h(z,y, z, t) satisfies quadratic growth condition in z. Then, (19)
exists a unique solution v such that the following stochastic representation (known as the nonlinear
Feynman-Kac transformation) holds:

Y: = v(Xy, t), Zy = G(Xy,t) " V(X 1), (20)
where (X;,Y}, Zi) are the unique adapted solutions to the following FBSDEs:
dX; = f( Xy, t)dt + G( Xy, t)dWe, X = xo,
dY; = —h(Xy, Vs, Zy, t)dt + Z] AWy, Yo = o(X7).
The original deterministic PDE solution v(z,t) can be recovered by taking conditional expectations:
E [V}| X: = 2] = v(z, ), E[Z| X, = 2] = G(z,t)  Vo(x,1).

2n

Lemma 5 establishes an intriguing connection between a certain class of (nonlinear) PDEs in (19) and
FBSDEs (21) via the nonlinear FK transformation (20). In this work, we adopt a simpler diffusion
G(z,t) := o as a time-invariant scalar but note that our derivation can be extended to more general
cases straightforwardly.

Viscosity solution. Lemma 5 can be extended to viscosity solutions when the classical solution
does not exist. In which case, we will have v(z, t) = lim._,~ v¢(x,t) converge uniformly in (z, )
over a compact set, where v¢(z,t) is the classical solution to (19) with (f., G, he, ) converge
uniformly toward (f, G, h, ¢) over the compact set; see [18, 59, 60] for a complete discussion.

SB-FBSDE [27].  SB-FBSDE is a new class of generative models that, inspiring by the recent
advance of understanding deep learning through the optimal control perspective [61-63], adopts

Lemma 5 to generalize the score-based diffusion models. Since the PDEs (%—'f, %—%’) appearing

in the vanilla SB (4) are both of the parabolic form (19), one can apply Lemma 5 and derive the
corresponding nonlinear generators h. This, as shown in SB-FBSDE [27], leads to the following
FBSDEs:

dXt = (ft + O'Zt) dt + O'th (223)
1
dYi = 2|1 Z:[*dt + 2, dW; (22b)
~ 1 ~ ~ ~ N
dy, = <2||Zt||2+V~(UZtft)+ZtTZt> dt + Z,"dw, (22¢)

Further, the nonlinear FK transformation reads
Y: = log ¥(Xy,1), Zy =0 Veg U(Xy,1),
Y, =logU(Xy,t),  Zy =0 Vieg¥(X,,t),
which immediately suggests that
E[Y;|X; = 2] =log U(z,t),  E[Y;|X; = 2] =log ¥(x,t). (23)

It can be readily seen that (22) is a special case of our Theorem 2 when the MF interaction F'(z, p),
which plays a crucial role in MFGs, vanishes. Since SB-FBSDE was primarily developed in the
context of generative modeling [64], its training relies on computing the log-likelihood at the

boundaries. These log-likelihoods can be obtained by noticing that log p(x,t) = E[Y; + Y, | X = ],
as implied by (23) and (8). When Z,(X,,t) ~ Z; and Zy(X,, s) = Zs, the training objectives of
SB-FBSDE can be computed as the parametrized variational lower-bounds:

log po(¢: ) > Lipr(9) = EY + V| X, = vt = 0] = / E[av! +dV7Xo =], 4

t

log pr(0;2) > Lipe(0) := E[Y? + Y2 |X, = 2,5 =0] = /IE [dyf +dY? Xy = x] . (24b)

S
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Invoking (22) to expand the rA.s. of (24) leads to the expression in (6):

T 1 B _ L ~
Lipr(0) = / Egn) [2||29<Xs,s>||§ + Zp(Xe8) " Z5(Xa8) + V- (0Zp(Xs, s>+f>] as,
0

T
re(0) = [ B 5126060018 + Zo(Xi ) Z0(Xe.t) 4 - (0Z4(Xes0)-1) | at

Since (24) concern only the integration over the expectations, i.e., f E[dY + df’], the solutions
(Y3, Y}) to the SDEs (22b, 22¢) were never computed explicitly in SB-FBSDE, This is in contrast to
our DeepGSB, which, crucially, requires computing (Y3, Y;) explicitly and regress their values with

~

TD objectives, so that the stochastic dynamics of dY and dY” are respectively respected.

