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A THEORETICAL ANALYSIS

Given an undirected unweighted graph G = (V, E ,A,T), the inference problem is to approximate a
conditional probability defined as Eq. 6.

ω = argmax
ωG,T

P (Y | T,A) (6)

Let T and A represent textual and topological features respectively, which are statistically dependent.
ωG,T refers to the parameters in GCN and LLM to be optimized.

Theorem A.1 Given a markov data processing pipeline T → (X,A) → H → Y , we show that a

residual connection from text embedding X to the final prediction Y increase the mutual information

I(T ;Y ).

Proof of the Theorem A.1 Proof. To simplify the objective without compromising the conceptual
integrity, we rewrite Eq. 6 using notion of mutual information. Next, we want to find a formula that
connects the information from Y and T before and after the residual connection.

To begin, given the data processing markov chain T → (X,A) → H → Y , where A is statistically
dependent from T . Using chain rule of mutual information, we have:

I(T ;Y ) = I(T ;H) + I(T ;Y | H) (7)

Since T and Y are conditionally independent given H , we have:

I(T ;Y | H) = 0 (8)

Thus:
I(T ;Y ) = I(T ;H) (9)

In second case, with residual connection from X → Y

I →(T ;Y ) = I(T ;H,Y ) (10)
= I(T ;H) + I(T ;Y | H) (11)
= I(T ;H) + I(T ;Y,X|H)↑ I(T ;X | H) (12)
= I(T ;H) + I(T ;X | H) + I(T ;Y | X,H)↑ I(T ;X | H) (13)

For I →(T ;Y ) > I(T ;Y ), the following condition must hold:

I(T ;Y | X,H) > 0 (14)

which means that when X gives you additional predictive power about Y beyond what you would
know just from H .

Theorem A.2 Given positive and negative samples follow two Gaussian distributions with the same

variance, we show that estimated Hits@1 and MRR are equivalent.

Proof of the Theorem A.2

Proof. To simplify the objective without compromising the conceptual integrity, we rewrite two
metrics using the Gaussian distribution notion. Next, we want to find a formula connecting their
derived forms.

Positive samples: Let the distribution be N (↑m,ε2), where m is the mean and ε2 is the variance.
Negative samples: Let the distribution be N (m,ε2), where m is the mean and ε2 is the variance.

We further unfold two Gaussian distribution’s probability density functions (pdfs): The PDF of the
positive samples is:

fpos(x) =
1

↓
2ϑε2

exp

(
↑
(x+m)2

2ε2

)
(15)

The PDF of the negative samples is:

fneg(x) =
1

↓
2ϑε2

exp

(
↑
(x↑m)2

2ε2

)
(16)
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Estimating Hits@1 It can be interpreted as the probability that a randomly chosen sample from one
distribution will have a higher score than a randomly chosen sample from the other distribution. i.e.
we need to find:

P (Xneg > Xpos) (17)

We derive the above equation in the form of error function:

D = Xneg ↑Xpos (18)

Then D is also normally distributed because it is a linear combination of two normal variables:

D ↔ N (2m, 2ε2) (19)

The mean of D is 2m, and the variance of D is 2ε2.

The Hits@1 is essentially the probability that the difference D is greater than 0:

P (D > 0) = P

(
D ↑ 2m
↓
2ε2

>
0↑ 2m
↓
2ε2

)
(20)

This can be rewritten in terms of the standard normal distribution !(·):

P (D > 0) = !

(
2m

↓
2ε2

)
= !

(m
ε

↓
2
)

(21)

where !(·) is the cumulative distribution function (CDF) of the standard normal distribution.

Therefore, Hits@1 can be estimated as:

Hits@1 ↗ !
(m
ε

↓
2
)

(22)

Estimate MRR in Generalized Form To estimate the value of the MRR given the means and
variance of the two Gaussian distributions for positive and negative samples, The MRR is calculated
as:

MRR =
1

N

N∑

i=1

1

ranki
(23)

where ranki is the position of the correct answer for the i-th query.

The probability that a positive sample has rank r can be approximated by the probability that it is
ranked higher than exactly r ↑ 1 negative samples:

P (rank = r) =

(
Nneg

r ↑ 1

)
pr↑1(1↑ p)Nneg↑(r↑1) (24)

To align with the notion in Hits@1, we approximate the rank distribution using a Gaussian approxi-
mation to the binomial distribution.

Using the normal approximation to the binomial distribution:

P (rank = r) ↗
1

↓
2ϑε2

exp

(
↑
(r ↑ 1↑Nnegp)2

2ε2

)
, (25)

where ε2 = Nnegp(1↑ p).

The MRR is the expected value of the reciprocal of the rank. Therefore, we can rewrite MRR by
substituting the Gaussian approximation for P (rank = r) as:

MRR ↗

Nneg∑

r=1

1

r

1√
2ϑNnegp(1↑ p)

exp

(
↑
(r ↑ 1↑Nnegp)2

2Nnegp(1↑ p)

)
. (26)

For large Nneg, we can approximate the sum as an integral:

MRR ↗

∫ Nneg

1

1

r

1√
2ϑNnegp(1↑ p)

exp

(
↑
(r ↑ 1↑Nnegp)2

2Nnegp(1↑ p)

)
dr. (27)
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Define:

z =
r ↑ 1↑Nnegp√
Nnegp(1↑ p)

. (28)

Then, the integral can be further simplified:

MRR ↗

∫ Nneg(1→p)→1↓
Nnegp(1→p)

↑ Nnegp+1↓
Nnegp(1→p)

1

(z
√

Nnegp(1↑ p) +Nnegp+ 1)

1
↓
2ϑ

e↑
z2

2 dz. (29)

The integral represents the expectation of the function 1

z
↓

Nnegp(1↑p)+Nnegp+1
under the standard

normal distribution e↑
z2

2 .

