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A THEORETICAL ANALYSIS

Given an undirected unweighted graph G = (V, £, A, T), the inference problem is to approximate a
conditional probability defined as Eq. [6]

0 = arg max P(Y|T,A) (6)
g, T

Let T and A represent textual and topological features respectively, which are statistically dependent.
g, refers to the parameters in GCN and LLM to be optimized.

Theorem A.1 Given a markov data processing pipeline T — (X, A) — H — Y, we show that a
residual connection from text embedding X to the final prediction Y increase the mutual information
I1;v).

Proof of the Theorem [A.T|Proof. To simplify the objective without compromising the conceptual
integrity, we rewrite Eq. [6|using notion of mutual information. Next, we want to find a formula that
connects the information from Y and 7' before and after the residual connection.

To begin, given the data processing markov chain ' — (X, A) — H — Y, where A is statistically
dependent from 7T'. Using chain rule of mutual information, we have:

I(T;Y)=IT;H)+ I(T;Y | H) 7
Since T" and Y are conditionally independent given H, we have:
I(T;Y |H)=0 (3)
Thus:
I(T;Y) = I(T; H) ©
In second case, with residual connection from X — Y
I'(T;Y)=I(T;H,Y) (10)
=I(T;H)+ I(T;Y | H) (11)
=I(T;H) + I(T;Y,X|H) - I(T; X | H) (12)
— [Ty H) + [(T: X | H) + [(T;Y | X, H) — [(T; X | H) (13)

For I'(T;Y) > I(T;Y), the following condition must hold:
I(T;Y | X,H) >0 (14)

which means that when X gives you additional predictive power about Y beyond what you would
know just from H.

Theorem A.2 Given positive and negative samples follow two Gaussian distributions with the same
variance, we show that estimated Hits@ I and MRR are equivalent.

Proof of the Theorem[A.2]

Proof. To simplify the objective without compromising the conceptual integrity, we rewrite two
metrics using the Gaussian distribution notion. Next, we want to find a formula connecting their
derived forms.

Positive samples: Let the distribution be N'(—m, o%), where m is the mean and o is the variance.
Negative samples: Let the distribution be N'(m, ), where m is the mean and o2 is the variance.

We further unfold two Gaussian distribution’s probability density functions (pdfs): The PDF of the
positive samples is:

1 (x+m)?
o) = s (<52 =
The PDF of the negative samples is:
1 (z —m)?
Jneg() = J2na? exp (_W> (16)
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Estimating Hits@1 It can be interpreted as the probability that a randomly chosen sample from one
distribution will have a higher score than a randomly chosen sample from the other distribution. i.e.
we need to find:
P(Xneg > Xpos) (17)

We derive the above equation in the form of error function:

D = Xoeg — Xpos (18)
Then D is also normally distributed because it is a linear combination of two normal variables:

D ~ N (2m,20%) (19)
The mean of D is 2m, and the variance of D is 2¢2.

The Hits@1 is essentially the probability that the difference D is greater than 0:

D—-2m _ 0—-2m
P(D>0)=P > (20)
( ) ( V202 V202 )
This can be rewritten in terms of the standard normal distribution ®(-):
2m m
P(D>0)=a :<I>(—\/§) 21)
(>0 () =0 (%
where ®(-) is the cumulative distribution function (CDF) of the standard normal distribution.
Therefore, Hits@1 can be estimated as:
Hits@1 ~ & (T\/i) 22)
o

Estimate MRR in Generalized Form To estimate the value of the MRR given the means and
variance of the two Gaussian distributions for positive and negative samples, The MRR is calculated
as:

11
MRR = — 23

N ; rank; 23)
where rank; is the position of the correct answer for the ¢-th query.

The probability that a positive sample has rank r can be approximated by the probability that it is
ranked higher than exactly » — 1 negative samples:

N
P(rank =r) = (T _egl)p’"‘l(l — p)Nuee=(r=1) 24)

To align with the notion in Hits@ 1, we approximate the rank distribution using a Gaussian approxi-
mation to the binomial distribution.

Using the normal approximation to the binomial distribution:

1 2
exp <_(T1NHE‘=JU)) 7 (25)

P(rank = r) = 552
o

1
V2ro?
where 0% = Npegp(1 — p).

The MRR is the expected value of the reciprocal of the rank. Therefore, we can rewrite MRR by
substituting the Gaussian approximation for P(rank = r) as:

Nneg 2
1 1 — 1 — Npeo
MRR =~ Z - exp (_(Tm,ap)) . (26)
=1 7 V27 Nuegp(1 = p) 2Nnegp(1 = p)
For large Nyg, we can approximate the sum as an integral:
N, 2
e ] 1 —1-N,
MRR ~ 2 exp (w) dr. 7
1 7 \/27 Npegp(1 — p) 2Nnegp(1 — p)
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Define:

—1— Npe

Nnegp(]- - p)
Then, the integral can be further simplified:

Nieg (1—p)—1
— 2
MRR ~ [ V77 ! L o7z (29)
ettt (2/NoegD(1 = ) + Nuggp +1) V21

1

under the standard
2/ Nuegp(1—p)+ Noegp+1

The integral represents the expectation of the function

M)

z

normal distribution e~ = .

For large Ny, the term zy/Nyeep(1 — p) can be neglected comparing to Nyeop, SO We approximate
the denominator as:

~ Nnegp. (30)
Thus, the MRR approximately simplifies to:
1 / <1 =2 1
MRR =~ ——e Tdz=——. (31)
Nnegp oo V2T Nnegp

Therefore, the approximate value of MRR is:

MRR =~ L (32)
Noeg® (2/2)

This provides a reasonable approximation of MRR given the Gaussian-distributed ranks for large
Nieg- Thus we proved Theorem[A.2]

Theorem A.3 For any node pair (i, j), the approximation error of [He; Hr| — He 4+ Hy decreases
as the number of nodes increases. We this by analyzing the distribution of the two random variables
H¢ and Hrp, and show that they have very limited overlapping.

Proof of the Theorem Given a graph with N nodes, and consider arbitrary pairs of nodes (3, 7).
According to (Mao et al., 2023) Lemma 2 (Incompatibility between LSP and FP factors). For
any 6 > 0, with probability at least 1 — 24, we have:

c ,

Nij = +N(1+e¢), <0 (33)
1— By
%mj—N+1_Cﬂ“:Ne, ¢>0 (34)
¥
oy - N+ —) = (35)
N\ 1= Bij —°

where 7);; and (3;; are the number of common neighbor nodes and feature proximity between nodes
i and j, respectively. We normalize 7;; by dividing both sides by N, ¢/ < 0,¢ > 0,c = —¢’ is an
independent variable that does not change with 3;; and 7;;.