A.3 Proofs in Main Paper

Throughout this section, we will denote the parameterized forward and backward SDEs by
dX? = (f; + 0Zo(X7 1)) dt + odW, (25a)
dX¢ = (— fo+ 02¢(Xj’,t)> ds + odWs, (25b)

and denote their time-marginal densities respectively as ¢? and ¢?.

A.3.1 Preliminary

We first restate some useful lemmas that will appear in the proceeding proofs.
Lemma 6 (It6 formula [46]). Let X; be the solution to the It6 SDE:

dX; = f(X¢, t)dt + o(Xy, t)dW.
Then, the stochastic process v(Xy,t), where v € C*1(R%,[0,T)), is also an Ité process satisfying

X 1
dv(X,,t) = de Vv(Xt,t)Tf+§Tr [0 TV20(Xy, t)o] | dt + [Vo(Xy, t) o] dW.

ot
(26)
Lemma 7. The following equality holds at any point x € R™ such that p(x) # 0.

]%Ap(l’) = [ Vilogp(z)||* + Alogp(x)

Proof. ﬁAp(x) = ﬁv - Vp(z) = ﬁv - (p(x)V1ogp(x)). Applying chain rule to the

divergence yields the desired result. O

Lemma 8 (Vargas [38], Proposition 1, Sec 6.3.1).

6 7 AN o 1 612 6T
dloggl = |V - (UZ¢—ft) +U(ZQ+Z¢) Viogq — §HJV10gqt || dt + oV 1ogqf dW;.

Proof. Invoking Ito lemma w.r.t. the parameterized forward SDE (25a),

dlog ¢ T 2 T
dlogq? = l ;;qt +Viogq (fi+0Z)+ %Alogqf’ dt + oVlogq! dW,,
where 21997 ghe Eq 13.4 in Nelson [65]):
5 ys (see Eq 13.4 in Nelson [65]):
dq? ~ o?
7672 =-V- ((UZ¢ - ft) q,?) + KAQ?
Olog qf) ~ ~ T é 02Aqf
. (0Z¢ —ft) n (az¢ —ft) Viogg? — R
Substituting the above relation yields the desired results. O
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Proposition 9 (Vargas [38], Proposition 1 in Sec 6.3.1).
T 1 ~ R
DKL(q0Hq¢) = / ]qu |:2|Z¢ + Z‘9H2 +V: (UZ¢ - ft):l dt + qu [log pO] - Eq% [1Og ptarget]
0

Proof. Recall that the parametrized backward SDE (25b) can be reversed [64, 66] as
dx? = (ft —0Z4(X{,t) + 02V log ¢® (X7, t)) dt + odW,.

Then, we have

Dx1(¢°]14%)

T
1 ~
= / Eg [2||Z¢ + Zo — UVlOngHQ] dt + Dk (pollgf—o)
0

T
1, = 1
— [ By 3120+ 201?02+ 20" o + oV 10g4? 1P] dt+ Dis ol
0

T T

—

+ Dxx.(pollafo)

T
1, - ~
= /0 Ege [2||Z¢ + Zo|2+ V- (JZ¢ — ft)] dt + E s [log po] — Ego. [log prarget] »

where (*) is due to Lemma 8. O

A.3.2 Proof of Lemma 1

Proof. Substituting Lipr(¢) into Proposition 9 and dropping all terms independent of ¢ readily yields
Dx1.(¢%]|¢®) o< Lipr(¢). A similar relation can be derived between Dxr,(¢%||¢?). O

Remark (an alternative simpler proof). Suppose (Zy, ¢?) and (an q°) satisfy proper regularity
such that V¢, s € [0,T], Tk > 0: ¢°(x,t) = O(expI7I¥), ¢%(z, 5) = O(exp~I17Ii) as z — .
Then, an alternative proof using integration by part goes as follows: Recall that the parametrized
forward SDE in (25a) can be reversed [64, 66] as

dX? = (—fs — 0Zy(X!,s) + 0°Viog ¢’ (X, 5)) ds + odW,.
Then, the KL divergence can be computed as
Dxu(q”ll?)