For large Nneg, the term z
√
Nnegp(1↑ p) can be neglected comparing to Nnegp, so we approximate

the denominator as:

↗ Nnegp. (30)

Thus, the MRR approximately simplifies to:

MRR ↗
1

Nnegp

∫ ↔

↑↔

1
↓
2ϑ

e↑
z2

2 dz =
1

Nnegp
. (31)

Therefore, the approximate value of MRR is:

MRR ↗
1

Nneg!
(
m
ε

↓
2
) , (32)

This provides a reasonable approximation of MRR given the Gaussian-distributed ranks for large
Nneg. Thus we proved Theorem A.2

Theorem A.3 For any node pair (i, j), the approximation error of [HC ;HT ]↑HC +HT decreases

as the number of nodes increases. We this by analyzing the distribution of the two random variables

HC and HT , and show that they have very limited overlapping.

Proof of the Theorem A.3: Given a graph with N nodes, and consider arbitrary pairs of nodes (i, j).
According to (Mao et al., 2023) Lemma 2 (Incompatibility between LSP and FP factors). For
any ϖ > 0, with probability at least 1↑ 2ϖ, we have:

ϱij =
c→

1↑ ςij
+N(1 + φ), c→ < 0 (33)

→ ϱij ↑N +
c

1↑ ςij
= Nφ, c > 0 (34)

→
1

N

(
ϱij ↑N +

c

1↑ ςij

)
= φ (35)

where ϱij and ςij are the number of common neighbor nodes and feature proximity between nodes
i and j, respectively. We normalize ϱij by dividing both sides by N , c→ < 0, c > 0, c = ↑c→ is an
independent variable that does not change with ςij and ϱij .

We derive this lemma in the notion of HC and HT first. We rewrite Lemma 1 as following: For any
ϖ > 0, with probability at least 1↑ 2ϖ, we have:
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P

[∣∣∣∣
1

N

(
ϱij ↑N +

c

1↑ ςij

)∣∣∣∣ < φ

]
> 1↑ 2ε (36)

→ lim
N↗↔

P

[∣∣∣∣
1

N

(
ϱij ↑N +

c

1↑ ςij

)∣∣∣∣ < φ

]
= 1 (37)

→ lim
N↗↔

1

N

(
ϱij ↑N +

c

1↑ ςij

)
= 0 (38)

→ lim
N↗↔

(
ϱij ↑N +

c

1↑ ςij

)
= 0 (39)

→ϱij ↑N +
c

1↑ ςij
= 0 (40)

Then, let’s analyse the distribution of ϱij and ςij . We derive the distribution of ϱij using the Lemma
11.9 in Brede (2012). For each node, there are

(n↑1
2

)
pairs of others with which it could form a

common neighbor, and each common neighbor is present with probability c

(n→1
2 )

, for an average

of c common neighbors per node. Each common neighbor contributes two edges to the degree, so
the average degree is 2c. The probability pt of having t common neighbors follows the binomial
distribution:

pt =

((n↑1
2

)

t

)
pt(1↑ p)(

n→1
2 )↑t

↗ e↑c c
t

t!
,

where c is the mean degree, the final equality is exact in the limit of large n. The original probability
distribution is given by:

pt ↗
e↑cct

t!
Using Stirling’s approximation for large t, we have:

t! ↗
↓
2ϑt

(
t

e

)t

Substituting Stirling’s approximation into the original distribution:

pt ↗
e↑cct

↓
2ϑt

(
t
e

)t

Simplifying further, we obtain:

pt ↗
et↑cct
↓
2ϑttt

We aim to find the distribution of ςij = 1↑ c
ϑ̃ij

. In terms of ↼, we can write this as:

ϱ̃ij =
c

1↑ ςij

To simplify the derivation we write ϱ̃ij as ↼ and ςij as ς. The chain rule of probability for transfor-
mations states that, if X is a random variable with a known distribution, and we have a transformation
Y = g(X), then the probability distribution of Y can be found as:

pY (y) = pX(x)

∣∣∣∣
dx

dy

∣∣∣∣ ,

where dx
dy is the derivative of the inverse transformation.

ς = 1↑
c

N ↑ ↼
↘ ↼ = N ↑

c

1↑ ς
.

The derivative of ↼ with respect to ς is:
d↼

dς
=

c

(1↑ ς)2
.
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Substituting the Poisson distribution for p(↼):

p(↼ = t) = e↑c c
t

t!
,

where t = c
1↑ϖ . So, for each value of ς, the probability is:

p(ς) = e↑c c
c

1→ω

(
c

1↑ϖ

)
!
·

c

(1↑ ς)2
.

The final probability distribution for ς after applying the chain rule can be written as:

p(ς) = e↑c c
c

1→ω

(
c

1↑ϖ

)
!
·

c

(1↑ ς)2
.

Then we discuss about the behaviors of these two distributions. ↼ follows a Poisson distribution
where the mean and variance are both 2

a(N↑2) . a is the mean degree. Let’s analyze the behavior of ς
in the range ς ≃ [0, 1) for the distribution:

p(ς) ↗
e↑c+ c

1→ω

√
2ϑ c

1↑ϖ

·
c

(1↑ ς)2
.

We’ll explore its behavior across the full range ς ≃ [0, 1). The distribution consists of three primary
terms: Exponential term: e↑c+ c

1→ω , Square root term: 1↓
2ϱ c

1→ω

, Rational term: c
(1↑ϖ)2 . When

ς → 0, we have 1↑ ς ↗ 1. Therefore, the terms simplify as:

p(0) ↗
1

↓
2ϑc

· c =
c

↓
2ϑc

=

↓
c

↓
2ϑ

.

When ς → 1, 1↑ ς becomes very small, and each term behaves as follows:

p(1) = 0.

For intermediate values of ς, the behavior depends on how the three terms interact. The rational
term c

(1↑ϖ)2 increases as ς approaches 1, while the exponential term e
c

1→ω grows very rapidly for
large ς. Together, these terms initially cause an increase in p(ς), but the exponential decay from
e↑c causes the distribution to eventually decrease and approach 0 as ς → 1. Given the behavior of
the distribution over ς ≃ [0, 1), we can approximate it in two regimes: Near ς = 0, the distribution
behaves approximately like:

p(ς) ↗

↓
c

↓
2ϑ

.

This is a constant value for small ς. Near ς = 1: The distribution decreases rapidly due to the
exponential term. For large ς, we can approximate:

p(ς) ↗
c

(1↑ ς)2
e↑

c
1→ω .

