
Appendix - DropGNN: Random Dropouts Increase
the Expressiveness of Graph Neural Networks

Pál András Papp
ETH Zurich

apapp@ethz.ch

Karolis Martinkus
ETH Zurich

martinkus@ethz.ch

Lukas Faber
ETH Zurich

lfaber@ethz.ch

Roger Wattenhofer
ETH Zurich

wattenhofer@ethz.ch

A Concrete GNN representations for the examples

In this section, we revisit the example graphs from Section 3.4, and we provide a concrete GNN
implementation for each of them which is able to distinguish the two cases.

Example 1. Let us assume for simplicity that each node starts with the integer 1 as its single feature.
Also, assume that neighborhood aggregation happens with a simple summation, with no non-linearity
afterwards, and that this sum is then combined with the node’s own feature again through a simple
addition.

Now consider this GNN with d = 2 layers. Note that in this case, a node u in the left-hand graph is
able to gather information from the whole cycle, while a node u in the right-hand graph will behave
as if it was the middle node in a simple path of 5 nodes. In both cases, if no dropouts happen, then u
will have a value of 3 after the first round, and a value of 9 after the second round.

However, the 1-dropouts are already significantly different: in the left-hand graph, they will produce
a result of 5, 5 and 7, while in the right-hand graph, they result in a final value of 5, 5, 8 and 8. One
can similarly compute the k-dropouts for k ≥ 2, which will also produce a range of other values (but
at most 7 in any case).

If we apply a more sophisticated transformation on these embeddings before run aggregation, then it
is straightforward to separate these two distributions. For example, we can use an MLP to only obtain
a positive value in case if the embedding is 8 (we discuss this technique in more detail at Example 2);
this will happen regularly for the right-hand graph, but never for the left-hand graph. After this, a
simple sum run aggregation already distinguishes the cases.

However, if one prefers a simpler transformation, then a choice of σ(x − 8) also suffices (with σ
denoting the Heaviside step function). With this transformation, a run aggregation with sum simply
counts the number of cases when the final embedding was a 9. Since the probability of the 0-dropout
is different in the two graphs, the expected value of this count will also differ by at least Ω(p · r) after
r runs, which makes them straightforward to distinguish.

Example 2. For an elegant representation of Example 2, the most convenient method is to apply
a slightly more complex non-linearity for neighborhood aggregation; this allows a very simple
representation for everything else in the GNN.

In particular, let us again assume that each node simply starts with an integer 1 as a feature (i.e. not
even aware of its degree initially). Furthermore, assume that neighborhood aggregation happens with
a simple sum operator; however, after this, we use a more sophisticated non-linearity σ̂ which ensures
σ̂(2) = 1, and σ̂(x) = 0 for all other integers x. One can easily implement this function with a
2-layer MLP: we can use x1 = σ(x − 1) and x2 = σ(−x + 3) as two nodes in the first layer, and
then combine them with a single node σ(x1 + x2 − 1) as the second layer. Finally, for the UPDATE
function which merges the aggregated neighborhood xN(u) with the node’s own embedding xu, let
us select σ(xN(u) + xu − 2).

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

The resulting GNN can be described rather easily. Each node begins with a feature of 1, and has
an embedding of either 0 or 1 in any subsequent round. The update rule for the embedding is also
simple: if u’s own value is 1 and u has exactly 2 neighbors with a value of 1, then the embedding of
u will remain 1; in any other case, u’s embedding is set to 0, and it will remain 0 forever.

In case of dropouts, this GNN will behave differently in the two graphs of Example 2. Note that in
both cases, whenever the connected component containing node u is not a cycle after the dropouts,
then in at most d = 3 rounds, the embedding of u is set to 0. On the other hand, if the component
containing u is a cycle, then the embedding of u will remain 1 after any number of rounds.

Now let u denote one of the nodes with degree 3 in both graphs. In the left-hand graph, there is a
1-dropout (of the other gray node) that puts u in a cycle, so u will produce a final embedding of 1
relatively frequently. Besides this, there are also 2 distinct 2-dropouts and a 3-dropout that removes
the other gray node but keeps the triangle containing u intact; these will all result in a final embedding
of 1 for u. On the other hand, in the right-hand graph, there are only 2 distinct 2-dropouts which
result in a single cycle containing u.

This means that the probability of getting a final value of 1 is significantly higher in the left graph. In
particular, after r runs, the difference in the expected frequency of getting a 1 is at least Ω(p · r), so
we can easily separate the two cases by executing run aggregation with sum or mean.

Example 3. The base idea of this separation has already been outlined in Section 3.4: assume that
the middle node u uses a simple mean aggregation of its neighbors, and the dropout probability is
p = 1

4 . Since we are now interested in the behavior of a specific step of mean aggregation, we only
study the GNN for d = 1 rounds.

With p = 1
4 , the left-hand graph provides the following distribution of means in a DropGNN:

Pr(0) =

(
3

4

)2

and Pr(1) = Pr(−1) =
1

4
· 3

4
.