)

T
1 -
= Eg [/ @H(J'Z(b +0Zy — a*Viog¢f|*ds| + DKL(qg:()”ptarget) 27

0
T 1.z 2 2 T 9, 1 0112 0

= / Bqo |31 Z6 + Zol* = 0(Zs + Z5) " Viog ! + 5 0V log ¢?*| ds + Dice. (45| prree)
0
T 1.2 >T 7T 0

:/0 Eqo [2||Z¢||2+Z¢ ZgUZQ,)Vlogqs} ds+0O(1)

T
®ok 1 = 7 7
(=) /O Eo [2||Z¢||2 + 2y Zo+oV - Z} ds +O(1),

X ﬁlPF(¢)

where (*) is due to the Girsanov’s Theorem [67] and (**) is due to integration by parts. O(1) collects
terms independent of ¢. Notice that the boundary terms vanish due to the additional regularity
assumptions on ¢¥ and ¢®. Similar transformations have been adopted in e.g., Theorem 1 in Song
et al. [68] or Theorem 3 in Huang et al. [69].
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A.3.3 Proof of Theorem 2
Proof. Apply the 1td formula to v := log W(X,, t), where X follows (3a),

Olog ¥
ot

2
dlog U = dt + [Vlog U (f+0°Viog V) + %Alog\lf dt 4+ oV log U TdW;,

and notice that the PDE of 812,7%\1’ obeys

Jdlog¥ 1 T o? B T o? , 02
&—\II(—V\II ff?A\I/—i—F\II = —VlogV¥ ff?HVlog\I/H f?Alogj\I/—i-F.
This yields

1
dlog ¥ = [20V10g %+ F] dt + oVlog U dW,. (28)

Now, apply the same Itd formula by instead substituting v := log ‘i'(Xt, t), where X; follows (3a),

2

dlog U ~ - -
e A T [v1ogqﬁ(f+02v1og\1/)+"2Alogqf] At + oV log U T dW;,

dlog U =
8 ot

and notice that the PDE of 2 13% ¥ obeys

310g\fl 1 ~ o2 - -
(v (@ + T AT - FT
s (v @ne g )

=~ o2 =~ o2 =~
= Vieg¥U ' f—-V-f+ ?\\Vlog\I/HZ + 5 Alog ¥ — F.
This yields

~ 2 o~ ~ ~ o~
dlog U = [—v f+ %HVIog\I/Hz +02Viog W Vieg ¥ + 02Alog U — F} dt +oVleg U dW,

~ 2 o~ ~ —~
= [v (0*V1og W — f) + %HVlog\I/Hz +0*Viog VU Viog ¥ — F} dt + oV log U dW;.
(29)

Finally, with the nonlinear FK transformation in (10), i.e.,
Y: =Y (X4, t) = log U (X4, 1), Zy = Z(X,t) = 0 Vieg U (X4, t),
Y, =Y(Xy,t) =logU(Xy,t),  Zy=Z(Xy,t) =0 Vieg U(X,, t),
we can rewrite (3a, 28, 29) as the FBSDEs system in (11).

dXt = (ft + O'Zt)dt + O'th

1
dy; = |:2Zt||2 + Ft] dt + z,dw,

. 1 - N . .
4y, = {QZtII2 V2 2+ V- (azt - ft) - Ft] +ZTaw,

where

foi= f(Xpexp(Yi+Y2),  Fri= F(X,exp(Yy 4 7).

Derivation of the second FBSDEs system in (12) follows a similar flow, except that we need to rebase
the PDEs (9) to the “reversed” time coordinate s := 1" — t. This can be done by reformulating the
HJB and FP PDE:s in (7) under the s coordinate, then applying the following Hopf-Cole transform:

o~

U(z,s) :=exp(—u(z,s)), U(z,s):=p(z,s)exp(ul(x,s)). (31)
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Notice that we flip the role of \fl(:m s) and U(z, s) as the former now relates to the policy appearing
in (3b). Omitting the computation similar to Appendix A.4.1, we arrive at the following:

(’7 O)\I/(~, 0) = Prarget

32
(YU T) = o ¢

D) VYT~ AT+ FE 0
QMes) _ . (Uf) + Lo?AU - FO U
Apply the Itd formula to v := log (X, s), where X, evolves along the reversed SDE (3b).

log ¥
dlogV¥ = dlog
s

- 2
ds + {V log W (—f +0%Viog V) + %Alog \I'} ds +oVlog U dW,,

and notice that the PDE of 2 lgf Y now obeys

dlog® 1 o?
-3 <V~(\Ilf)+2A\I/—F\II)

2 2
= VigU f+ V- f+ %HVloglllﬂz—F %Alog\l/—F.