This approximation shows that the distribution approaches 0 as ς nears 1. This analysis shows that the
distribution is monotonically decreasing as ς approaches 1, after an initial phase where it remains
approximately constant for small ς. Thus, the distribution between these two variables has limited
overlap.

B EXPERIMENT SETTING & HYPER PARAMETER RANGE

B.1 TRAINING SETTING

In all Graph-agnostic, LLM-agnostic and proposed approach, we leverage binary cross entropy
defined as:

L(u) = ↑

∑

(i,j)↘E+

log ε(hu,hv)↑
∑

(i,j)↘E→

log(1↑ ε(hi,hj)).
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where hi and hj are the node embeddings; ⇐·, ·⇒ denotes the computation of the inner product; Eneg
stands for the negative samples, where ε is the sigmoid function, and E is the set of observed edges
in the graph. The loss is optimized using the Adam optimizer Kingma & Ba (2014). During training
we randomly sample one negative sample per positive sample. For GCN category, all models are
trained for a maximum of 2000 epochs.

B.2 EXPERIMENT AND TUNING DETAILS

We present the hyperparameter searching range in Table 2. and Table 3.

For the smaller graphs, Cora, Pubmed and Arxiv_2023, we utilize the following hyper-parameter
search space. However, it’s not feasible to tune over such large space for larger datasets. We utilize
the average value of each optimized value from Cora, Pubmed, Arxiv_2023.

GCN (Kipf & Welling, 2016), GAT (Velickovic et al., 2017), GraphSAGE Hamilton et al. (2017):
learning rate: [0.01, 0.001, 0.0001], batch size: [27, 28, 29, 210], dropout for hidden layer: [0.1, 0.3],
weight decay: [1e-4, 1e-6], number of gcn layers: [1, 2, 3], number of mlp layers: [1, 2, 3], number
of hidden layers: [26, 27, 28], dimension of output layer of gcn: [26, 27, 28]. Similar to (Chamberlain
et al., 2023) we utilize a full adjacency matrix and remove the target link.

NCNC (Wang et al., 2023): Our full list of hyperparameter for NCNC are: feature dropout: [0.0,
0.3, 0.7], lr for gnn: [0.001, 0.0001], lr for predictor: [0.001, 0.0001], hiddim dim: [64, 256], dropout
for gnn: [0.0, 0.2, 0.5], dropout for dp: [0.0, 0.05], gnnlr: [0.001, 0.0001], prelr: [0.001, 0.0001],
batch_size: [27, 28, 29, 210]. We transferred the experiment setting from Wang et al. (2023) into
our benchmark, including removing the validation edge during training, rest parameters, and JK
connection.

NeoGNN (Yun et al., 2021): hidden channels: [64, 128, 256, 512, 1024, 2048, 4096, 8192], num of
layers: [1, 2, 3, 4], number of mlp layers: [1, 2, 3, 4], dropout’: [0, 0.1, 0.2, 0.3, 0.4, 0.5], batch size:
[128, 256, 512, 1024], learning rate: [0.01, 0.001, 0.0001]. We transferred the experiment setting
from the original paper.

SEAL (Zhang et al., 2020): hidden channels: [32, 64, 128, 256], batch size: [32, 64, 128, 256],
lr: [0.001, 0.0001]. We transferred the experiment setting from the original paper, including text,
structure embedding and

BUDDY: hidden channels: [128, 256, 512], batch size: [512, 1024], learning rate: [0.01, 0.001,
0.0001], maximum of hash hops: [1, 2, 3], dropout for label: [0.1, 0.5], dropout for feature: [0.1, 0.3,
0.5], dropout of sign: [0.1, 0.3, 0.5, 0.7]. We transferred the experiment setting from the original
paper, including text, structure embedding, and utilizing valid edge during training.

HLGNN Zhang et al. (2024b): hidden channels: [128, 256, 512, 1024, 2048, 4096, 8192], batch
size: [128, 256, 512, 1024], learning rate: [0.01, 0.001, 0.0001], Initial parameter: [0.1, 0.2, 0.3,
0.4, 0.5], ς initialization: [RWR, KI], number of MLP layers: [2, 3, 4], dropout: [0.1, 0.2, 0.3, 0.4,
0.5, 0.6]. We transferred most experiment settings from the original paper, excluding the data split
method and split ratio. We split the edges randomly while the original paper split it based on local
structure. The original paper’s split rate is 5%, 10% and 84% for test/valid/train edges. Ours is 5%,
15% and 80%.

MiniLM (Reimers & Gurevych, 2019a): We leverage the [EOS] token in LLaMA3 and the [CLS]
token in sentence embedding models as node features. We froze the layer up to the 6-th encoder
layer in MiniLM (Reimers & Gurevych, 2019a); The utilized feature dimension, feat shrink, is set to
768. We use ‘sentence-transformers/all-MiniLM-L6-v2‘ from Reimers & Gurevych (2019b). For
training, the parameters include an attention dropout rate of 0.1, a batch size of 128, a classification
dropout rate of 0.0, and a general dropout rate of 0.1. The model is trained for 250 epochs, with
evaluation patience set to 1. Gradient accumulation steps are set to 1, and the learning rate is 0.0001.
The warmup period is set to 0.6 epochs, and weight decay is set to 0.0.

e5-large (Wang et al., 2022): We frozen up to 23-th encoder layer in e5-large and fine-tune rest
layers. The utilized feature parameters dimension, feat shrink is 768. For training, the parameters
include an attention dropout rate of 0.1, a batch size of 128, a classification dropout rate of 0.4, and a
general dropout rate of 0.3. The model is trained for 250 epochs, with evaluation patience set to a
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very large number (effectively disabling early stopping). Gradient accumulation steps are set to 1, the
learning rate is 0.0001. The warmup period is set to 0.6 epochs, and weight decay is set to 0.0.

MPNet (Song et al., 2020): Same as Minilm, we use CLS token embedding, we frozen up to 32-th
layer in Mpnet and fine-tune the rest layers. Feat shrink, is 768. The model name is ‘sentence-
transformers/all-mpnet-base-v2‘ from Reimers & Gurevych (2019b). For training, the parameters
include an attention dropout rate of 0.1, a batch size of 256, a classification dropout rate of 0.4, and a
general dropout rate of 0.3. The model is trained for 250 epochs, with evaluation patience set to a
very large number, effectively disabling early stopping. Gradient accumulation steps are set to 4, and
the learning rate is 0.0001. The warmup period is set to 0.6 epochs, and weight decay is set to 0.0.