As such, the probability of obtaining a 1 is about 0.19. Note that we disregarded the case when all
neighbors of u are removed, but we could assume for convenience that e.g. the mean function also
returns 0 in this case. Furthermore, we only considered the cases when u is not removed, since these
are the only runs when u computes an embedding at all.

On the other hand, in the right-hand graph, u obtains the following distribution:

Pr(0) =

(
3

4

)4

+ 4 ·
(

1

4

)2

·
(

3

4

)2

, Pr
(

1

3

)
= Pr

(
−1

3

)
= 2 · 1

4
·
(

3

4

)3

and Pr(1) = Pr(−1) =

(
1

4

)2

·
(

3

4

)2

+ 2 ·
(

1

4

)3

· 3

4
.

This gives a probability of about 0.06 for the value 1.

If we apply e.g. the transformation x→ σ(x− 0.5) on these values, then the embedding 1 is indeed
significantly more frequent in the left-hand graph. Using either mean or sum for run aggregation
allows us to separate the two cases: the final embeddings in the two graphs will converge to 0.19 and
0.06 (both multiplied by r in case of sum).

Alternative dropout methods. Throughout the paper, we consider a natural and straightforward
version of the dropout idea: some nodes of the graph (and their incident edges) are removed for an
entire run. However, we note that there are also several alternative ways to implement this dropout
approach. For example, one could remove edges instead of nodes, or one could remove nodes in an
asymmetrical manner (e.g., they still receive, but do not send messages). We point out that all these
examples from Section 3.4. could also be distinguished under these alternative models.

B Required number of runs

We now discuss the proofs of Theorems 1 and 2.

2

Note that for any specific subset S of size k, the probability of this k-dropout happening in a specific

run is pk · (1− p)γ+1−k =
(

1
1+γ

)k
·
(

γ
1+γ

)γ+1−k
. To obtain the expected frequency EXS of this

k-dropout after r runs, we simply have to multiply this expression by r.

Furthermore, given a constant δ ∈ [0, 1], a Chernoff bound shows that the probability of significantly
deviating from this expected value is

Pr (XS /∈ [(1−δ) · EXS , (1+δ) · EXS]) ≤ 2 · e−
δ2·EXS

3 .

Let us consider the case of Theorem 1 first. Since we have γ different 1-dropouts, we can use a union
bound over these dropouts to upper bound the probability of the event that any of the nodes v ∈ Γ
will have Xv /∈ [(1−δ) · E1, (1+δ) · E1]; the probability of this event is at most

2 · γ · e−
δ2·E1

3 .

If we ensure that this probability is at most 1
t , then the desired property follows. Note that after taking

a (natural) logarithm of both sides, this is equivalent to

log(2 · γ)− δ2 · E1

3
≤ − log t ,

and thus
E1 ≥

3

δ2
· log(2 · γ · t) .

Recall that for E1 we have

E1 =
1

1 + γ
·
(

γ

1 + γ

)γ
· r ≥ 1

1 + γ
· 1

e
· r .

Due to this lower bound, it is sufficient to ensure
1

1 + γ
· 1

e
· r ≥ 3

δ2
· log(2 · γ · t) ,

that is,

r ≥ 3e

δ2
· (γ + 1) · log(2 · γ · t) = Ω(γ · log γt) .

This completes the proof of Theorem 1.

For Theorem 2, we also need to upper bound the probability of each dropout combination of multiple
nodes. Consider k-dropouts for a specific k. In this case, we have

EXS =

(
1

1 + γ

)k
·
(

γ

1 + γ

)γ+1−k

· r =
1

γk−1
· E1 .

This implies that in order to ensure XS < (1− δ) · E1 in Theorem 2, it is sufficient to have
XS < (1 − δ) · γk−1 · EXS . If we want to express this as (1 + ε) · EXS for some ε, then we get
ε = (1 − δ) · γk−1 − 1, and thus ε = Θ

(
γk−1

)
for appropriately chosen constants. Applying a

Chernoff bound (in this case, a different variant that also allows ε > 1) then gives

Pr (XS ≥ (1+ε) · EXS) ≤ e−
ε2·EXS

2+ε .

Since ε = Θ
(
γk−1

)
and EXS = γ−(k−1) · E1, this is in fact

e−Θ(1)·γk−1·γ−(k−1)·E1 = e−Θ(1)·E1 .

Note that the number of different k-dropouts is
(
γ
k

)
≤ 2γ , so with a union bound, we can establish this

property for each k-dropout simultaneously; for this, we need to multiply this error probability by 2γ .
Finally, since we want to ensure this for all k ≥ 2, we can take a union bound over k ∈ {2, 3, ..., γ},
getting another multiplier of γ. Thus to obtain the second condition in Theorem 2 with error probability
1
t , we need

γ · 2γ · e−Θ(1)·E1 ≤ 1

t
.