We derive this lemma in the notion of He and Hy first. We rewrite Lemma 1 as following: For any
& > 0, with probability at least 1 — 29, we have:
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1 c
Pll~(n;,-N 1-
H - (n” - ﬂij) <e] ~1-2 (36)
Sdim P |2 (g = N <el=1 37)
Ngnoo N 771] 1—5” ‘=
Sodim = (- N+ —S ) =0 (38)
NgnooN K 1—61‘]‘ B
. c o
4>1\%£§>o<nijN+1—6ij>o 39)
c
—n; — N + =0 (40)
! 1—Bij

Then, let’s analyse the distribution of 7;; and 3;;. We derive the distribution of 7;; using the Lemma

11.9 in Brede (2012). For each node, there are ("’;1) pairs of others with which it could form a
common neighbor, and each common neighbor is present with probability ﬁ, for an average

2
of ¢ common neighbors per node. Each common neighbor contributes two edges to the degree, so
the average degree is 2c. The probability p; of having ¢ common neighbors follows the binomial

distribution: ( 71> .
_ n 9 " B n=1y_; e g
pt—( ; )p(l Pl )t~ i
where c is the mean degree, the final equality is exact in the limit of large n. The original probability
distribution is given by:

7cct

t!

Pt =

Using Stirling’s approximation for large ¢, we have:

¢
t

t! ~ \2mt ()
e

Substituting Stirling’s approximation into the original distribution:

e~¢ct

VLR ————
Vart ()
Simplifying further, we obtain:

6iffcct

N T

We aim to find the distribution of 3;; = 1 — n?__ . In terms of «, we can write this as:
i

5 c
Nij = 7%
Y- j
To simplify the derivation we write 7j;; as « and 3;; as 3. The chain rule of probability for transfor-
mations states that, if X is a random variable with a known distribution, and we have a transformation
Y = g(X), then the probability distribution of Y can be found as:

dzr
py (y) = px () a|
where % is the derivative of the inverse transformation.
c c
= 1 —_ = - N - .
g N —« @ 1-p
The derivative of o with respect to f3 is:
do B c
ag  (1-p8)*
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Substituting the Poisson distribution for p(«):

t
_.C
pla=t)=e e
where t = < 5 So, for each value of 3, the probability is:
clfﬁ c
p(B) =e © . .
R PR TR (e
1-5
The final probability distribution for /3 after applying the chain rule can be written as:
cTF ¢
p(B) =e* . :
R G (e
-5

Then we discuss about the behaviors of these two distributions. « follows a Poisson distribution

where the mean and variance are both ﬁ a is the mean degree. Let’s analyze the behavior of 3

in the range 8 € [0, 1) for the distribution:

6*0+ﬁ

c
pip)~ 271'1:8 . 1-p)%

We’ll explore its behavior across the full range 8 € [0, 1). The distribution consists of three primary
terms: Exponential term: e cta, Square root term: L__ Rational term: ﬁ When

27 12/3
8 — 0, we have 1 — 8 ~ 1. Therefore, the terms simplify as:
1 c c
p(0) ~ = =
V2mce V2me 2w
When 5 — 1, 1 — § becomes very small, and each term behaves as follows:

p(1) = 0.
For intermediate values of 3, the behavior depends on how the three terms interact. The rational
term ﬁ increases as /3 approaches 1, while the exponential term eT=# grows very rapidly for
large 8. Together, these terms initially cause an increase in p(53), but the exponential decay from
e~ ¢ causes the distribution to eventually decrease and approach 0 as 5 — 1. Given the behavior of
the distribution over 8 € [0, 1), we can approximate it in two regimes: Near 5 = 0, the distribution
behaves approximately like:
Ve

This is a constant value for small 8. Near 8 = 1: The distribution decreases rapidly due to the
exponential term. For large 3, we can approximate:

c e
p(B) ~ e TR
(1-p)?
This approximation shows that the distribution approaches 0 as 3 nears 1. This analysis shows that the
distribution is monotonically decreasing as  approaches 1, after an initial phase where it remains
approximately constant for small 5. Thus, the distribution between these two variables has limited
overlap.

B EXPERIMENT SETTING & HYPER PARAMETER RANGE

B.1 TRAINING SETTING

In all Graph-agnostic, LLM-agnostic and proposed approach, we leverage binary cross entropy

defined as:
Lw)=- > logo(h,,h,)— > log(l—o(h;hy)).
(i,7)€ET (i,j)€E~
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where h; and h; are the node embeddings; (-, -) denotes the computation of the inner product; Eye,
stands for the negative samples, where o is the sigmoid function, and £ is the set of observed edges
in the graph. The loss is optimized using the Adam optimizer |Kingma & Ba|(2014). During training
we randomly sample one negative sample per positive sample. For GCN category, all models are
trained for a maximum of 2000 epochs.

B.2 EXPERIMENT AND TUNING DETAILS

We present the hyperparameter searching range in Table[2] and Table[3]

For the smaller graphs, Cora, Pubmed and Arxiv_2023, we utilize the following hyper-parameter
search space. However, it’s not feasible to tune over such large space for larger datasets. We utilize
the average value of each optimized value from Cora, Pubmed, Arxiv_2023.

GCN (Kipf & Welling, |2016), GAT (Velickovic et al.,2017), GraphSAGE Hamilton et al. (2017):
learning rate: [0.01, 0.001, 0.0001], batch size: [27, 2%, 27, 210, dropout for hidden layer: [0.1, 0.3],
weight decay: [1e-4, 1e-6], number of gen layers: [1, 2, 3], number of mlp layers: [1, 2, 3], number
of hidden layers: [2°, 27, 28], dimension of output layer of gen: [2°, 27, 28]. Similar to (Chamberlain
et al.| 2023)) we utilize a full adjacency matrix and remove the target link.

NCNC (Wang et al., 2023): Our full list of hyperparameter for NCNC are: feature dropout: [0.0,
0.3, 0.7], Ir for gnn: [0.001, 0.0001], Ir for predictor: [0.001, 0.0001], hiddim dim: [64, 256], dropout
for gnn: [0.0, 0.2, 0.5], dropout for dp: [0.0, 0.05], gnnlr: [0.001, 0.0001], prelr: [0.001, 0.0001],
batch_size: [27, 28, 29, 219]. We transferred the experiment setting from Wang et al. (2023) into
our benchmark, including removing the validation edge during training, rest parameters, and JK
connection.

NeoGNN (Yun et al.,|2021): hidden channels: [64, 128, 256, 512, 1024, 2048, 4096, 8§192], num of
layers: [1, 2, 3, 4], number of mlp layers: [1, 2, 3, 4], dropout’: [0, 0.1, 0.2, 0.3, 0.4, 0.5], batch size:
[128, 256, 512, 1024], learning rate: [0.01, 0.001, 0.0001]. We transferred the experiment setting
from the original paper.

SEAL (Zhang et al., 2020): hidden channels: [32, 64, 128, 256], batch size: [32, 64, 128, 256],
Ir: [0.001, 0.0001]. We transferred the experiment setting from the original paper, including text,
structure embedding and

BUDDY: hidden channels: [128, 256, 512], batch size: [512, 1024], learning rate: [0.01, 0.001,
0.0001], maximum of hash hops: [1, 2, 3], dropout for label: [0.1, 0.5], dropout for feature: [0.1, 0.3,
0.5], dropout of sign: [0.1, 0.3, 0.5, 0.7]. We transferred the experiment setting from the original
paper, including text, structure embedding, and utilizing valid edge during training.