PLM-Inf-MLP: We utilize BERT, MiniLM, e5-large and Llama 3 8B as inference models to only
embed text without training.

FT-PLM-MLP: We use the above parameters to find these sentence transformers followed by an
MLP.

PLM-Inf-GCN: This setting requires two separate steps. First, we embed the raw text with the above
sentence transformers with given parameters and save the embedded text as original node features. In
the second step, we load this embedded text as node features to aggregated features using different
GCNs with the same setting as above.

FT-PLM-GCN: We leverage the same fine-tuned setting, the same parameters of sentence trans-
formers and GCNs as above. We use the same split and full adjacency matrix during the training as
category GCNs.

LMGJOINT: We utilize the same fine-tuned setting of Mpnet, Minilm, and e5-large in our proposed
method without any additional parameter tuning, We leverage the same data split and full adjacency
matrix for common neighbor and GCN, validation edge during training. In addition, the same
parameters for optimizer and GCNs from (Kipf & Welling, 2016). The parameters for GCN are listed
below: an input channel size of 1433, a hidden channel size of 256, and an output channel size of
32. It consists of 1 multi-layer perceptron (MLP) layer and 3 such graph convolution layers. We
only tune the parameters for the optimizer including learning rate, batch size and weight decay. The
weight of the soft common neighbor is tuned to be 0.1.

B.3 LLM FINE-TUNE DETAILS

We leverage the [EOS] token in LLaMA3 and the [CLS] token in sentence embedding models as node
features. We frozen the layer up to 6-th encoder layer in MiniLM (Reimers & Gurevych, 2019a); up
to 32-th layer in Llama3 (Dubey et al., 2024); up to 12-th encoder layer in BERT and up to 23-th
encoder layer in e5-large (Wang et al., 2022).

C HARDWARE SPECIFICATION

We run experiments on our benchmarks with an Horeka Cluster, which features an 20-core CPU, 140
GB Memory and a Nvidia A100 GPU with 40 GB GPU Memory.

C.1 COMPLEXITY ANALYSIS: DETAILS

LLM Complexity Analysis Transformer-based LLM’s time complexity is O(l(Nh2 +N2h)), with
space complexity O(l ⇑H2), where N , h, l, Dk denotes sequence length, token hidden dimension,
number of transformer layers, dimension of each attention head.

GNN Complexity Analysis: Given a graph G = (A,X), the complexity of an Lg-layer GCN
is Lg ⇑ (O(dhN) +O(whN)), where 0 ↭ d ↭ 1, and d, h, N , w denote the average degree,
dimension of node features, number of nodes, and dimension of hidden channels, respectively. For
a large-scale graph as N → ⇓, and assuming the average in-degree is relatively small, the leading
term is O(LgNhw). In most experiments, we have seen a stabilizing performance achieving the
peak within 3 layers. So we may choose to fix a number Lg = 3 of layers to perform. We rewrite
O(LgNhw) as O(hNW ), where W serves as a composite indicator encapsulating the complexity of
the GCN. Thus, the computation complexity for forward feature aggregations and backward gradient
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aggregations is approximately O(2hNW ) per epoch. The complexity of the GCN is influenced by
the previous LLM solely through the parameter h.

LLM as static embedder: Suppose N is the total number of nodes and the average sequence length
is S. The time complexity of encoding all graph features is O(l(h2NS + hN2S2)), which increases
quadratically with the graph size (number of nodes) but is independent of the graph density (number
of edges).

LLM-as-predictor: In this scenario, the LLM’s embeddings are directly connected to an MLP with
m layers and p neurons. The total complexity is O(l(h2NS + hN2S2)) + O(N2(2hp + mp2)).
Since m is typically small (m ⇔ 3) and the optimal range for p is between 25 and 27, the expression
can be conventionally simplified to O(lhN2S2 +N2mp2), isolating the dominant term and ignoring
constant factors.

LLM-GCN nested architecture: Similar to the LLM-as-predictor approach, we incorporate a GCN
between the LLM and MLP as a subsequent structure embedder, resulting in a training complexity of
O(lhN2S2+N2mp2+2hNW ). As N and S approach infinity, we can disregard the less significant
terms O(2hNW +N2mp2), given that the GCN does not substantially contribute to computational
overhead and the MLP can be effectively replaced by a dot product without appreciable loss in
performance or increase in latency. This simplifies the complexity to O(lhS2N2).

D CHOICES OF METRICS: DETAILS

100 x faster

0.5 x v RAM

Figure 4: Comparison of training time (log-
scale), memory usage and vRAM across
different training categories. The left y-
axis shows the training time in seconds
per epoch (log scale), while the right y-
axis displays memory usage and vRAM in
gigabytes (Gb).

The work Hu et al. (2021) has suggested different metric
for each dataset. It including Mean Reciprocal Rank
(MRR), Hits@K, and area under the curve (AUC) from
recommendation system, knowledge graph completion
and graph embedding respectively.

MRR, calculates the average reciprocal rank of the true
positive among negative candidates. Yet, a significant
challenge arises due to the fact that most datasets do not
provide pre-defined negative samples, resulting in high
computational costs for evaluation.

AUC is a scale-invarint metric, measuring the area
beneath the FPR-TPR curve at various thresholds, a
model’s ability to distinguish between positive and nega-
tive edges, i.e., p(pos) > p(neg). However, as dominant
algorithms have approached 95%, AUC’s discriminative
power has neared saturation. AUC gauges the likelihood
that a positive sample is ranked higher than a randomly
selected negative sample.

AUC =
1

|D0| · |D1|

∑

i↘D0

∑

j↘D1

1(Ri < Rj) (41)

In this context, D0 denotes the set of positive samples, D1 is the set of negative samples, and Ri

represents the rank of the i-th sample. The indicator function Ri < Rj equals 1 if Ri < Rj , and 0
otherwise.