3

After taking a logarithm and reorganization, we get

E1 ≥ Θ(1) · log(2γ · γ · t) .

With our lower bound for E1 and a reorganization of the right side, we can reduce this to

r ≥ Θ(1) · (γ + 1) · γ · log(2 · γ · t) = Ω
(
γ2 + log γt

)
.

Another union bound shows that the two conditions of Theorem 2 also hold simultaneously when r is
in this magnitude, thus completing the proof of Theorem 2.

Note that if we want to ensure this property for the neighborhood of all the n nodes in the graph
simultaneously, then we also have to take a union bound over all the n nodes, which results in a factor
of n within the logarithm in our final bounds on r.

Asymptotic analysis. Finally, let us note that from a strictly theoretical perspective, if we consider
γ to be a constant, and p to be some function of γ, then the probability of any specific k-dropout is
pk · (1− p)γ+1−k, i.e. a constant value. As such, a Chernoff bound shows that if we select r to be a
sufficiently large constant, then every possible dropout combination is observed, and their frequencies
are reasonable close to the expected values.

However, this approach is clearly not realistic in practice: e.g. for our choice of p ≈ γ−1, the
probability of a specific k-dropout is less than pk ≈ γ−k. This means that we need r ≥ γk runs even
to observe this k-dropout at least once in expectation. While this γk is, asymptotically speaking, only
a constant value, it still induces a very large overhead in practice, even for relatively small k and γ
values.

Different γ and p values. Note that our choice of γ was defined for an arbitrary node of the graph;
however, the dropout probability p, chosen as a function of γ, is a global parameter of DropGNNs.
As such, our choice of p from the analysis only works well if we assume that the graph is relatively
homogeneous, i.e. γ is similar for every node.

In practice, one can simply apply the average or the maximum of these different γ values; a slightly
smaller/larger than optimal p only means that we observe some dropouts with slightly lower probabil-
ity, or we execute slightly more runs than necessary. The ablation studies in Figures 4 and 5 also show
that our approach is generally robust to different number of runs and different dropout probabilities.
We note, however, that if e.g. the graph consists of several different but separately homogeneous
regions, then a more sophisticated approach could apply a different p value in each of these regions.

C Expressiveness with sum aggregation

We now discuss our claims on DropGNNs with sum neighborhood aggregation. Recall that with this
aggregation method, a GNN with injective functions (such as GIN) has the same expressive power as
the WL-test.

Note that in this setting, we understand a d-hop neighborhood around u to refer to the part of the
graph that u can observe in d rounds of message passing. In particular, this contains (i) all nodes that
are at most d hops away from u, and (ii) all the edges induced by these nodes, except for the edges
where both endpoints are exactly at distance d from u.

C.1 Proof of Theorem 3

To prove Theorem 3, we show two different d-neighborhoods around a node u (for d = 2) that
are non-isomorphic, but they generate the exact same distribution of observations for u if we only
consider the case of k-dropouts for k ≤ 2.

Note that the example graphs on Figure 3 already provide an example where the 0-dropout and the
1-dropouts are identical. One can easily check this from the figure: in case of no dropouts, u observes
the same tree representation in d = 2 steps, and in case of any of the 6 possible 1-dropouts (in either
of the graphs), u observes the tree structure shown on the right side of the figure.

To also extend this example to the case of 2-dropouts, we need to slightly change it. Note that the
example graph is essentially constructed in the following way: we take two independent cycles of

4

length 3 in one case, and a single cycle of length 6 in the other case, and in both graphs, we connect
all these nodes to an extra node u. This construction is easy to generalize to larger cycle lengths. In
particular, let us consider an integer ` ≥ 3, and create the following two graphs: in one of them, we
take two independent cycles of length `, and connect each node to an extra node u, while in the other
one, we take a single cycle of length 2 · `, and connect each node to an extra node u.

We claim that with a choice of ` = 5, this construction suffices for Theorem 3. As before, one can
easily verify that u observes the same 2-hop neighborhood in case of no dropouts, and also identical
2-hop neighborhoods for any of the 10 possible 1-dropouts in both graphs. The latter essentially has
the same structure as the right-hand tree in Figure 3, except for the fact that the number of degree-3
branches (i.e. the ones on the left side of u in the figure) is now 7 instead of 3.

It only remains to analyze the distribution of 2-dropouts. For this, note that the only information that
u can gather in d = 2 rounds is the multiset of degrees of its neighbors. In practice, this will depend
on the distance of the two removed nodes in the cycles; in particular, we can have the following cases:

1. If the two nodes are neighbors in (one of) the cycle(s), then due to the dropouts, u will have two
neighbors of degree 2, and six neighbors of degree 3. There are 2 · ` = 10 possible cases to have this
dropout combination in both graphs.

2. If the two nodes are at distance 2 in (one of) the cycle(s), then u will have a single neighbor
of degree 1, two neighbors of degree 2 and five neighbors of degree 3. This can again happen in
2 · ` = 10 different ways in both graphs.