HLGNN [Zhang et al.| (2024b): hidden channels: [128, 256, 512, 1024, 2048, 4096, 8192], batch
size: [128, 256, 512, 1024], learning rate: [0.01, 0.001, 0.0001], Initial parameter: [0.1, 0.2, 0.3,
0.4, 0.5], 5 initialization: [RWR, KI], number of MLP layers: [2, 3, 4], dropout: [0.1, 0.2, 0.3, 0.4,
0.5, 0.6]. We transferred most experiment settings from the original paper, excluding the data split
method and split ratio. We split the edges randomly while the original paper split it based on local
structure. The original paper’s split rate is 5%, 10% and 84% for test/valid/train edges. Ours is 5%,
15% and 80%.

MiniLLM (Reimers & Gurevych,2019a): We leverage the [EOS] token in LLaMA3 and the [CLS]
token in sentence embedding models as node features. We froze the layer up to the 6-th encoder
layer in MiniLM (Reimers & Gurevych, 2019a); The utilized feature dimension, feat shrink, is set to
768. We use ‘sentence-transformers/all-MiniLM-L6-v2° from Reimers & Gurevych|(2019b). For
training, the parameters include an attention dropout rate of 0.1, a batch size of 128, a classification
dropout rate of 0.0, and a general dropout rate of 0.1. The model is trained for 250 epochs, with
evaluation patience set to 1. Gradient accumulation steps are set to 1, and the learning rate is 0.0001.
The warmup period is set to 0.6 epochs, and weight decay is set to 0.0.

eS-large (Wang et al., 2022): We frozen up to 23-th encoder layer in e5-large and fine-tune rest
layers. The utilized feature parameters dimension, feat shrink is 768. For training, the parameters
include an attention dropout rate of 0.1, a batch size of 128, a classification dropout rate of 0.4, and a
general dropout rate of 0.3. The model is trained for 250 epochs, with evaluation patience set to a
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very large number (effectively disabling early stopping). Gradient accumulation steps are set to 1, the
learning rate is 0.0001. The warmup period is set to 0.6 epochs, and weight decay is set to 0.0.

MPNet (Song et al., 2020): Same as Minilm, we use CLS token embedding, we frozen up to 32-th
layer in Mpnet and fine-tune the rest layers. Feat shrink, is 768. The model name is ‘sentence-
transformers/all-mpnet-base-v2°‘ from Reimers & Gurevych|(2019b). For training, the parameters
include an attention dropout rate of 0.1, a batch size of 256, a classification dropout rate of 0.4, and a
general dropout rate of 0.3. The model is trained for 250 epochs, with evaluation patience set to a
very large number, effectively disabling early stopping. Gradient accumulation steps are set to 4, and
the learning rate is 0.0001. The warmup period is set to 0.6 epochs, and weight decay is set to 0.0.

PLM-Inf-MLP: We utilize BERT, MiniLLM, e5-large and Llama 3 8B as inference models to only
embed text without training.

FT-PLM-MLP: We use the above parameters to find these sentence transformers followed by an
MLP.

PLM-Inf-GCN: This setting requires two separate steps. First, we embed the raw text with the above
sentence transformers with given parameters and save the embedded text as original node features. In
the second step, we load this embedded text as node features to aggregated features using different
GCNs with the same setting as above.

FT-PLM-GCN: We leverage the same fine-tuned setting, the same parameters of sentence trans-
formers and GCNs as above. We use the same split and full adjacency matrix during the training as
category GCNss.

LMGJOINT: We utilize the same fine-tuned setting of Mpnet, Minilm, and e5-large in our proposed
method without any additional parameter tuning, We leverage the same data split and full adjacency
matrix for common neighbor and GCN, validation edge during training. In addition, the same
parameters for optimizer and GCNs from (Kipf & Welling| [2016). The parameters for GCN are listed
below: an input channel size of 1433, a hidden channel size of 256, and an output channel size of
32. It consists of 1 multi-layer perceptron (MLP) layer and 3 such graph convolution layers. We
only tune the parameters for the optimizer including learning rate, batch size and weight decay. The
weight of the soft common neighbor is tuned to be 0.1.

B.3 LLM FINE-TUNE DETAILS

We leverage the [EOS] token in LLaMA3 and the [CLS] token in sentence embedding models as node
features. We frozen the layer up to 6-th encoder layer in MiniLM (Reimers & Gurevych|[2019a); up
to 32-th layer in Llama3 (Dubey et al., [2024); up to 12-th encoder layer in BERT and up to 23-th
encoder layer in e5-large (Wang et al.| [2022).

C HARDWARE SPECIFICATION

We run experiments on our benchmarks with an Horeka Cluster, which features an 20-core CPU, 140
GB Memory and a Nvidia A100 GPU with 40 GB GPU Memory.

C.1 COMPLEXITY ANALYSIS: DETAILS

LLM Complexity Analysis Transformer-based LLM’s time complexity is O(I/(Nh? + N2h)), with
space complexity O(l x H?), where N, h, I, D}, denotes sequence length, token hidden dimension,
number of transformer layers, dimension of each attention head.

GNN Complexity Analysis: Given a graph § = (A, X), the complexity of an L -layer GCN
is Ly x (O(dhN) + O(whN)), where 0 < d < 1, and d, h, N, w denote the average degree,
dimension of node features, number of nodes, and dimension of hidden channels, respectively. For
a large-scale graph as N — oo, and assuming the average in-degree is relatively small, the leading
term is O(LyNhw). In most experiments, we have seen a stabilizing performance achieving the
peak within 3 layers. So we may choose to fix a number L, = 3 of layers to perform. We rewrite
O(LgNhw) as O(hRNW'), where W serves as a composite indicator encapsulating the complexity of
the GCN. Thus, the computation complexity for forward feature aggregations and backward gradient

21



Under review as a conference paper at ICLR 2025

aggregations is approximately O(2hNT) per epoch. The complexity of the GCN is influenced by
the previous LLM solely through the parameter h.

LLM as static embedder: Suppose N is the total number of nodes and the average sequence length
is S. The time complexity of encoding all graph features is O(I(h> NS + hIN252)), which increases
quadratically with the graph size (number of nodes) but is independent of the graph density (number
of edges).

LLM-as-predictor: In this scenario, the LLM’s embeddings are directly connected to an MLP with
m layers and p neurons. The total complexity is O({(h2N S + hN25%)) + O(N?(2hp + mp?)).
Since m is typically small (m < 3) and the optimal range for p is between 2° and 27, the expression
can be conventionally simplified to O(IhN25% + N?mp?), isolating the dominant term and ignoring
constant factors.

LLM-GCN nested architecture: Similar to the LLM-as-predictor approach, we incorporate a GCN
between the LLM and MLP as a subsequent structure embedder, resulting in a training complexity of
O(IhN?S? + N2?mp? +2hNW). As N and S approach infinity, we can disregard the less significant
terms O(2hNW + N2mp?), given that the GCN does not substantially contribute to computational
overhead and the MLP can be effectively replaced by a dot product without appreciable loss in
performance or increase in latency. This simplifies the complexity to O(IhS?N?).

D CHOICES OF METRICS: DETAILS

Training Time (Iog10(Sec/Epoch)) 100 x faster
= Mem(Gh)
VRAM(Gb)

The work |Hu et al.|(2021) has suggested different metric
for each dataset. It including Mean Reciprocal Rank
(MRR), Hits@K, and area under the curve (AUC) from
recommendation system, knowledge graph completion
and graph embedding respectively.