Hits@K, quantifies the ratio of positive edges ranked within the top K positions. However, due to the
lack of scale invariance, Hits@50 is usually reported for smaller datasets while Hits@100 for larger
graphs. The choice of K significantly impacts model ranking, introducing a subtle yet important bias.
While Hits@1 can help bridge this gap, due to the limited performance of current algorithms, it is
highly sensitive to variance and hyper-parameters.

Hits@k =
1

N

N∑

i=1

1(ranki ⇔ k) (42)

Here, Ri represents the rank of the i-the sample, and I(Ri ⇔ K) is an indicator function, taking the
value 1 if Ri ⇔ K, and 0 otherwise.
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Generalized MRR however, can be conveniently applied without aligning the source node, i.e.
randomly sampling both positive and negative candidates. In this context, MRR evaluates the
model’s capacity to rank all positive samples above all negative ones, particularly distinguishing
weak positives from strong negatives, rendering it one of the most stringent metrics available. Its
performance is notably correlated with Hits@1, we leverage MRR in this setting to reduce evaluation
cost and assess the performance ceiling of the most competitive models.

Mean Reciprocal Rank (MRR): This metric represents the mean of the reciprocal rank across all
positive samples. Here, Ri signifies the rank of the i-th sample.

MRR =
1

N

N∑

i=1

1

Ri
, Ri =

1

N

N∑

i=1

1

ranki
(43)

For the datasets Cora, Citeseer, and Pubmed, due to the relatively small number of negative samples
used in the evaluation (e.g., approximately 500 negatives for Cora and Citeseer), K = 100 is
insufficient to differentiate between models such as GCN, GCN4LP, and LLM-related models.
Therefore, we employed Hits@50 and MRR. When comparing the best models from LLM and
GCN4LP, we use MRR.

We then prove that MRR in this setting is statistically linear dependent on Hits@1. See Section A.2

E ERROR ANALYSIS

Type I Source Paper Target Paper Note

Ex 1 Title: How Useful are Educational Questions Gen-
erated by Large Language Models? Abstract: Con-
trollable text generation (CTG) by large language
models has a huge potential to transform educa-
tion for teachers and students alike. . . . The re-
sults demonstrate that the questions generated are
high quality and sufficiently useful, showing their
promise for widespread use in the classroom setting.
. . .

Title: Opportunities and Risks of LLMs for Scalable
Deliberation with Polis Abstract: Polis is a platform
that leverages machine intelligence to scale up delib-
erative processes. In this paper, we explore the op-
portunities and risks associated with applying Large
Language Models (LLMs) towards challenges with
facilitating, moderating and summarizing the results
of Polis engagements.. . . Finally, we conclude with
several open future research directions for augment-
ing tools like Polis with LLMs.

Type II Source Paper Target Paper Note

Ex 1 Title: Learning By Error-Driven decomposition
Abstract: In this paper we describe a new self-
organizing decomposition technique for learning
high-dimensional mappings. Problem decomposi-
tion is performed in an error-driven manner, such
that the resulting subtasks (patches) are equally well
approximated. . . . The appropriateness of our gen-
eral purpose method will be demonstrated with an
example from mathematical function approxima-
tion.

Title: Exploration and Model Building in Mobile
Robot Domains Abstract: I present first results
on COLUMBUS, an autonomous mobile robot.
COLUMBUS operates in initially unknown, struc-
tured environments. Its task is to explore and model
the environment efficiently while avoiding colli-
sions with obstacles. . . . COLUMBUS operates in
real-time. It has been operating successfully in an
office building environment for periods up to hours.

data noise

Table 4: Examples of Type I (predict yes when no) and Type II (predict no when yes) returned from
Llama. Correct keywords are written in blue and the captured feature words in the question are
written in bold.

Given the promising performance of Llama 3, we conducted an error analysis to better understand
its underlying mechanisms in link prediction. As shown in Table 4, we observed that Llama 3 tends
to be sensitive to highly selective keywords and phrases but struggles to capture lexical variations
and semantic relationships. We identify two types of errors: Type I and Type II. Type II errors
are primarily caused by insufficient text; for example, without a connected database, mobile robot
domains may be incorrectly predicted as irrelevant to error-driven decomposition. Additionally,
papers cited in numerical methods, introductions and experiments may exhibit subtle or invisible
textual and lexical relevance. In this context, structural features may play a critical role.
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F LMGJOINT: DETAILS

F.1 PSEUDOCODE & PIPELINE

In Fig. 1 we visualize LMGJOINT described in Section 4. We also give its pseudocode in Algorithm
1

Algorithm 1: method: Framework for Link Prediction in Text Attributed Graph
Input: ( A,X,T,Y, Etrain)

Graph Adjacency Matrix A → {0, 1}n→n, Init Node Feature X;
Node Feature In Raw Text T;
Set of positive and negative edge Labels Y → {1, 0};
Labeled positive and negative Edges E+

train, E
↑
train → E = {(vi, vj) ↑ (V ↓ V)};

Hyper-parameters: Dropout Rate; Dimension of Feature Embedding p;
Model Parameters: PLM: WL → RF→p; GCN: WG → Rp→|Y|

Output: Edge class label vector Yi,j

begin
/* All new variables defined below are initialized as zero */

/* Stage S1: Text Embedding */
for (i , j) → E+

train ↔ E↑
train do

x
T
i ↗ ω (WLti)

x
T
j ↗ ω (WLtj) /* Textual Embeddings are stored in the matrix X

T
*/

/* Stage S2: Neighborhood Aggregation */
/* Calculate Embedding for vi and vj and their Structural

Proximity */

xi ↗ x
T
i

xj ↗ x
T
j /* Replace xi,xj of current link with Textual Embedding

x
T
i ,x

T
j */

for k ↗ 1 to K do
/* symmetric degree-normalization of matrices S = D̃

↑ 1
2 ÃD̃

↑ 1
2 */

H
G ↗ SXWG /* Final node embedding is H

K
*/

H
K = f

(
Ã

K
symXWG

)

/* Stage S3: Structural Feature Embedding */

A ↗ dropout(A)
/* Calculate Common Neighbor for vi and vj */

H
C ↗ I [SUM(Ai ↘Aj) > d] > 0

/* I is a element-wise indicator function for matrix */

/* Pairwise Text Feature Proximity in Dot Product */
S
T = W(XT

i ↘X
T
j )

/* Structural and Textual Feature Concatenation */
R ↗

(
H

K ≃ S
T + εHC

)
/* ε: weight of Structural Proximity */

R ↗ (R↑,R+)

/* Stage S4: Binary Classification */
R ↗ dropout(R)
for (i , j) → Etest do

pij ↗ softmax(rijW);
Yi,j ↗ argmax(pij) /* edge label */

G PROPOSED DATASET: DETAILS

We provide the resource of collected datasets in Table 6 and systematic graph statistic in Table 5
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Table 5: Statistics of proposed dataset.