3. If the nodes have distance at least 3 within the same cycle, or they are in different cycles, then the
dropout creates four neighbors of degree 2, and four neighbors of degree 3. In the 2 · ` cycle, this
can happen in 2·`·(2·`−5)

2 = 2 · `2 − 5 · ` = 25 different ways. In case of the two distinct `-cycles,
this cannot happen in a single cycle at all (i.e. for general `, it can happen in `·(`−5)

2 ways, but this
equals to 0 for ` = 5); however, it can still happen if the two dropouts happen in different cycles, in
` · ` = 25 different ways.

Hence the distribution of observed neighborhoods is also identical in case of 2-dropouts.

C.2 Proof of Theorem 4

The setting of Theorem 4 considers GNNs with port numbers (such as CPNGNN) where the neigh-
borhood aggregation function is not permutation invariant, i.e. it can produce a different result for
a different ordering of the inputs (neighbors) [12]. Our proof of the theorem already builds on the
fact that one can extend the idea of injective GNNs (such as GIN in [15]) to this setting with port
numbers. To show that port numbers can be combined with the injective property, one can e.g. apply
the same proof approach as in [15], using the fact that the possible combinations of embeddings and
port numbers is still a countable set.

Given such an injective GNN with port numbers, the expressiveness of this GNN is once again identi-
cal to that of a general distributed algorithm in the message passing model with port numbers [12].
As such, it suffices to show that a distributed algorithm in this model can separate any two different
d-hop neighborhoods.

Let us assume the 1-complete setting of Theorem 1, i.e. that we have sufficiently many runs to ensure
that each 1-dropout is observed at least once in the d-hop neighborhood of u. We show that the set of
neighborhoods observed this way is sufficient to separate any two neighborhoods, regardless of the
frequency of multi-dropout cases.

The general idea of the proof is that 1-dropouts are already sufficient to recognize when two nodes in
the tree representation of u’s neighborhood are actually corresponding to the same node. Consider
three nodes v1, v2 and v3, and assume that edges (v1, v3) and (v2, v3) are both within the d-hop
neighborhood of u. More specifically, assume that v1’s port number b1 leads to v3, and v2’s port
number b2 also leads to v3; then we can observe that the nodes at the endpoints of these two edges
are always missing from the graph at the same time. That is, since we are guaranteed to observe every
1-dropout at least once, if neighbor b1 of v1 and neighbor b2 of v2 are distinct nodes, then we must
observe at least one neighborhood variant where only one of these two neighbors are missing; in this
case, we know that the b1th neighbor of v1 and the b2th neighbor of v2 are not identical. On the other

5

hand, if the two neighbors are always absent simultaneously, then the two edges lead to the same
node.

The proof of the theorem happens in an inductive fashion. Note that from the 0-dropout, we can
already identify the degree of u in the graph, and the port leading to each of its neighbors; this is
exactly the 1-hop neighborhood of u.

Now let us assume that we have already reconstructed the (i − 1)-hop neighborhood of u; in this
case, we can identify each outgoing edge from this neighborhood by a combination of a boundary
node (a node at distance (i − 1) from u) and a port number at this node. We can then extend our
graph into the i-hop neighborhood of u (for i ≤ d) with the following two steps:

1. First, we reconstruct the edges going from distance (i− 1) nodes to distance i nodes. Let us refer
to nodes at distance i as outer nodes. Note that all the outer neighbors of the boundary nodes can be
identified by the specific outgoing edges from the boundary nodes; we only have to find out which of
these outer nodes are actually the same. This can be done with the general idea outlined before: if two
boundary nodes v1 and v2 have a neighbor at ports b1 and b2, respectively, and we do not observe a
graph variant where only one of these neighbors is missing, then the two edges lead to the same outer
node.

2. We also need to reconstruct the adjacencies between the boundary nodes; this is part of the i-hop
neighborhood of u by definition, but not part of the (i− 1)-hop neighborhood. This happens with the
same general idea as before: assume that v2 and v3 are both nodes at distance (i−1), and v1 is a node
at distance (i− 2) that is adjacent to v3. Then we can check whether v3 disappears simultaneously
from the respective ports b1 and b2 of nodes v1 and v2; if it does, then we know that edge b2 of node
v2 leads to this other boundary node v3.

After d steps, this process allows us to reconstruct the entire d-hop neighborhood of u, thus proving
the theorem.

Let us also briefly comment on the GNN interpretation of this graph algorithm. An injective GNN
construction ensures that we map different d-hop neighborhoods to a different real number embedding.
Note that the algorithm can separate any two neighborhoods without using the frequency of the
specific neighborhoods variants; this implies that the set of real numbers obtained is different for any
two neighborhoods, i.e. there must exist a number z ∈ R that is present in one of the distributions,
but not in the other. One can then develop an MLP that essentially acts as an indicator for this value
z, only outputting 1 if the input is z; this allows us to separate the two neighborhoods.