0.5 xvRAM

MRR, calculates the average reciprocal rank of the true
positive among negative candidates. Yet, a significant
challenge arises due to the fact that most datasets do not
provide pre-defined negative samples, resulting in high it mLMET ours  LLMFT
computational costs for evaluation. Categories

Training Time (log10(Sec/Epoch))
" Mem(Gb) / VRAM(G)

AUC is a scale-invarint metric, measuring the area
beneath the FPR-TPR curve at various thresholds, a
model’s ability to distinguish between positive and nega-
tive edges, i.e., p(pos) > p(neg). However, as dominant
algorithms have approached 95%, AUC’s d1scqm11;at1ve per epoch (log scale), while the right y-
power has. I}eared saturation. AUC gauges the likelihood ..o displays memory usage and VRAM in
that a positive sample is ranked higher than a randomly _;
. gigabytes (Gb).
selected negative sample.

Figure 4: Comparison of training time (log-
scale), memory usage and VRAM across
different training categories. The left y-
axis shows the training time in seconds

1
AUC = Dol 01| Z Z 1(R; < Rj) (41)

1€Dg jED,

In this context, Dy denotes the set of positive samples, D; is the set of negative samples, and R;
represents the rank of the i-th sample. The indicator function R; < R; equals 1 if R; < R;, and 0
otherwise.

Hits@K, quantifies the ratio of positive edges ranked within the top K positions. However, due to the
lack of scale invariance, Hits@50 is usually reported for smaller datasets while Hits@ 100 for larger
graphs. The choice of K significantly impacts model ranking, introducing a subtle yet important bias.
While Hits@1 can help bridge this gap, due to the limited performance of current algorithms, it is
highly sensitive to variance and hyper-parameters.

N
, 1
Hits @k = — ; 1(rank; < k) (42)

Here, R; represents the rank of the i-the sample, and I(R; < K) is an indicator function, taking the
value 1 if R; < K, and O otherwise.
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Generalized MRR however, can be conveniently applied without aligning the source node, i.e.
randomly sampling both positive and negative candidates. In this context, MRR evaluates the
model’s capacity to rank all positive samples above all negative ones, particularly distinguishing
weak positives from strong negatives, rendering it one of the most stringent metrics available. Its
performance is notably correlated with Hits@ 1, we leverage MRR in this setting to reduce evaluation
cost and assess the performance ceiling of the most competitive models.

Mean Reciprocal Rank (MRR): This metric represents the mean of the reciprocal rank across all
positive samples. Here, R; signifies the rank of the i-th sample.

1 L1 1 1
SN2 Ri=— 43
NZ ; N;ranki “3)

i=1 "

For the datasets Cora, Citeseer, and Pubmed, due to the relatively small number of negative samples
used in the evaluation (e.g., approximately 500 negatives for Cora and Citeseer), K = 100 is
insufficient to differentiate between models such as GCN, GCN4LP, and LLM-related models.
Therefore, we employed Hits@50 and MRR. When comparing the best models from LLM and
GCN4LP, we use MRR.

We then prove that MRR in this setting is statistically linear dependent on Hits@1. See Section[A.2]

E ERROR ANALYSIS

Type I

Source Paper

Target Paper

Note

Ex 1

Title: How Useful are Educational Questions Gen-
erated by Large Language Models? Abstract: Con-
trollable text generation (CTG) by large language
models has a huge potential to transform educa-
tion for teachers and students alike. ...The re-
sults demonstrate that the questions generated are
high quality and sufficiently useful, showing their
promise for widespread use in the classroom setting.

Title: Opportunities and Risks of LLMs for Scalable
Deliberation with Polis Abstract: Polis is a platform
that leverages machine intelligence to scale up delib-
erative processes. In this paper, we explore the op-
portunities and risks associated with applying Large
Language Models (LLMs) towards challenges with
facilitating, moderating and summarizing the results
of Polis engagements.. .. Finally, we conclude with
several open future research directions for augment-
ing tools like Polis with LLMs.

Type II

Source Paper

Target Paper

Note

Title: Learning By Error-Driven decomposition
Abstract: In this paper we describe a new self-
organizing decomposition technique for learning
high-dimensional mappings. Problem decomposi-
tion is performed in an error-driven manner, such
that the resulting subtasks (patches) are equally well
approximated. ... The appropriateness of our gen-
eral purpose method will be demonstrated with an
example from mathematical function approxima-
tion.

Title: Exploration and Model Building in Mobile
Robot Domains Abstract: I present first results
on COLUMBUS, an autonomous mobile robot.
COLUMBUS operates in initially unknown, struc-
tured environments. Its task is to explore and model
the environment efficiently while avoiding colli-
sions with obstacles. ... COLUMBUS operates in
real-time. It has been operating successfully in an
office building environment for periods up to hours.

data noise

Table 4: Examples of Type I (predict yes when no) and Type II (predict no when yes) returned from
Llama. Correct keywords are written in blue and the captured feature words in the question are
written in bold.

Given the promising performance of Llama 3, we conducted an error analysis to better understand
its underlying mechanisms in link prediction. As shown in Table |4, we observed that Llama 3 tends
to be sensitive to highly selective keywords and phrases but struggles to capture lexical variations
and semantic relationships. We identify two types of errors: Type I and Type II. Type II errors
are primarily caused by insufficient text; for example, without a connected database, mobile robot
domains may be incorrectly predicted as irrelevant to error-driven decomposition. Additionally,
papers cited in numerical methods, introductions and experiments may exhibit subtle or invisible
textual and lexical relevance. In this context, structural features may play a critical role.

23



Under review as a conference paper at ICLR 2025

F LMGIJOINT: DETAILS

F.1 PSEUDOCODE & PIPELINE

In Fig. [T|we visualize LMGJOINT described in Section[d] We also give its pseudocode in Algorithm

Algorithm 1: method: Framework for Link Prediction in Text Attributed Graph
Input: (A, X, T, Y, Ewain)
Graph Adjacency Matrix A € {0,1}™*™, Init Node Feature X;
Node Feature In Raw Text T';
Set of positive and negative edge Labels Y € {1,0};
Labeled positive and negative Edges £, €. € € = {(vi,v;) T (V x V)};
Hyper-parameters: Dropout Rate; Dimension of Feature Embedding p;
Model Parameters: PLM: W, € RF*P; GCN: Wg e RP* VI
Output: Edge class label vector Y; ;
begin
/+ All new variables defined below are initialized as zero x/

/* Stage S1l: Text Embedding =/

for (7‘ 7-]) € gjrain U g;aln dO

x! o (Wct;)

x; + 0(Wct;) /+ Textual Embeddings are stored in the matrix X' «/

/+ Stage S2: Neighborhood Aggregation =/

/% Calculate Embedding for wv; and v; and their Structural
Proximity =/

Xi < XlT

xj<—x]T /* Replace x;,x; of current link with Textual Embedding
xiT,x]T */

for k + 1to K do
/* symmetric degree-normalization of matrices S=D zAD: */
HY + SXWg /+ Final node embedding is HE «/

H” = f (AL,XWq)
/+ Stage S3: Structural Feature Embedding =/

A + dropout(A)

/* Calculate Common Neighbor for wv; and wj */

HY « I[SUM(A; ® A;) >d] >0

/+x I is a element-wise indicator function for matrix =/

/+ Pairwise Text Feature Proximity in Dot Product =/
ST =wWX! oX])

/* Structural and Textual Feature Concatenation x/
R« (H" || S" + pHC) /* B: weight of Structural Proximity =/
R+ (R-,Ry)
/+ Stage S4: Binary Classification =/
R « dropout(R)
for (i ,j) € Erese do
pi; < softmax(r;; W);
Y, ; «+ argmax(p;;) /* edge label =/

G PROPOSED DATASET: DETAILS

We provide the resource of collected datasets in Table[6]and systematic graph statistic in Table [3]
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Table 5: Statistics of proposed dataset.