Pwc_small Cora PubMed Arxiv_2023 History Photo Pwc_medium Ogbn_arxiv Citationv8 ogbn-papers100M
#Nodes |V| 140 2708 19717 46198 36655 47420 86795 169343 1106759 111059956
#Edges |E| 798 10858 88648 77726 496248 872602 933411 2315598 12227452 1615685872
File Size (Mb) 0.139 2.57 31.01 57.26 57.12 37.44 99.58 190.27 1034.18 57344.12
#Split R R R R R R R R R R

Avg Deg (G) 8.51 11.63 19.27 44.38 47.26 108.95 614.64 330.02 74.28 68.23
Avg Deg (G2) 8.01 8.15 10.56 26.33 43.83 66.13 206.03 153.62 51.49 57.59
Clustering 0.22 0.24 0.06 0.13 0.28 0.38 0.13 0.20 0.13 0.18
Shortest Paths 3.47 6.31 6.34 6.06 5.38 4.76 4.23 5.58 5.92 6.02
Transitivity 0.22 0.09 0.05 0.04 0.17 0.12 0.01 0.02 0.03 0.01

Deg Gini 0.41 0.41 0.60 0.82 0.70 0.64 0.62 0.63 0.58 0.69
Coreness Gini 0.26 0.21 0.39 0.75 0.60 0.47 0.40 0.48 0.40 0.57
Heterogeneity -0.08 0.13 0.22 0.70 0.38 0.30 0.78 0.70 0.36 0.58
Power Law ↼ 1.99 2.39 2.66 2.90 1.83 1.64 1.83 1.73 1.77 1.78

Edge Homophily 0.61 0.51 0.27 0.88 0.44 0.36 0.59 0.50 0.64 0.82
Jensen-Shannon 0.27 0.23 0.18 0.30 0.18 0.24 0.29 0.30 0.27 0.26
Mean Length 162 165 282 209 264 168 190 198 161 173

Table 6: M: million (106). The sampling rate for all datasets is at 5 minutes level.

Released Source Dataset Nodes Edges Degree Min-Max Mean Data Points

Ours PwC_small 140 798 8.51 79 – 293 162 0.139M
Xiaoxin He et. al. He et al. (2023) Cora 2708 10858 11.63 8 – 929 165 2.57M

Xiaoxin He et. al. He et al. (2023) Pubmed 19717 88648 19.27 4 – 994 282 31.01M
Xiaoxin He et. al. He et al. (2023) Arxiv_2023 46198 77726 12.89 7 – 1617 209 57.26M
Li, Zhuofeng et al. Shchur et al. (2018) Photo 47420 872602 108.95 4 - 7281 168 37.44M
Li, Zhuofeng et al.(Li et al., 2024) History 36655 496248 47.26 42 - 329 264 42.16M
Ours PwC_medium 86795 933411 7.3 16 – 610 190 99.58M
Weihua Hu et. al. Hu et al. (2021) Ogbn-Arxiv 169343 2315598 13.68 20 – 2214 198 190.27M
Weihua Hu et. al. Wu et al. (2021) Citationv8 281142 938931 3.34 4 – 774 161 1034.18M
Weihua Hu et. al. Hu et al. (2021) ogbn-paper100M 111059956 1615685872 13.68 42 - 213 173 537444.2M

G.1 CURRENT HYPOTHESIS CLASSES

In this section, we explore four commonly used homophily metrics derived from node classification:
average connected feature similarity, generalized edge homophily Luan et al. (2023), and two
distribution-based measurements, Hellinger Distance and Jensen-Shannon Divergence Luan et al.
(2023). These metrics are defined as follows:

1. Edge Homophily: This metric measures the average similarity across all connected edges. It is
defined as:

K =
∑

(u,v)↘E

k(u, v)

|E|
where k(hi,hj) =

hi · hj

↖hi↖↖hj↖
. (44)

2. Generalized Edge Homophily: This approach employs normalized cosine similarity to compare
the degree of similarity across all positive and negative samples within the test set. The accuracy
is calculated as:

Accuracy =
1

N

N∑

i=1

I (qi = T(pi)) , (45)

where I is the indicator function.

3. Hellinger Distance: This metric quantifies the similarity between two probability distributions,
given the logits P̂ and true labels Y:

H(P,Q) =
1
↓
2

√∑

i

(√
P (i)↑

√
Q(i)

)2
. (46)
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4. Jensen-Shannon Divergence: This metric is used to measure the similarity between two proba-
bility distributions defined by the logits P̂ and true labels Y:

DJS(P ↖ Q) =
1

2

∑

i

P (i) log
P (i)

M(i)
+

1

2

∑

i

Q(i) log
Q(i)

M(i)
, (47)

where M(i) = P (i)+Q(i)
2 represents the average distribution between P (i) and Q(i).

All these metrics are bounded within the range [0, 1], with values approaching 1 indicating a high de-
gree of edge homophily. These metrics serve as an initial exploration to uncover potential connections
that can inform model design and dataset characteristics.

G.2 STRUCTURE STATISTICS

Considerable work has demonstrated that local and global structural characterization’s are more
effective for LP. To translate the homophily assumption, local and global graph heuristics, small-world
phenomenon, and scale-free network properties into task-specific statistics, we provided the following
graph metrics. Text length and diversity are critical factors influencing the performance of a model.
In this context, we present the distribution of text lengths within our dataset in Table 6.