This yields
2 ~
dlog U = [v f+ %HVlog |2+ 02Viog ¥ 'Viog ¥ + 02Alog ¥ — F} ds +oVleg U dW,
2 ~
— [v (f+0*Viog V) + %||Vlog\11||2 +0*V1og ¥ 'Vieg ¥ — F} ds + oVlog 0 dW,.
(33)

Similarly, apply the It6 formula to v := log (X, s), where X, follows the same reversed SDE (3b).

log T
S

dlog\i = 0

2
ds + [V logU T (—f 4+ c*Vieg ¥) + %Alog \If} ds +oVleg U dW,,

and notice that the PDE of 6137%\1/ obeys

dlogl 1 [_~ 2 ~ 2 o o2 _
B == (V\I/Tf - (TQA\IJ—i—F\I/) = Vieg T f — %HVIOg\DHZ— %Alog\IJ—FF.

Os U
This yields

~ 1 ~ ~
dlog¥ = [2||UV10g w2 +F] ds + oVlog U dW,. (34)

Finally, with a nonlinear FK transformation similar to (10),

Ys = Y(sts) = IOg\I/(XsaS)7 Zs = Z(sts) =0 Vlog\l’()_(sa S)a

~ ~ _ ~ _ ~ ~ ~ _ (35)
Y, =Y (Xs,s) =log U(Xs, s), Zs=7Z(Xs,8) =0 Vleg U(Xs, s),
we can rewrite (3b, 33, 34) as the second FBSDEs system in (12).
dX, = (—fs + 025) ds + odW,
1, . .
dY, = §||ZS|| +V-(cZs+ fs)+Z, Zs—Fs | ds + Z, dW;
~ 1 - .
dy, = <2||ZS||2+FS> ds + 7/} dw,
where
for=f(Xpexp(Y, +Y,)),  Foi=F(X, exp(Y; + 1))
We conclude the proof. O
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A.3.4 Proof of Proposition 3

Proof. We will only prove the TD objective (14a) for the time coordinate ¢, as all derivations can be
adopted similarly to its reversed coordinate s := T — t.

Given a realization of the parametrized SDE (11a) w.r.t. some fixed step size dt, i.e.,
X 5= X0+ (fe +0Zo(X] 1)) 5t + oWy, Wy ~ N(0,8tI),

we can represent the trajectory compactly by a sequence of tuples X! = (X?, Z¢ §W,) sampled on

some discrete time grids, ¢t € {0, 6t,--- ,T — 0t, T}. The incremental change of Y3, i.e., the r.h.s. of
(11c), can then be computed by

~ 1
o7t o= (5

Z(XO O+ V- (0Z(X0,t) — )+ Z(X?, f)TZf—Ff) st+ Z(x2.t)T oWy,

where Z (-,-) is the (parametrized) backward policy and we denote Z¢ := Zy(X?,t) for simplicity.
At the equilibrium when the FBSDE system (11) is satisfied, the SDE (11c) must hold. This suggests
the following equality:

V(X7 50t +6t) = Y (X7, 1) + 6Y2(X)). (37)

——singl
Hence, we can interpret the zh.s. of (37) as the single-step TD target TD;E}: , which yields the
expression in (14a). The multi-step TD target can be constructed accordingly as standard practices
[51, 52], and either TD target can be used to construct the TD objective for the parametrized function

37¢ ~ }A/, which further yields (16). O]
A.3.5 Proof of Proposition 4
Proof. We first prove the necessity. Suppose the parametrized functions (Y, Zs, f@, 2¢) satisfy

the SDEs in (11,12), it can be readily seen that the TD objectives L1p(¢) and L1p(6#) shall both be
minimized, as the parametrized functions satisfy (11c,12b). Next, notice that (11) implies

T T
Yi4+ Y9 = (YO" +/0 de) + <Y0¢+/0 de’)

T
=>0=Eg (YO" + YO‘/)) + / (dyj’ + deé) - <y;% n y;f)
J0

—~

*

T
1 2P 7o) g n
= qu [log po] + / qu {OHZ,H + Z22+ V- ((TZ," — j,)} dt — Ht(,/; [10g prarget]
Jo 2