Finally, note that our main objective throughout the paper was to compute a different embedding for
two different neighborhoods. However, in this setting of Theorem 4, it is also possible to encounter
the opposite problem: if two d-hop neighborhoods are actually isomorphic, but they have a different
assignment of port numbers, then they might produce a different embedding in the end.

We point out that with more sophisticated run aggregation, it is also possible to solve this problem,
i.e. to recognize the same neighborhood regardless of the chosen port numbering. In particular, we
have seen that in the 1-complete case, the multiset of final embeddings already determines the entire
neighborhood around u, and thus also its isomorphism class. This means that there is a well-defined
function from the embedding vectors in Rr that we can obtain in r runs to the possible isomorphism
classes of u’s neighborhood (assuming for convenience that the neighborhood size is bounded).
Due to the universal approximation theorem, a sufficiently complex MLP can indeed implement
this function; as such, determining the isomorphism class of u’s neighborhood is indeed within the
expressive capabilities of DropGNNs in this setting. However, while such a solution exists in theory,
we note that this graph isomorphism problem is known to be rather challenging in practice.

C.3 Briefly on the graph reconstruction problem

The graph reconstruction problem is a well-known open question dating back to the 1940s. Assume
that there is a hidden graph G on n ≥ 3 nodes that we are unaware of; instead, what we receive as
an input is n different modified variants of G, each obtained by removing a different node (and its
incident edges) from G. This input multiset of graphs is often called the deck of G. Note that the
graphs in the deck are only provided up to an isomorphism class, i.e. for a specific node of the deck
graph, we do not know which original node of G it corresponds to. The goal is to identify G from its

6

deck; this problem is solvable exactly if there are no two non-isomorphic graphs with the same deck.
This assumption is known as the graph reconstruction conjecture [5].

This problem is clearly close to our task of reconstructing a neighborhood from its 1-dropout variants;
however, there are also two key differences between the settings. Firstly, in our DropGNNs, we
do not observe a graph, but rather a tree-representation of its neighborhood where some nodes
may appear multiple times. In this sense, our GNN setting is much more challenging than the
reconstruction problem, since it is highly non-trivial to decide whether two nodes in this tree
representation correspond to the same original node. On the other hand, the DropGNN setting has the
advantage that we can also observe the 0-dropout; this does not happen in the reconstruction problem,
since it would correspond to directly receiving the solution besides the deck.

D Dropouts with mean or max aggregation

In this section, we discuss the expressiveness of the dropout technique with mean and max neighbor-
hood aggregation. In particular, we prove that separation is always possible with mean aggregation
when |S1| = |S2|, we construct a pair of neighborhoods that provide a very similar distribution of
mean values, and we briefly discuss the limits of max aggregation in practice.

D.1 Proof of Lemma 1

We begin with the proof of Lemma 1. More specifically, we show that if |S1| = |S2|, then there
always exists a choice of p and integers a, b such that after applying an activation function σ(ax+ b)
on S1 and S2, a mean neighborhood aggregation allows us to distinguish the two sets.

In our proof, we assume that S1 and S2 are both multisets of integers (instead of vectors), i.e. that
node features are only 1-dimensional. With multi-dimensional feature vectors, we can apply the same
proof to each dimension of the vectors individually; since S1 6= S2, we will always have a dimension
that allows us to separate the two multisets with the same method.

Let s1 denote the mean of S1 and s2 denote the mean of S2. We first discuss the simpler case when
s1 6= s2; if this holds, we can distinguish any two sets S1 and S2, so we make this proof for the
general case, without the assumption that |S1| = |S2|. After this, we discuss the case when s1 = s2

and |S1| = |S2|; this completes the proof of Lemma 1.

The main idea of the proofs is to find a threshold τ such that in S1, we have mean values larger
than τ much more frequently than in S2 (or vice versa). We can then use an activation function
σ̂(x) := σ(x− τ) (with σ denoting the Heaviside step function) to ensure that σ(x) = 1 if x ≥ τ ,
and σ(x) = 0 otherwise. This means that a run aggregation with sum will simply count the cases
when the mean is larger than τ , and thus with high probability, we get a significantly different sum in
case of S1 and S2.

Note that even though the proof is described with a Heaviside activation function for ease of
presentation, one could also use the logistic function (a more popular choice in practice), since the
logistic function provides an arbitrary close approximation of the step function with the appropriate
parameters.

When the means are different. First we consider the case when s1 6= s2.

In this setting, finding an appropriate τ is relatively straightforward. Assume w.l.o.g. that s1 < s2,
and let us choose an arbitrary τ such that s1 < τ < s2. This implies that whenever no node is
removed, then the mean in S1 will produce a 0, while the mean in S2 will produce a 1.