1. Graph Density: Number of Nodes, Edges, Arithmetic Deg are used to measure the graph’s size,
density and sparsity. Average degree of each central node v ≃ V and its of 2-order neighborhood
Nv’ average degree measures the graph’s local connectivity.

2. Graph Connectivity: Clustering refers to fraction of possible triangles through one node exists:

Ci =
2⇑ T (i)

deg(i)(deg(i)↑ 1)
T =

3⇑ # triangles
# triads

(48)

where T (i) is the number of triangles through node deg(i) and deg(i) is the degree of node i.
Transitivity measures the fraction of all possible triangles in the graph.

3. Hierarchical level: We leverage k-Core graph’s fraction and degree distribution to calculate Gini
and Coreness Gini.

4. Scale-free: If its node degree distribution P (d) follows a power law P (d) ↔ d↑ς , where ↽
typically lies within the range 2 < ↽ < 3. We approximate power law ↼ based on the following
estimator. pwc_small, cora, pubmed, arxiv_2023, pwc_large are scale-free networks.

↼̂ = 1 +N

(
n∑

i=1

log

(
di + 1

dmin + 1

)↑1

(49)

G.3 DETAILED INFORMATION ABOUT DATASETS

In this work, we evaluate the performance of the models on the Link Prediction task using a diverse
collection of reference datasets. Our analysis includes 10 datasets obtained from three main sources:
Planetoid Sen et al. (2008a), Amazon Shchur et al. (2018) and OGB Hu et al. (2020a). The Planetoid
datasets include Cora and PubMed. The Amazon datasets include Photo. The OGB datasets include
ogbn-arxiv, Citationv8, ogbn-papers100M, and Arxiv 2023. And datasets without a group are
Pwc_small, Pwc_medium and History. The detailed statistics for each dataset are presented in Table5.
Below are descriptions of each dataset that were used in the experiments:

• Cora McCallum et al. (2000): It consists of 2,708 scientific publications, it contains
5,429 links and each paper is either cited or referenced by at least one other paper. Each
publication in the dataset is described by a 0/1-value vector indicating the absence/presence
of the corresponding word in the dictionary. The dictionary consists of 1,433 unique words.

• Pubmed Sen et al. (2008b): It contains 19,717 scientific publications from the PubMed
database about diabetes research. It includes a citation network with 44,338 links, where
nodes represent publications and edges denote citation relationships. Each publication is
characterized by a TF/IDF weighted word vector derived from a dictionary of 500 unique
terms.
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• Photo Shchur et al. (2018): The Amazon Photos dataset represents a collaborative shopping
network, where nodes correspond to one of eight product categories, and edges indicate co-
purchase relationships between products. Each node is characterized by a fixed-size object
vector with 745 dimensions, which captures the relevant attributes of the corresponding
product.

• Ogbn-arxiv Hu et al. (2020a): The ogbn-arxiv dataset is a directed graph representing
a network of citations of computer science articles from arXiv indexed by MAG Wang
et al. (2020). The nodes correspond to individual papers, each of which is described by a
128-dimensional vector of characteristics obtained from the embeddings of words in their
titles and annotations, while the directed edges indicate the citation ratio.

• Ogbn-papers100M Hu et al. (2020a): The ogbn-papers100M dataset is a large-scale
directed citation graph containing 111 million articles indexed by MAG Wang et al. (2020),
making it one of the largest node classification datasets available. Similar to ogbn-arxiv,
each node represents a paper with characteristics derived from its title and annotation, while
the edges indicate the citation ratio. Approximately 1.5 million of these nodes are arXiv
documents covering up to 172 research areas.

• Arxiv 2023 (He et al., 2023): The Arxiv 2023 dataset is a citation network in computer
science from arXiv, in particular those published in 2023 or later. The nodes correspond to
individual papers, and the edges represent citation relationships.

• Pwc Medium (Saier et al., 2023): The Papers With Code (PWC) medium dataset is a
comprehensive resource for exploring the use of research artifacts such as datasets, methods,
models, and tasks. It includes rich meta-information, such as paper descriptions, categories,
and links to the corresponding code and articles. In this work, we only utilize the title and
abstract as node features.

• Pwc Small: In order to fill the dataset scale gap in a hundred nodes, we extracted one
connected component from PWC medium dataset as a small graph.

• History (Li et al., 2024): The Goodread-History is a dataset in book recommendations. The
Goodreads datasets are the main source. Nodes represent meta information of nodes such as
types of books and reviewers, while edges indicate book reviews. Node labels are assigned
based on the book categories. The descriptions of books and user information are used as
book and user node textual information. The task is to predict the preference of users for
products.

• Citationv8 (Yan et al., 2023): The CitationV8 dataset is a extracted graph extracted from
DBLP (Tang et al., 2008). Node textual attributes in CitationV8 are derived from the titles
and abstracts. Each edge represents a citation relationship between two papers.

H COMPLEXITY ANALYSIS

The overall complexity of a self-attention layer with multiple heads is: O(N2
·dmodel+N ·dmodel ·dff),

where N , H denotes token length (sequence length), the number of attention heads, dmodel is the
dimensionality of each key vector. dtt is the hidden dimensionality of the feedforward network.

I BENCHMARK RESULT OF ALL MODELS
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Table 7: Benchmark result of local and global heuristic, graph embedding, vanilla GCNs, GCN2LPs,
LLM-Inf, LLM-FT.