Pwc_small Cora PubMed Arxiv_2023 History Photo Pwc_medium Ogbn_arxiv Citationv8 ogbn-papers100M

#Nodes [V| 140 2708 19717 46198 36655 47420 86795 169343 1106759 111059956
#Edges |£| 798 10858 88648 77726 496248 872602 933411 2315598 12227452 1615685872
File Size (Mb) 0.139 257 3101 57.26 5712 3744 99.58 190.27 1034.18 57344.12
#Split R R R R R R R R R R

Avg Deg (G) 8.51 11.63  19.27 44.38 4726 108.95 614.64 330.02 74.28 68.23
Avg Deg (G2) 8.01 8.15 10.56 26.33 4383  66.13 206.03 153.62 51.49 57.59
Clustering 0.22 0.24 0.06 0.13 0.28 0.38 0.13 0.20 0.13 0.18
Shortest Paths 3.47 6.31 6.34 6.06 5.38 4.76 4.23 5.58 592 6.02
Transitivity 0.22 0.09 0.05 0.04 0.17 0.12 0.01 0.02 0.03 0.01
Deg Gini 0.41 0.41 0.60 0.82 0.70 0.64 0.62 0.63 0.58 0.69
Coreness Gini 0.26 0.21 0.39 0.75 0.60 0.47 0.40 0.48 0.40 0.57
Heterogeneity -0.08 0.13 0.22 0.70 0.38 0.30 0.78 0.70 0.36 0.58
Power Law o 1.99 2.39 2.66 2.90 1.83 1.64 1.83 1.73 1.77 1.78
Edge Homophily 0.61 0.51 0.27 0.88 0.44 0.36 0.59 0.50 0.64 0.82
Jensen-Shannon 0.27 0.23 0.18 0.30 0.18 0.24 0.29 0.30 0.27 0.26
Mean Length 162 165 282 209 264 168 190 198 161 173

Table 6: M: million (10°®). The sampling rate for all datasets is at 5 minutes level.

Released Source Dataset Nodes Edges  Degree Min-Max Mean Data Points
Ours PwC_small 140 798 851 79-293 162 0.139M
Xiaoxin He et. al. [He et al. [(2023) Cora 2708 10858 11.63 8-929 165 2.57TM
Xiaoxin He et. al. |He et al. (2023) Pubmed 19717 88648 1927 4-994 282 31.01M
Xiaoxin He et. al. |He et al. ((2023) Arxiv_2023 46198 77726 1289 7-1617 209 57.26M
Li, Zhuofeng et al. |Shchur et al.|(2018) Photo 47420 872602 10895 4-7281 168  37.44M
Li, Zhuofeng et al.(Li et al.,[2024) History 36655 496248  47.26 42-329 264 42.16M
Ours PwC_medium 86795 933411 73 16-610 190  99.58M
Weihua Hu et. al. [Hu et al.|(2021) Ogbn-Arxiv 169343 2315598  13.68 20-2214 198 190.27M
Weihua Hu et. al.[Wu et al. (2021) Citationv8 281142 938931 334 4-774 161 1034.18M
Weihua Hu et. al. |[Hu et al.|[(2021) ogbn-paper100M | 111059956 1615685872 13.68 42-213 173 537444.2M

G.1 CURRENT HYPOTHESIS CLASSES

In this section, we explore four commonly used homophily metrics derived from node classification:
average connected feature similarity, generalized edge homophily [Luan et al.| (2023), and two
distribution-based measurements, Hellinger Distance and Jensen-Shannon Divergence [Luan et al.
(2023)). These metrics are defined as follows:

1. Edge Homophily: This metric measures the average similarity across all connected edges. It is

defined as:
h; - h;

e B B (44)
([ [ ||y |

k
K=Y KL 0) - here k(hy, by) —
(u,v)eE

2. Generalized Edge Homophily: This approach employs normalized cosine similarity to compare
the degree of similarity across all positive and negative samples within the test set. The accuracy
is calculated as:

N
1
Accuracy = ; I(g: =T(p:)), (45)
where 1 is the indicator function.

3. Hellinger Distance: This metric quantifies the similarity between two probability distributions,
given the logits P and true labels Y:

H(P,Q) = VWZ (VP - VQw) . o)
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4. Jensen-Shannon Divergence: This metric is used to measure the similarity between two proba-
bility distributions defined by the logits P and true labels Y:

Q)
M(i)’ @7

where M (i) = w represents the average distribution between P (i) and Q(3).

Dis(P || Q) = ZP

All these metrics are bounded within the range [0, 1], with values approaching 1 indicating a high de-
gree of edge homophily. These metrics serve as an initial exploration to uncover potential connections
that can inform model design and dataset characteristics.

G.2 STRUCTURE STATISTICS

Considerable work has demonstrated that local and global structural characterization’s are more
effective for LP. To translate the homophily assumption, local and global graph heuristics, small-world
phenomenon, and scale-free network properties into task-specific statistics, we provided the following
graph metrics. Text length and diversity are critical factors influencing the performance of a model.
In this context, we present the distribution of text lengths within our dataset in Table 6}

1. Graph Density: Number of Nodes, Edges, Arithmetic Deg are used to measure the graph’s size,
density and sparsity. Average degree of each central node v € V and its of 2-order neighborhood
N, average degree measures the graph’s local connectivity.

2. Graph Connectivity: Clustering refers to fraction of possible triangles through one node exists:
B 2 x T(1) 3 x #triangles
" deg(i)(deg(i) — 1) ~ #triads

(48)

where T'(4) is the number of triangles through node deg(%) and deg(i) is the degree of node i.
Transitivity measures the fraction of all possible triangles in the graph.

3. Hierarchical level: We leverage k-Core graph’s fraction and degree distribution to calculate Gini
and Coreness Gini.

4. Scale-free: If its node degree distribution P(d) follows a power law P(d) ~ d~7, where v
typically lies within the range 2 < v < 3. We approximate power law a based on the following
estimator. pwc_small, cora, pubmed, arxiv_2023, pwc_large are scale-free networks.