It only remains to ensure that 0-dropouts are frequent enough to distinguish these two cases. For this,
let γ = max(|S1|, |S2|), and let us select p = 1

2γ . For both S1 and S2, this gives a probability of at
least

(1− p)γ =

(
2γ − 1

2γ

)γ
for 0-dropouts. When γ ≥ 2, this probability is strictly larger than 0.55.

With a Chernoff bound, one can also show that the number of 0-dropouts is strictly concentrated
around this value: with δ = 0.05 and r runs, the probability of the number of 0-dropouts being below

7

(1− δ) · 0.55 ≈ 0.52 is upper bounded by e−
1
3 ·δ

2·0.55·r. To ensure that this is below 1
t , we only need

Θ(1) · r ≥ log t, and hence r ≥ Ω(log t). This already ensures that in case of S2, we have at least
0.52 · r runs that produce a 1, while in S1, we have at least 0.52 · r runs that produce a 0 (i.e. at most
0.48 · r runs that produce a 1). Hence with high probability, a sum run aggregation gives a sum below
0.48 · r and above 0.52 · r for S1 and S2 respectively, so the two cases are indeed separable.

When the means are the same. Now consider the case when s1 = s2, and we have |S1| = |S2|.
In this setting, let γ = |S1| = |S2|. Since the multisets are not identical, there must be an index
i ∈ {1, ..., γ} such that in the sorted version of the multisets, the ith element of S1 is different from
the ith element of S2. Let us consider the smallest such index i, and assume w.l.o.g. that the ith
element of S1 (let us call it x1,i) is larger than the ith element of S2 (denoted by x2,i). Furthermore,
Let s1,−i and s2,−i denote the mean of S1 and S2, respectively, after removing the ith element.

Note that if we only had 1-dropouts and 0-dropouts in our GNNs, then finding this index i would
already allow a separation in a relatively straightforward way. Since x1,i > x2,i, we must have
s1,−i < s2,−i. The idea is again to select a threshold value τ such that s1,−i < τ < s2,−i. This
ensures that in S1, at least i of the 1-dropouts produce a 0, whereas in S2, at most i − 1 of the
1-dropouts produce a 0. If the frequency of all 1-dropouts is concentrated around its expectation, then
this shows that the occurrences of 1 will be significantly higher in S2.

What makes this argument slightly more technical is the presence of k-dropouts for k ≥ 2. In order
to reduce the relevance of these cases, we select a smaller p value. In particular, let p = 1

2γ2 . In this
case, the probability of a k-dropout is only

pk · (1− p)γ−k ≤ pk =
1

2k · γ2k
,

and the probability of having any multiple-dropout case in a specific run is at most
γ∑
k=2

(
γ

k

)
· 1

2k · γ2k
≤

γ∑
k=2

γk

2
· 1

2k · γ2k
≤

γ∑
k=2

1

2k+1
· 1

γk
≤ 1

4 · γ2
,

using the fact that
(
γ
k

)
≤ 1

2 · γ
k for k ≥ 2 and the fact that 1

8 + 1
16 + ... ≤ 1

4 .

On the other hand, the probability of a 1-dropout is

p · (1− p)γ−1 =
1

2γ2
·
(

2γ2 − 1

2γ2

)γ−1

,

where one can observe that the second factor is at least 7
8 for any positive integer γ. As such, the

probability of a 1-dropout is lower bounded by 7
16 ·

1
γ2 , i.e. it is notably larger than the cumulative

probability of multiple-dropout cases.

This means that our previous choice of s1,−i < τ < s2,−i also suffices for this general case. In
particular, even if all the multiple-dropouts in S1 produce a mean that is larger than τ , and all the
multiple-dropouts in S2 produce a mean that is smaller than τ , we will still end up with a considerably
larger probability of obtaining a value of 1 in case of S2, due to the 1-dropout of the ith element. More
specifically, the difference between the two probabilities will be at least 3

16 ·
1
γ2 ; using a Chernoff

bound in a similar fashion to before, one can conclude that Ω(γ4 · log t) runs are already sufficient to
separate the two case with error probability at most 1

t .

D.2 Construction for similar mean distribution

Let us now comment on the general case when we have s1 = s2 but |S1| 6= |S2|. We present an
example for two different sets S1 and S2 where the distribution of mean values obtained from 0- and
1-dropouts is essentially identical, thus showing the limits of any general approach that uses mean
aggregation, but does not execute a deeper analysis of k-dropouts for k ≥ 2.

Consider an even integer `, and consider the following two subsets. Let S1 consist of `2 distinct copies
of the number −(` − 1), and `

2 distinct copies of the number (` − 1). Let S2 consist of `
2 distinct

copies of the number −`, and `
2 distinct copies of the number `, and a single instance of 0. These sets

8

provide |S1| = ` and |S2| = `+ 1, and also s1 = s2 = 0. For a concrete example of ` = 4, we get
the multisets S1 = {−3,−3, 3, 3} and S2 = {−4,−4, 0, 4, 4}.

