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Figure 1: More examples of the connected component on FB15K-237.

Model WN18RR FB15K-237
embedding
dim Model Size Embedding

Dim Model Size

TransE/DistMult/ConvE tuned from
{128, 256, 512} max 20.97M tuned from

{128, 256, 512} max 7.57M

BoxE/MurP/TuckER 500 20.48M 500 7.39M
RotE/RotH 500 20.49M 500 7.63M
QuatE 1000 40.95M 4000 58.64M
RotatE 1000 40.95M 2000 29.32M
ComplEx-N3 1000 40.95M 1000 14.78M
Ours 500 20.49M 500 7.63M

Table 1: Model size comparison on the relational graph link prediction task.

1 Additional Details on the Relational Graph Link Prediction Task1

1.1 Related work on relational graph link prediction2

A number of embedding techniques have been explored for relational graphs. Representative Eu-3

clidean models are RESCAL [8], DistMult [12], TransE [4], TuckER [3], ConvE [6], RotE [5],4

R-GCN [9], and BoxE [1]. Complex/Hypercomplex number models such as ComplEx [11; 7],5

RotatE [10], QuatE [13] have shown better capability in modeling asymmetric relations. Recently,6

learning relational graph embeddings in hyperbolic spaces has gained increasing popularity. Hy-7

perbolic models such as MurP [2] and RotH [5] can effectively capture the hierarchical relational8

patterns in relational graphs. As can be concluded from the literature, it is important for the models9

to have the capability to capture the relational and structural patterns in real-world relational graphs.10

However, current models usually focus on specific patterns and lose sight of the big picture. Our11

model is capable of modeling not only different relational patterns (symmetric, antisymmetric, and12

inversive, etc.) but also various structural patterns (hierarchical, cyclical, etc) of relational graphs for13

more effective link prediction.14

1.2 Model size comparison15

As shown in Table 1, we see that the introduced trainable parameters in the gating network can be16

ignored as compared with RotE/RotH. Compared with QuatE and RotatE, our method uses half of17

their parameters but obtains better results.18
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