-1
d; +1
o=l (Zl (mln++1)> @

G.3 DETAILED INFORMATION ABOUT DATASETS

In this work, we evaluate the performance of the models on the Link Prediction task using a diverse
collection of reference datasets. Our analysis includes 10 datasets obtained from three main sources:
Planetoid |Sen et al. (2008a), Amazon |Shchur et al. (2018) and OGB [Hu et al.|(2020a). The Planetoid
datasets include Cora and PubMed. The Amazon datasets include Photo. The OGB datasets include
ogbn-arxiv, Citationv8, ogbn-papers100M, and Arxiv 2023. And datasets without a group are
Pwc_small, Pwc_medium and History. The detailed statistics for each dataset are presented in Table@
Below are descriptions of each dataset that were used in the experiments:

* Cora McCallum et al. (2000): It consists of 2,708 scientific publications, it contains
5,429 links and each paper is either cited or referenced by at least one other paper. Each
publication in the dataset is described by a 0/1-value vector indicating the absence/presence
of the corresponding word in the dictionary. The dictionary consists of 1,433 unique words.

* Pubmed [Sen et al.| (2008b): It contains 19,717 scientific publications from the PubMed
database about diabetes research. It includes a citation network with 44,338 links, where
nodes represent publications and edges denote citation relationships. Each publication is
characterized by a TF/IDF weighted word vector derived from a dictionary of 500 unique
terms.
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* Photo Shchur et al. (2018): The Amazon Photos dataset represents a collaborative shopping
network, where nodes correspond to one of eight product categories, and edges indicate co-
purchase relationships between products. Each node is characterized by a fixed-size object
vector with 745 dimensions, which captures the relevant attributes of the corresponding
product.

* Ogbn-arxiv Hu et al.[(2020a): The ogbn-arxiv dataset is a directed graph representing
a network of citations of computer science articles from arXiv indexed by MAG |Wang
et al. (2020). The nodes correspond to individual papers, each of which is described by a
128-dimensional vector of characteristics obtained from the embeddings of words in their
titles and annotations, while the directed edges indicate the citation ratio.

* Ogbn-papers100M Hu et al. (2020a): The ogbn-papers100M dataset is a large-scale
directed citation graph containing 111 million articles indexed by MAG |Wang et al.|(2020),
making it one of the largest node classification datasets available. Similar to ogbn-arxiv,
each node represents a paper with characteristics derived from its title and annotation, while
the edges indicate the citation ratio. Approximately 1.5 million of these nodes are arXiv
documents covering up to 172 research areas.

* Arxiv 2023 (He et al., 2023): The Arxiv 2023 dataset is a citation network in computer
science from arXiv, in particular those published in 2023 or later. The nodes correspond to
individual papers, and the edges represent citation relationships.

* Pwc Medium (Saier et al., 2023): The Papers With Code (PWC) medium dataset is a
comprehensive resource for exploring the use of research artifacts such as datasets, methods,
models, and tasks. It includes rich meta-information, such as paper descriptions, categories,
and links to the corresponding code and articles. In this work, we only utilize the title and
abstract as node features.

* Pwc Small: In order to fill the dataset scale gap in a hundred nodes, we extracted one
connected component from PWC medium dataset as a small graph.

* History (Li et al., 2024): The Goodread-History is a dataset in book recommendations. The
Goodreads datasets are the main source. Nodes represent meta information of nodes such as
types of books and reviewers, while edges indicate book reviews. Node labels are assigned
based on the book categories. The descriptions of books and user information are used as
book and user node textual information. The task is to predict the preference of users for
products.

* Citationv8 (Yan et al., 2023): The CitationV8 dataset is a extracted graph extracted from
DBLP (Tang et al., 2008). Node textual attributes in CitationV8 are derived from the titles
and abstracts. Each edge represents a citation relationship between two papers.

H COMPLEXITY ANALYSIS

The overall complexity of a self-attention layer with multiple heads is: O(N? - diodel + N - dimodel - dir),
where N, H denotes token length (sequence length), the number of attention heads, dyodel iS the
dimensionality of each key vector. dy is the hidden dimensionality of the feedforward network.

I BENCHMARK RESULT OF ALL MODELS
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Table 7: Benchmark result of local and global heuristic, graph embedding, vanilla GCNs, GCN2LPs,
LLM-Inf, LLM-FT.