The mean values obtained for 1-dropouts is also easy to compute in these examples. In S1, we have `
2

distinct 1-dropouts with a mean of 1, and `
2 distinct 1-dropouts with a mean of −1. In S2, we have

`
2 distinct 1-dropouts with a mean of 1, and `

2 distinct 1-dropouts with a mean of −1, and a single
1-dropout with a mean of 0.

Note that if we only consider these 0 and 1-dropouts, then the probability of getting a 0 is exactly
the same in both settings. In S1, this comes from the probability of the 0-dropout only, so it is
(1 − p)`. In S2, we have to add up the probability of the 0-dropout and a single 1-dropout: this is
(1− p)`+1 + p · (1− p)` = (1− p)`.
The set of means obtained from 1-dropouts is also identical in the two neighborhoods, it is only their
probability that is slightly different. In S1, both−1 and 1 are obtained with probability `

2 ·p·(1−p)
`−1,

while in S2, they are both obtained with probability `
2 · p · (1− p)

`. Hence the difference between the
two probabilities is only

`

2
· p ·

(
(1− p)`−1 − (1− p)`

)
=
`

2
· p2 · (1− p)`−1 .

Recall that we have Θ(`2) distinct 2-dropouts, each with a probability of p2 · (1− p)`−1, so these
2-dropouts are together easily able to bridge this difference of frequency of the 1-dropouts between
S1 and S2. This shows that we cannot conveniently ignore multiple-node dropouts as in case of
|S1| = |S2| before: the only possible 1-dropout-based approach to separate the two sets (i.e. to use
the slightly different frequency of the values −1 and 1) is not viable without a deeper analysis of the
distributions of 2-dropouts. It is beyond the scope of this paper to analyze this distribution in detail,
or to come up with more sophisticated separation methods based on multiple-node dropouts.

D.3 Aggregation with max

Another well-known permutation-invariant function (and thus a natural candidate for neighborhood
aggregation) is max; however, this method does not combine well with the dropout approach in
practice.

In particular, if the multisets S1 and S2 only differ in their smallest element, then max aggregation
can only distinguish them from a specific (γ − 1)-dropout when all other neighbors of u are removed.
This dropout combination only has a probability of pγ−1 · (1 − p)2; thus for a reasonably small p
(e.g. for p ≈ γ−1), we need a very high number of runs to observe this case with a decent probability.

E Details of the experimental setup

In all of our experiments, we use Adam optimizer [8]. For synthetic benchmarks and graph clas-
sification, we use a learning rate of 0.01, for graph property regression we use a learning rate of
0.001. For graph classification benchmarks we decay the learning rate by 0.5 every 50 steps [15]
and for the graph regression benchmark we decay the learning rate by a factor of 0.7 on plateau
[10]. The GIN model always uses 2-layer multilayer perceptrons and batch normalization [7] after
each level [15]. For our dropout technique, during preliminary experiments we tested three different
node dropout implementation options: i) completely removing the dropped nodes and their edges
from the graph; ii) replacing dropped node features by 0s before and after each graph convolution;
iii) replacing the initial dropped node features by 0s. These preliminary experiments showed that
all of these options performed similarly in practice, but the last option resulted in a more stable
training. Since it is also the simplest dropout version to implement we chose to use it in all of our
experiments. To ensure that the base model is well trained, when our technique is used we apply an
auxiliary loss on each run individually. This auxiliary loss comprises 1

3 of the final loss. While our
model can have O(n) memory consumption if we execute the runs in sequence, we implement it in
a paralleled manner, which reduces the compute time, as all r runs are performed in parallel, but
increases memory consumption.

For the synthetic benchmarks (LIMITS 1, LIMITS 2, 4-CYCLES, LCC, TRIANGLES, SKIP-CIRCLES)
we use a GIN model with 4 convolutional layers (+ 1 input layer), sum as aggregation, ε = 0 and for

9

simplicity do not use dropout on the final READOUT layer, while the final layer dropout is treated as
a hyper-parameter in the original model. For synthetic node classification tasks (LIMITS 1, LIMITS
2, LCC, and TRIANGLES) we use the same readout head as the original GIN model but skip the
graph aggregation step. In all cases, except the SKIPCIRCLES dataset, 16 hidden units are used for
synthetic tasks. For the SKIPCIRCLES dataset we use a GIN model with 9 convolutional layers (+ 1
input layer) with 32 hidden units as this dataset has cycles of up to 17 hops and requires long-range
information propagation to solve the task. For the DropGIN variant, mean aggregation is used to
aggregate node representations from different runs. When the GIN model is augmented with ports,
which introduce edge features, we use modified GIN convolutions that include edge features [6].
In synthetic benchmarks, we always generate the same number of graphs for training and test sets
(generate a new copy of the dataset for testing) and for each random seed, we re-generate the datasets.
We always feed in the whole dataset as one batch. LIMITS 1, LIMITS 2 and SKIP-CIRCLES datasets
are always comprised of graphs with the same structure, just with permuted node IDs for each dataset
initialization, the remaining datasets have random graph structure, which changes when the datasets
are regenerated. You can see the synthetic dataset structure type and statistics in Table 5. All nodes in
these datasets have the same degree.