Z

( Po

Prarget

**) )
=" Eqy [log po] + Dici.(¢"[|¢”) — Ego {k)g } — Ego [log prarge]

= Dxw(q’ll¢?),

where (¥) is due to (11b,11c) and (**) invokes Proposition 9. The fact that Lipr(¢)) o< Dxr.(¢%||¢?) =
0 (recall Lemma 1) suggests that the objective Lipr(¢) is minimized when (11) holds. Finally, as
similar arguments can be adopted to Lipr(6) o< Dxr,(¢%||¢%) = 0 when (12) holds, we conclude that
all losses are minimized when the parameterized functions satisfy the FBSDE systems (11,12).

We proceed to proving the sufficiency, which is more involved. First, notice that
Lipr(¢) is minimized < Dkp,(¢°||¢?) = 0 < Vs € [0,T], 28 + Z? —oVlogq® =0, (38)
Lipr(6) is minimized < Dy, (¢%||¢°) = 0 <Vt € [0,T), Z¢ + Z¢ —oVlogql =0, (39)
as implied by (27). If L1p(¢) and L1p(f) are minimized, the following relations must also hold

N 1 ~ ~ T =
av;’ = (2||Z?||2 +V (02— f)+ 20 77 - F) dt + 2 Taw, (40)
1 ~
avy = <2||Z§||2 +V (028 + f)+ 20 22 —Fs> dt + 7T dW.. “4D)
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Now, notice that the Fokker Plank equation of the parametrized forward SDE (25a) obeys

94!
ot
which implies that (c.f. Lemma 7),

1
=-V- (¢ (fi+02)))+ §U2Aqf7

dlog ¢? T o?
A = V- (fi+02]) - Viogq! (fi+02{)+ 5 (Mloga! +|[Viegg!I”).  (42)
Invoking Ito lemma yields:
o Ologgq/ or 0 o’ 0 0T
dlogq! = 5 dt+ (Viegq; (fi+0ZY) +7A10gqt dt +oVlogq! dW;

2
@) [_v (fi+020) +0*Alog g + %IIVlog quQ:l dt +oVlogq!  dW,

[ 1
-V (ft + aZf — 02V log qf) + §||UV log qf||2} dt + oV log quth

~ 1 54 7
2 [9 (rovozt o (24 7)) g2 4 20 s (20 20 Taw,

v. (025’ . ft) + %Hzf + Z;f’||2] at + (Zf + Z;”)T aws, 43)
where (*) is du_e to (38). Subtracting (40) from (43) yields

dlogg! — dY? = (;HZ{’HQ +Ft> dt + 20" aw,. (44)
Now, using the fact that Zy := ocVYy and 2¢ = JV}AQ), we know that

Z{+ 7} —oVlogq! = 0= Y/ +Y, =logq{ +ci,

for some function ¢; = ¢(¢). Hence, (44) becomes
1
dyy? —de, = <2||Zf|2 + Ft) dt + ZdeWt. (45)

Now we prove that V¢t € (0,7),de; = 0 by contradiction. First, notice that ¢; can be derived
analytically as

c = Ytg—i—}?f —logq?

t
- / (dyﬁ+ dY;’—dlogqﬁ)
0
t Iy 6 2
» Y., 1
W / (( T vy? (fT+UZf)+UAYf>—<|ZfQ+FT>)dT
0 87— 2 2

+ /0 t (UVYTQTdWT — ZdeWT)

t 0 2
() / N (v s~ Yovvor— Tave + £ ) ) ar, (46)
o \ ot 2 2
where (*) invokes the following Ito lemma and substitutes (44),
oYy i
dyy = —Tdr + [VYf T (fr+oZf) + ‘;AYTQ} dt +ovY! div,
T

and (**) substitutes the definition Z? := o VY. Equation (46) has an intriguing implication, as one
can verify that its integrand is the residual of the parametrized HIB Yy = —ugp ~ —u (recall (7) and
(8)). It is straightforward to see that, the residual shall also be preserved after the parametrized HIB is
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expanded by Ito lemma w.r.t. the backward parametrized SDE (25b). That is, the following equation
similar to (45) must hold for the function ¢, := ¢(T — t):