Models Cora PubMed Arxiv 2023
Hits@100 AUC Hits@100 AUC Hits@100 AUC
CN 50.36 +£0.03 74.67 £0.01 33.32£0.02 66.58 +£0.00 27.20 +0.01 63.34 +0.00
AA 50.36 +0.03 74.83 £0.01 33.32 £0.02 66.59 +£0.00 27.20 +0.01 63.36 &+ 0.00
RA 50.36 +0.03 74.83 £0.01 33.32 £0.02 66.59 +0.00 27.20 +0.01 63.36 &+ 0.00
PPR/sym 88.93+£0.00 87.72£0.01 72.95+0.01 78.19+0.01 67.86+0.02 78.90 £+ 0.01
Katz 69.25 +0.02 82.95+0.01 66.02+0.02 82.52+0.00 55.39+0.01 76.84 +0.00
DeepWalk 86.99 +0.05 87.02 £0.01 72.30 +£0.01 84.48 +0.01 22.13+0.10 75.28 +0.01
Node2Vec 85.02 +£0.01 85.89 +£0.02 71.35+0.01 80.60 +0.04 27.98 +0.17 76.76 + 0.02
GIN 96.05 +2.13 94.00 +1.38 92.02£0.91 97.79 +£0.16 53.22+2.05 78.93 +0.49
GAT 95.34 + 1.61 93.77 £0.97 84.03 +£1.59 96.90 +0.39 53.49 + 1.06 82.86 &+ 1.02
SAGE 95.10 + 1.57 91.77 £0.91 93.36 £0.70 98.66 +0.15 56.69 + 3.13 87.86 + 1.97
GCN 96.20 + 1.71 94.18 £ 1.67 89.59 +1.73 98.24 +£0.16 52.46 + 1.44 81.89 +0.51
RotatE 56.60 +6.29 61.57 +-3.88 38.58 £2.59 80.89 +0.40 34.57 +0.84 76.73 +0.44
TransE 57.00 + 7.06 64.19 +3.83 50.04 +£2.63 85.29 +£0.97 30.22+1.96 73.03 +1.04
ComplEx 73.59 £ 090 75.71 £1.09 53.87 +3.09 89.60 + 0.51 32.17 +2.38 73.31 £ 0.61
DistMult 73.12+0.28 76.53 +£0.80 54.82 £2.95 89.91 +0.53 32.37 +1.62 73.25+0.39
SEAL 92.03 +2.96 95.11 +£1.07 89.52 +1.27 98.81 £0.14 67.34 +£3.74 97.36 +0.11
NeoGNN 90.04 +2.02 91.02 +£1.08 81.25 +8.14 94.69 + 6.85 69.34 + 8.56 86.76 + 3.50
ELPH 9491 +2.17 9263 +£1.90 74.62+1.64 9580+ 0.39 66.95+3.62 87.09 + 1.22
BUDDY 9542 +226 93354141 89.25+2.27 97.92+0.17 60.49 +0.94 84.33 £+ 0.60
NCN 98.74 +£0.96 96.66 + 1.14 93.21 +£1.10 98.66 +0.18 88.83 + 1.43 97.30 +0.26
NCNC 98.67 = 0.76 96.56 + 1.04 93.74 +0.25 98.66 +£0.12 89.13 +2.08 97.42 + 0.37
BERT-Inf 56.90 +3.26 65.09 +1.41 48.73 £1.43 88.96 +0.31 48.74 +1.15 86.37 +0.27
e5-large-v2 83.10 £ 0.80 83.87 £0.23 82.59 +£0.26 96.73 +0.03 84.09 +0.24 95.72 +0.01
MiniLM-L6-v2 92.99 +0.00 91.22 +£0.04 81.90 +0.03 96.20 £ 0.00 77.62 +0.03 95.22 + 0.00
Llama-3-8B 95.64 +0.41 92.60 +£0.12 89.01 £0.53 98.09 +£0.10 89.91 +0.19 97.62 + 0.04
Llama-BUDDY 9747 +1.44 9397 +£0.88 94.60 +0.98 98.75 +0.18 84.93 + 1.68 96.67 + 0.38
e5S-large-BUDDY 97.86 + 0.66 94.03 +£0.77 93.95+0.34 98.72 +£0.06 77.43 +3.01 95.27 £ 0.31
BERT-BUDDY 81.424+2.86 79.62+244 7854+126 96.25+0.17 4330+ 1.65 77.93 £0.62
MiniLM-BUDDY 97.55+ 1.32 9474 +£0.99 93.56 +£0.66 98.68 +0.07 47.12+293 77.59 +0.35
Llama-NCN 98.26 +0.77 96.23 +0.28 96.30 £ 0.62 99.11 +0.07 92.64 +0.52 98.24 +0.17
eS-large-NCN 98.81 +0.62 96.72 £ 0.67 96.33 +0.70 99.10 £0.09 90.79 + 1.38 97.82 + 0.22
BERT-NCN 8293 +£3.65 84.91 £2.53 81.09+246 97.24 +0.20 66.20 +0.62 86.94 + 0.27
MiniLM-NCN 98.58 +0.60 96.93 +0.54 95.49 +£0.66 98.97 +£0.10 66.47 +0.84 86.69 + 0.28
Llama-NCNC 98.73 +£0.65 95.63 £0.77 9239 +1.46 98.54 +£0.18 91.90 + 1.33 97.97 +0.36
eS-large-NCNC 98.81 +0.74 96.31 £0.68 96.69 +0.56 99.14 +£0.10 90.46 + 1.14 97.72 £ 0.16
BERT-NCNC 84.11 £2.70 84.05 +£2.85 8248 +1.43 9740+ 0.20 68.50 +3.49 89.20 £+ 0.30
MiniLM-NCNC 98.81 +£0.49 96.82 +0.62 96.11 +£0.60 99.07 £ 0.07 70.61 +2.24 88.42 +0.72
Llama-NeoGNN 83.00 +8.24 87.08 £3.07 69.42 +3.09 9490 +0.52 63.67 +8.29 86.94 + 1.22
eS-large-NeoGNN 82.06 £4.54 87.06+1.69 71.13 £2.19 9221 +5.85 69.09 +£9.97 88.32 + 1.81
BERT-NeoGNN 87.59 £3.79 87.77 £2.30 70.85+1.71 95.08 +0.38 65.43 +8.49 86.22 +1.93
MiniLM-NeoGNN 87.59 +6.28 88.66 +£2.63 70.62 + 1.71 95.08 +0.38 68.60 + 11.86 86.10 & 0.75
BERT-FT 96.99 + 1.36 92.88 £0.99 84.454+292 97.32 +0.44 87.56+2.05 96.98 + 0.31
e5-large-v2-FT 96.92 + 1.35 9427 4+0.85 8723 £1.60 97.79 +£0.14 89.35+ 1.33 97.39 +£0.33
MiniLM-L6-v2-FT 96.68 + 1.69 93.98 +0.85 86.80 +1.98 97.64 +0.36 88.38 + 1.06 97.25 +0.36
all-mpnet-base-v2 97.78 £ 0.66 94.71 £ 1.16 90.69 +£2.49 98.06 +£0.19 91.44 +0.75 97.36 + 0.33
MiniLM-GAT-CT 76.99 + 6.58 76.09 +4.18 43.75+5.46 90.11 +£1.81 25.18 +4.17 80.31 +3.08
MiniLM-SAGE-CT 82.01 £4.19 80.15+2.74 63.18 £ 1.34 94.10 +0.21 66.06 +2.60 92.63 + 0.51
mpnet-GIN-CT 97.55+1.86 92.30 +2.28 63.42 +£2.77 94.82 +042 64.38 +3.22 91.97 +1.07
mpnet-GAT-CT 86.96 £ 6.71 86.64 +5.61 52.43 £4.18 91.75+0.86 29.43 +£3.60 82.50 + 3.28
mpnet-SAGE-CT 93.88 +0.28 89.64 £0.96 71.62 £2.78 94.60 + 0.58 66.28 +4.50 92.63 + 0.87

MiniLM-LMGJOINT-C  99.92 £0.18 98.24 £0.95 99.94 £+ 0.08 99.73 +0.03 98.16 & 1.73 99.05 &+ 0.25
MiniLM-LMGJOINT 99.84 £0.35 97.79 £0.66 89.22 £4.96 98.30 £0.51 91.44 £+ 1.34 98.22 +0.30
mpnet-LMGJOINT-C 96.28 £ 8.31 94.68 £6.81 99.95 £0.08 99.42 £ 0.38 77.99 £ 17.20 92.88 + 6.53
mpnet-LMGJOINT 100.00 £ 0.00 98.78 = 1.02 97.13 +1.74 99.34 £0.22 94.85+£3.15 98.79 £ 0.49
e5-large-LMGJOINT-C  99.92 £0.18 98.36 £+ 1.15 100.00 £ 0.00 99.49 & 0.18 98.01 +0.72 98.51 = 0.12
e5-large-LMGJOINT 98.89 +£1.02 97.13+£1.22 8841 £1.14 98.18 £0.12 87.71 +£1.48 97.51 £0.29
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Table 8: Benchmark result of local and global heuristic, graph embedding, vanilla GCNs, GCN2LPs,
LLM-Inf, LLM-FT.