Dataset Number of graphs Number of nodes Degree Structure Task

LIMITS 1 [3] 2 16 2 Fixed Node classification
LIMITS 2 [3] 2 16 3 Fixed Node classification
4-CYCLES [9] 50 16 2 Random Graph classification
LCC [13] 6 10 3 Random Node classification
TRIANGLES [13] 1 60 3 Random Node classification
SKIP-CIRCLES [1] 10 41 4 Fixed Graph classification

Table 5: Synthetic dataset statistics and properties.

For graph classification tasks we use exactly the same GIN model as described originally and apply
our dropout technique on top. Namely, with 1 input layer, 4 convolution layers with sum as aggregation
and ε = 0 and dropout [14] on the final READOUT layer. For the DropGIN variant, mean aggregation
is used to pool node representations from different runs. Note, that in our setting sum and mean
aggregations are equivalent, up to a constant multiplicative factor, as the number of runs is a constant
chosen on a per dataset level. We use exactly the same model training and selection procedure as
described by [15]. We decay the learning rate by 0.5 every 50 epochs and tune the number of hidden
units ∈ {16, 32} for bioinformatics datasets while using 64 for the social graphs. The dropout ratio
∈ {0, 0.5} after the final dense layer the batch size ∈ {32, 128} are also tuned. The epoch with the
best cross-validation accuracy over the 10 folds is selected. You can see the statistics of synthetic
datasets in Table 6.

Number of nodes Degree

Dataset Number of graphs Min Max Mean Min Max Mean

MUTAG 188 10 28 18 3 4 3.01
PTC 344 2 64 14 1 4 3.18
PROTEINS 1109 4 336 38 3 12 5.78
IMDB-B 996 12 69 19 11 68 18.49
IMDB-M 1498 7 63 13 6 62 11.91

QM9 130 831 3 29 18 2 5 3.97

Table 6: Real-world dataset statistics.

For the graph property regression task (QM9) we augment two models: 1-GNN [10] and MPNN [4].
For 1-GNN we use the code and the training setup as provided by the original authors1. For MPNN
we use the reference model implementation from PyTorch Geometric 2. We otherwise follow the
training and evaluation procedure used by 1-GNN [10]. The models are trained for 300 epochs and
the epoch with the best validation score is chosen.

We use PyTorch [11] and PyTorch Geometric [2] for the implementation. All models have been
trained on Nvidia Titan RTX GPU (24GB RAM).

1https://github.com/chrsmrrs/k-gnn
2https://github.com/rusty1s/pytorch_geometric/blob/master/examples/qm9_nn_conv.py

10

https://github.com/chrsmrrs/k-gnn
https://github.com/rusty1s/pytorch_geometric/blob/master/examples/qm9_nn_conv.py

References
[1] Z. Chen, L. Chen, S. Villar, and J. Bruna. On the equivalence between graph isomorphism

testing and function approximation with gnns. Advances in neural information processing
systems, 2019.

[2] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

[3] V. Garg, S. Jegelka, and T. Jaakkola. Generalization and representational limits of graph neural
networks. In Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 3419–3430. PMLR, 13–18 Jul 2020.

[4] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In International Conference on Machine Learning (ICML), Sydney,
Australia, Aug. 2017.

[5] F. Harary. A survey of the reconstruction conjecture. In R. A. Bari and F. Harary, editors,
Graphs and Combinatorics, pages 18–28, Berlin, Heidelberg, 1974. Springer Berlin Heidelberg.
ISBN 978-3-540-37809-9.

[6] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec. Strategies for
pre-training graph neural networks. arXiv preprint arXiv:1905.12265, 2019.

[7] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456.
PMLR, 2015.

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR (Poster), 2015.

[9] A. Loukas. What graph neural networks cannot learn: depth vs width. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,
2020.

[10] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe.
Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 4602–4609, 2019.

[11] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. arXiv preprint arXiv:1912.01703, 2019.

[12] R. Sato, M. Yamada, and H. Kashima. Approximation ratios of graph neural networks for
combinatorial problems. In Neural Information Processing Systems (NeurIPS), 2019.

[13] R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural networks.
In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pages
333–341. SIAM, 2021.

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The journal of machine learning research, 15
(1):1929–1958, 2014.

[15] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019.

11

	Concrete GNN representations for the examples
	Required number of runs
	Expressiveness with sum aggregation
	Proof of Theorem 3
	Proof of Theorem 4
	Briefly on the graph reconstruction problem

	Dropouts with mean or max aggregation
	Proof of Lemma 1
	Construction for similar mean distribution
	Aggregation with max

	Details of the experimental setup