1 ~
dy? +dcy = (2||Z§||2 YV (fot oz + 20T 79 - F) dt + 7% Taw,
which contradicts (41). Hence, we must have dcy, = dc¢; = 0, and (45) becomes
1
ayy = <2||Zf|2 + Ft) dt + 20" aw,. (47)

In short, we have shown that, for the parametrized forward (25a) and backward (25b) SDEs, the fact
that (40, 41) hold implies that (47) holds, providing Lipr is minimized. The exact same statement can
be repeated to prove that

~ 1 ~ ~
dve = <2||Zg>||2 + F) ds + Z2Tdw,. (48)

Therefore, if the combined objectives are minimized, i.e., (38, 39, 40, 41) hold, the parametrized

functions (Yy, Zy, ?dn 2¢) satisfy (25, 40, 47, 41, 48), i.e., they satisfy the FBSDE systems (11,12)
in Theorem 2. O

A.4 Additional Derivations & Remarks in Sec. 3 and 4
A.4.1 Hopf-Cole transform
Recall the Hopf-Cole transform
U(z,t) :=exp (—u(z,1)), (I\J(Lt) = p(z,t) exp (u(z,t)).
Standard ordinary calculus yields
V¥ = —exp (—u)Vu, AV = exp (—u) [||[Vul]* — Au], (49)
VU =exp (u) (p)Vu+ Vp), AU = exp (u) [p||Vu||2 +2Vp Vu+ Ap + pAu} . (50

Hence, we have

o
F
<—||JV'LL|2 +Vu'f+ J2AU + F)
@ —50%\1/ VU f 4+ FU, 51)
v dp  Ou
e = exp (u) <8t + 8t>

2 exp (u) ((v (p(o®Vu— ) + ;UQA/’> te (;”“Wz valf- QAU - ))

1 .
= exp (u) ((72 <pAu +Vp Vu + iAp-i- gHVUHZ - gAu>— Vp f=pV-f —pVu'f— pF)

1 . - ~ ~ ~
Ry 507 AU VU UV f - TF, (52)

which yields (9) by noticing that V - (U f) = VU f + UV - f.

A.4.2 Remarks on convergence

The alternating optimization scheme proposed in Alg. (1) can be compactly presented as
ming Dk (¢?]|¢?) + Eqe[L1p(¢)] and ming Dx1,(¢%|¢”) + Ege[L1p(6)]. Despite that the pro-
cedure seems to resemble IPF, which optimizes between ming Dx1,(¢%|¢?) and ming Dxr,(¢|¢?),
we stress that they differ from each other in that the the KLs are constructed with different directions.
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In cases where the TD objectives are discarded, prior work [24] has proven that minimizing the
forward KLs admit similar convergence to standard IPF (which minimizes the reversed KLs). This
is essentially the key to developing scalable methods, since the parameter being optimized (e.g., 0
in Dx1,(¢%|¢%)) in forward KLs differs from the parameter used to sample expectation (e.g., Ege).
Therefore, the computational graph of the SDEs can be dropped, yielding a computationally much
efficient framework. These advantages have been adopted in [24, 27] and also this work for solving
higher-dimensional problems.

However, when we need TD objectives to enforce the MF structure, as appeared in all the MFGs in
this work, the combined objective does not correspond to IPF straightforwardly. Despite that the
alternating procedure in Alg. (1) is mainly inspired by prior SB methods [24, 27], the training process
of DeepGSB is perhaps closer to TRPO [55], which iteratively updates the policy using the off-policy
samples generated from the previous stage: 7(**1) = arg min_ Dk, (7()||7) + E_»[£(7)]. TRPO
is proven to enjoy monotonic improvement over iterations (i.e., local convergence).

A.4.3 Functional derivative of MF potential functions

Given a functional F : P(R%) — R on the space of probability measures, its functional derivative
F(xz,p) := 5];—2”)(@ satisfies the following equation
F(p+ hw) — F(p)

lim o = . F(z, p)w(z)dz

for any function w € L? (Rd). Hence, the derivative of the entropy MF functional Fepyopy :=
Jza p(x)log p(x)da can be derived as

1
lim E (-’rentropy (,0 + hw) - -Femropy(p))

h—0
= . ( /Rd (hw(af) log p(x) + p() h;zg) + O(hQ))dac)
:/]Rd (w(:r:) log p(z) + w(a:))dx = /Rd <log p(x) + 1) w(zx)dz. (53)