Models Cora PubMed Arxiv 2023
Hits @50 MRR Hits @50 MRR Hits@50 MRR
CN 50.36+0.03  32.88+£0.09  33.32+£0.02  21.13£0.02  27.20+0.01 14.66+0.06
AA 50.36+0.03 47.33 +£0.09 33.32+0.02 24.61+0.11  27.20+0.01 19.874+0.30
RA 50.364+0.03  47.174+0.11  33.324+0.02  23.94+0.16  27.20+0.01 19.16+0.27
PPR/sym 84.74+0.00 58.86+0.98  69.81+0.02  28.04+0.91  65.68+0.02  26.57+0.82
Katz 69.254+0.02 38.174+0.12  66.024+0.02  30.94+0.08  55.39+0.01 21.76+0.21
DeepWalk 81.07+0.02 33.88+0.81  64.97+0.03  25.49+0.52  13.57+0.08 2.544+0.00
Node2Vec 80.38+0.03  38.76+0.60  64.57+0.03  19.48+0.15  19.124+0.21 3.86+0.02
GCN 91.46+2.36 45.84+8.40  83.11+£2.19  24.55+4.02 45.07+0.87 17.62+3.34
GAT 89.80+2.00 49.82+10.04 74.23+2.54  18.13+5.81  43.09+1.22  13.58+4.33
SAGE 86.40+3.73  46.03+6.70  86.55+0.55  35.63+5.75  45.42+3.12  11.52+1.67
GIN 91.544291 51.90+6.65 86.92+1.68  24.63+2.24  45.35+2.58  14.79+4.53
RotatE 2751 +£639 298+041 26.10+2.89 441+124 2476+131 5.65+1.20
TransE 32.17+6.52 397+090 38.58+3.64 774+171 2127+1.81 511+1.16
ComplEx 62.53 £ 1.71 17.82+2.58 38.14+3.55 650+248 2233+1.05 5.16+1.07
DistMult 6490 +£1.59 19.28 +2.11 39.09+3.93 690+250 21.32+045 502+1.24
SEAL 87.384+3.06 37.81+9.93  84.62+3.53  49.02+13.91 56.98+1.89  22.47+3.69
NeoGNN 81.03+3.11  41.48+5.11  73.17+£529  31.44+3.85 64.54+11.14 28.07+£15.62
ELPH 87.30+4.94 39.86+10.20 59.19+5.58  24.61+3.17 57.66+1.55  29.22+5.95
BUDDY 87.82+3.41 30.78+5.55  76.14+3.46  19.46+2.42  52.25+2.01 18.754+3.71
NCN 96.16+1.62 45.76+16.39 86.444+2.03  25.92+4.33  82.34+2.45 37.92+13.21
NCNC 95.42+2.41 48.68+18.60 86.49+0.99 20.31+6.51  81.86+1.64 35.67+12.30
Bert 35.794£2.50  3.42+0.47 36.124+0.37 6.56+0.70 37.66+1.57  10.04+0.85
MiniLM 83.394+0.00 34.29+4.10  66.35+0.29  21.54+0.11  68.15+0.09  16.91+0.18
e5-large-v2 64.35+1.56 24.40+2.48  71.324+0.86 21.79+1.58  75.03+0.28  21.69+0.03
Llama-3-8B 89.15+0.72  31.19+3.49  79.87+1.19  22.87+447  83.18+1.19  22.85+1.12
Llama-BUDDY 91.23 £ 1.66 29.10 £5.72 88.10 £2.08 24.57 +3.66 75.15+3.55 28.74+5.29
e5-large-BUDDY 92.17 £ 1.32 34.19 £ 10.77 88.07 +0.57 2290+ 5.86 64.52+3.00 20.79 +4.67
BERT-BUDDY 63.32 +£5.74 14.64+3.70 62.03+3.16 13.15+2.84 3519+ 1.54 10.20+2.88
MiniLM-BUDDY 9241 +1.62 41.05+ 1141 8598 +1.19 2545+486 3833+2.89 11.31+1.78
Llama-NCN 94.94 + 0.85 49.62 +10.03 90.05 + 1.66 30.73 + 10.11 86.43 +0.24 32.48 +12.29
e5-large-NCN 95.57 £ 1.02 49.65 £ 14.61 90.97 +1.77 32.19 +4.80 84.36 +0.56 32.23 + 14.04
BERT-NCN 73.04 £4.08 43.37 £8.81 67.95+342 23.16+6.75 61.93+0.78 37.05+8.86
MiniLM-NCN 98.58 £ 0.60 46.59 +11.01 88.85+0.89 33.60+7.51 61.95+0.54 31.86 + 13.16
Llama-NCNC 95.57 £ 1.02 27.45+7.86 84.65+ 195 20.51+980 84.68+ 1.72 27.16+11.48
e5-large-NCNC 96.13 £ 1.13 39.23 £12.99 90.86 +1.95 27.02+596 83.24+1.20 25.14+9.39
BERT-NCNC 77.47 £1.77 2539 + 1242 72.80 +£1.78 23.49+3.07 58.83+3.91 22.80+2.55
MiniLM-NCNC 96.13 £ 1.20 38.96 £ 13.20 90.32 +1.52 22.56 +3.30 65.65 + 1.80 29.10 + 3.83
Llama-NeoGNN 77.63 £4.33 47.11 £8.51 64.00+0.87 33.82+3.81 56.20 + 10.94 22.39 4+ 13.38
e5-large-NeoGNN 7891 £2.49 47.04 +8.63 64.74+2.03 32.65+549 63.56+ 11.23 24.70 & 11.08
BERT-NeoGNN 80.08 +4.22 4550 +£8.99 64.10+1.50 33.01 £5.49 57.40+9.79 23.92 +8.63
MiniLM-NeoGNN 81.35+527 43.83+6.82 65.134+0.26 33.89 +6.18 62.53 + 14.04 21.49 + 18.99
BERT-FT 89.174£2.86  30.90+4.33  73.70+4.01 17114390  77.75£3.46  29.54+3.98
e5-large-v2-FT 92.09+1.70  38.63+£9.39  76.26+2.55 19.75+£5.81  80.48+2.52  31.73+6.62
MiniLM 92.4942.13 35.554+5.82  75.874+3.72  20.79+6.32  80.20+2.62  29.86+5.82
all-mpnet-base-v2 9344 £+ 1.64 22.55+10.71 63.27 £31.76 9.38 £3.12 8272+ 1.28 842 +6.49
MiniLM-GAT-CT 5423 +£4.08 13.74+521 29.44+284 426+1.75 13.76+2.22 2.62+0.55
MiniLM-SAGE-CT 63.04 £9.23 15.09+1.35 4531+3.83 6.70£3.61 49.11+422 11.48+3.41
mpnet-GIN-CT 89.01 +£5.54 29.06 +7.96 46.82+422 11.86+3.68 55.11+3.70 18.88 & 5.89
mpnet-GAT-CT 7490 £9.22 23.16 £ 11.10 35.82+3.81 536+1.69 1950+191 4.49+0091
mpnet-SAGE-CT 82.01 £4.19 2534 +8.06 57.58+3.78 11.91 +£3.58 5297 +5.05 14.51 &+ 3.37

MiniLM-LMGIJOINT-C  99.9240.18 41.52+£19.50 = 99.91 £ 0.09 44.99 4+ 10.82 90.61 +2.25 3547 £+ 1091
MiniLM-LMGJOINT 98.34+0.59 60.84£7.75 7856 £6.32 2272 £1.51 8457£193 40.27 £ 1191
mpnet-LMGJOINT-C ~ 93.28+14.16 28.92+7.14 99.27 £1.19 2399 £11.63 73.09 £16.32 14.68 +6.17
mpnet-LMGJOINT 100.00+£0.00 68.43+£14.23 91.67 +=4.96 31.66 £5.33 89.17 545 45.70 +3.88
e5-large-LMGJOINT-C  99.9240.18 41.46+£25.49 99.11 +1.54 21.66 £9.66 83.97 £4.23 12.66 +2.66
e5-large-LMGJOINT 96.29+2.08 65.26+11.52 77.34£2.19 23.80+329 80.01 £2.53 42.02+£5.56
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