= Fenlropy (T 7/’)

Similarly, consider the congestion MF functional Feongestion := Ja [ga m p(x)p(y)dxdy. Its
derivation can be computed by

1

}llli% E (-Fcongestion (P + hw) - fcongestion(ﬁ))

=ggg,%(J£d/L1W;:zﬁgqfi(p@»humy>+-huwm»xy>+—0<h%)dxdy)
= | | ey (@) + w@et) )asay

2
— —  dyw(x)dzx. (54)
A«éﬂ@—ﬂ?+ly (=)

:=Feongestion ()

We hence conclude the expressions of Fenpopy and Feongestion 10 (17).

A.5 Experiment Details
A.5.1 Setup

Hyperparameters Table 6 summarizes the hyperparameters in each MFG, including the dimension
d of the state space, the diffusion scalar o, the time horizon T', the discretized time step &t (and §s),
the MF base drift f(x, p), the MF interaction F'(x, p), and the mean/covariance of the boundary
distributions pg and preer ( NOte that all MFGs adopt Gaussians as their boundary distributions ).

Note that in the 1000-dimensional opinion MFG, we multiply the polarized dynamic f_P(,lariZe by 6 to
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Table 6: Hyperparameters in each MFG. Note that 0 € R? denotes zero vector, I € R4*¢
denotes identity matrix, and diag(v) € R4%4 where v € R?, denotes diagonal matrix.

GMM V-neck  S-tunnel Opinion
d 2 2 2 2 1000
o 1 1 1 0.1 0.5
T 1 2 3 3 3
ot 0.01 0.01 0.01 0.01 0.006
f(.]?, P) [07 O]T [67 O}T [6, O]T fpolarize 6- fpolarize
Diffusion steps 100 200 300 300 500
K’ 250 250 500 100 250
Alternating stages® 40 40 30 40 90
Total training steps 20k 20k 30k 8k 45k
-7 —11
Mean of pg 0 {0] [1} 0 0
el6(3)i 7 11
Mean of prarget i€f{0,--- .7} 0 1 0 0
4
0.25
. . 0.5 .
Covariance of pg I 0.21 0.51 diag( 0.25 ) diag(| . |)
0.25
Covariance of piarget I 0.21 0.51 31 31

ensure that the high-dimensional dynamics yield polarization within the time horizon. Meanwhile, a
smaller step size dt = 0.006 is adopted so that the discretization error from the relatively large drift
is mitigated. As mentioned in Sec. 4, we adopt zero and constant base drift f respectively for GMM
and V-neck/S-tunnel.

Training All experiments are conducted on 3 TITAN RTXs and 1 TITAN V100, where the V100
is located on the Amazon Web Service (AWS). We use the multi-step TD targets in (15) for all
experiments and adopt huber norm for the TD loss in (16). As for the FK consistency loss Lk, we
use {1 norm for GMM and opinion MFGs, and huber norm for the rest.

Network architecture All networks (Y, Zy, }Af(z,, Z¢) take (z,t) as inputs and follow
out = out_mod(x_mod( z ) + t_mod(timestep_embedding(t))),

where timestep_embedding(-) is the standard sinusoidal embedding.

For crowd navigation MFGs, these modules consist of 2 to 4 fully-connected layers (Linear)
followed by the Sigmoid Linear Unit (SiLU) activation functions [70], i.e.,

t_mod = Linear — SiLU — Linear
x_mod = Linear — SiLU — Linear — SiLU — Linear — SiLU — Linear
out_mod = Linear — SiLU — Linear — SiLU — Linear

As for 1000-dimensional opinion MFG, we keep the same t_mod and out_mod but adopt residual
networks with 5 residual blocks for x_mod. For DeepGSB-ac, we set the hidden dimension of Linear

to 256 and 128 respectively for the policy networks (Zy, 2(25) and the critic networks (Yp, )A{b), whereas
for DeepGSB-c, we set the hidden dimension of Linear to 200 for the critic networks (Yp, Yy).

"We note that, unlike SB-FBSDE [27], the number of training iterations at each stage (i.e., the K in Alg. 1)
is kept fixed throughout training.

%Here, we refer one alternating stage to a complete cycling through 2K training iterations in Alg. 1.
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Implementation of prior methods [14-16] All of our experiments are implemented with PyTorch
[71]. Hence, we re-implement the method in Ruthotto et al. [14] by migrating their Julia codebase’
to PyTorch. As for Lin et al. [15], their official PyTorch implementation is publicly available.'”
Finally, we implement Chen [16] by ourselves. Since prior methods [14—16] were developed for a
smaller class of MFGs compared to our DeepGSB (recall Table 1), we need to relax the setup of
the MFG in order for them to yield reasonable results in Fig. 5 and 7. Specifically, we soften the
obstacle costs, so that [14, 15] can differentiate them properly, and keep the same KL penalty at
u(z,T) =~ Dxr(p(x,T)||pareet(x)) as adopted in [14, 15]. We stress that neither of the methods
[14, 15] works well with the discontinuous Fipgacle in (17). Finally, we discretize the 2-dimensional
state space of GMM into a 40 x 40 grid with 50 time steps for [16]. We note that the complexity of
[16] scales as O(TDQ), where T and D are respectively the number of time and spatial grids, i.e.,
T =50and D = 1600.

Evaluation We approximate the Wasserstein distance with the Sinkhorn divergence using the
geomloss package.'! The Sinkhorn divergence interpolates between Wasserstein (blur = 0) and
kernel (blur = co) distance given the hyperparameter blur. We set blur = 0.05 in Table 3.

A.5.2 Additional experiments

(a) DeepGSB-c (ours) Chen [16]
t=0 t=0.25T = O.SOI 3 need discrete state space)
P\
)
N7
(b) Ruthotto et al. [14]
t=0 (need differentiable Fops)
e U 2l weven
;g < 2 | ;g
iE - I wmmmsn
E & S
(c) eeé:GSB ¢ (ours) Lin et al. [15]
t=0 t=0.25T =0.! t 0.72T t= TT (need differentiable Fops)
» N1 E 3 ..l
g f ~ wj g \ 0 PR N P
Ww?») Y 5 ol b
/«'{
i | e — nY |
: (W | s e A
b R S S T i
B R /i =
| / \// ( B g* 7
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Figure 7: Same setup as in Fig. 5 except for DeepGSB-c. This figure is best viewed in color.

Figures 7 and 8 reports the results for DeepGSB-c. On crowd navigation MFGs, the population
snapshots guided by DeepGSB-c are visually indistinguishable from DeepGSB-ac (see Fig. 7 vs. 5)
despite the visual difference in their contours. As for 1000-dimensional opinion MFG, both DeepGSB-
¢ and DeepGSB-ac are able to guild the population opinions toward desired peger Without the entropy
interaction Fengopy. Figure 8 reports the results of DeepGSB-c in such cases. We note, however,
that when Feyopy is enabled, DeepGSB-ac typically performs better than DeepGSB-c in terms of
convergence to pPerger and training stability.

‘https://github.com/EmoryMLIP/MFGnet . j1. The repository is licensed under MIT License.
“https://github.com/atlin23/apac-net. The repository does not specify licenses.
"https://github. com/jeanfeydy/geomloss. The repository is licensed under MIT License.
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(a) Simulation of polarize dynamics fpojarize in (18) when d=2 Directional similarity of fpoarize
000

t=0 t=0.33T t=0.67T =
25 25 25
S | ook e
25 25 25
s 70 a5 lis 70 a5 las 70
(b) Terminal distribution pr after applying DeepGSB-c Directional similarity after applying DeepGSB-c
s d=2 , .d=1000 (PCA embedding) d=1000 highly agree

d=2
B = i B 2 neutral
- s " ¥ highly disagree
1
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Figure 8: (a) Visualization of polarized dynamics fpolmze in 2- and 1000-dimensional opinion space,
where the directional similarity [3] counts the histogram of cosine angle between pairwise opinions at
the terminal distribution pr. (b) DeepGSB-c guides pr to approach moderated distributions, hence
depolarizes the opinion dynamics. Note that we adopt F' := 0 for DeepGSB-c. We use the first two
principal components to visualize d=1000.

t=T Target distribution

f,‘*’:"‘mﬁg.

£

¥

\ /. 1 VARAS) \
Figure 9: DeepGSB-ac trained without access to the initial and target distributions, i.e., without TDy
and TDy. In this case, we compute Lp with the single-step formulation in (14).
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