Models Cora PubMed Arxiv 2023
Hits@100 AUC Hits@100 AUC Hits@100 AUC

CN 50.36 ± 0.03 74.67 ± 0.01 33.32 ± 0.02 66.58 ± 0.00 27.20 ± 0.01 63.34 ± 0.00
AA 50.36 ± 0.03 74.83 ± 0.01 33.32 ± 0.02 66.59 ± 0.00 27.20 ± 0.01 63.36 ± 0.00
RA 50.36 ± 0.03 74.83 ± 0.01 33.32 ± 0.02 66.59 ± 0.00 27.20 ± 0.01 63.36 ± 0.00

PPR/sym 88.93 ± 0.00 87.72 ± 0.01 72.95 ± 0.01 78.19 ± 0.01 67.86 ± 0.02 78.90 ± 0.01
Katz 69.25 ± 0.02 82.95 ± 0.01 66.02 ± 0.02 82.52 ± 0.00 55.39 ± 0.01 76.84 ± 0.00
DeepWalk 86.99 ± 0.05 87.02 ± 0.01 72.30 ± 0.01 84.48 ± 0.01 22.13 ± 0.10 75.28 ± 0.01
Node2Vec 85.02 ± 0.01 85.89 ± 0.02 71.35 ± 0.01 80.60 ± 0.04 27.98 ± 0.17 76.76 ± 0.02

GIN 96.05 ± 2.13 94.00 ± 1.38 92.02 ± 0.91 97.79 ± 0.16 53.22 ± 2.05 78.93 ± 0.49
GAT 95.34 ± 1.61 93.77 ± 0.97 84.03 ± 1.59 96.90 ± 0.39 53.49 ± 1.06 82.86 ± 1.02
SAGE 95.10 ± 1.57 91.77 ± 0.91 93.36 ± 0.70 98.66 ± 0.15 56.69 ± 3.13 87.86 ± 1.97
GCN 96.20 ± 1.71 94.18 ± 1.67 89.59 ± 1.73 98.24 ± 0.16 52.46 ± 1.44 81.89 ± 0.51

RotatE 56.60 ± 6.29 61.57 ± 3.88 38.58 ± 2.59 80.89 ± 0.40 34.57 ± 0.84 76.73 ± 0.44
TransE 57.00 ± 7.06 64.19 ± 3.83 50.04 ± 2.63 85.29 ± 0.97 30.22 ± 1.96 73.03 ± 1.04
ComplEx 73.59 ± 0.90 75.71 ± 1.09 53.87 ± 3.09 89.60 ± 0.51 32.17 ± 2.38 73.31 ± 0.61
DistMult 73.12 ± 0.28 76.53 ± 0.80 54.82 ± 2.95 89.91 ± 0.53 32.37 ± 1.62 73.25 ± 0.39

SEAL 92.03 ± 2.96 95.11 ± 1.07 89.52 ± 1.27 98.81 ± 0.14 67.34 ± 3.74 97.36 ± 0.11
NeoGNN 90.04 ± 2.02 91.02 ± 1.08 81.25 ± 8.14 94.69 ± 6.85 69.34 ± 8.56 86.76 ± 3.50
ELPH 94.91 ± 2.17 92.63 ± 1.90 74.62 ± 1.64 95.80 ± 0.39 66.95 ± 3.62 87.09 ± 1.22
BUDDY 95.42 ± 2.26 93.35 ± 1.41 89.25 ± 2.27 97.92 ± 0.17 60.49 ± 0.94 84.33 ± 0.60
NCN 98.74 ± 0.96 96.66 ± 1.14 93.21 ± 1.10 98.66 ± 0.18 88.83 ± 1.43 97.30 ± 0.26
NCNC 98.67 ± 0.76 96.56 ± 1.04 93.74 ± 0.25 98.66 ± 0.12 89.13 ± 2.08 97.42 ± 0.37

BERT-Inf 56.90 ± 3.26 65.09 ± 1.41 48.73 ± 1.43 88.96 ± 0.31 48.74 ± 1.15 86.37 ± 0.27
e5-large-v2 83.10 ± 0.80 83.87 ± 0.23 82.59 ± 0.26 96.73 ± 0.03 84.09 ± 0.24 95.72 ± 0.01
MiniLM-L6-v2 92.99 ± 0.00 91.22 ± 0.04 81.90 ± 0.03 96.20 ± 0.00 77.62 ± 0.03 95.22 ± 0.00
Llama-3-8B 95.64 ± 0.41 92.60 ± 0.12 89.01 ± 0.53 98.09 ± 0.10 89.91 ± 0.19 97.62 ± 0.04

Llama-BUDDY 97.47 ± 1.44 93.97 ± 0.88 94.60 ± 0.98 98.75 ± 0.18 84.93 ± 1.68 96.67 ± 0.38
e5-large-BUDDY 97.86 ± 0.66 94.03 ± 0.77 93.95 ± 0.34 98.72 ± 0.06 77.43 ± 3.01 95.27 ± 0.31
BERT-BUDDY 81.42 ± 2.86 79.62 ± 2.44 78.54 ± 1.26 96.25 ± 0.17 43.30 ± 1.65 77.93 ± 0.62
MiniLM-BUDDY 97.55 ± 1.32 94.74 ± 0.99 93.56 ± 0.66 98.68 ± 0.07 47.12 ± 2.93 77.59 ± 0.35
Llama-NCN 98.26 ± 0.77 96.23 ± 0.28 96.30 ± 0.62 99.11 ± 0.07 92.64 ± 0.52 98.24 ± 0.17
e5-large-NCN 98.81 ± 0.62 96.72 ± 0.67 96.33 ± 0.70 99.10 ± 0.09 90.79 ± 1.38 97.82 ± 0.22
BERT-NCN 82.93 ± 3.65 84.91 ± 2.53 81.09 ± 2.46 97.24 ± 0.20 66.20 ± 0.62 86.94 ± 0.27
MiniLM-NCN 98.58 ± 0.60 96.93 ± 0.54 95.49 ± 0.66 98.97 ± 0.10 66.47 ± 0.84 86.69 ± 0.28
Llama-NCNC 98.73 ± 0.65 95.63 ± 0.77 92.39 ± 1.46 98.54 ± 0.18 91.90 ± 1.33 97.97 ± 0.36
e5-large-NCNC 98.81 ± 0.74 96.31 ± 0.68 96.69 ± 0.56 99.14 ± 0.10 90.46 ± 1.14 97.72 ± 0.16
BERT-NCNC 84.11 ± 2.70 84.05 ± 2.85 82.48 ± 1.43 97.40 ± 0.20 68.50 ± 3.49 89.20 ± 0.30
MiniLM-NCNC 98.81 ± 0.49 96.82 ± 0.62 96.11 ± 0.60 99.07 ± 0.07 70.61 ± 2.24 88.42 ± 0.72
Llama-NeoGNN 83.00 ± 8.24 87.08 ± 3.07 69.42 ± 3.09 94.90 ± 0.52 63.67 ± 8.29 86.94 ± 1.22
e5-large-NeoGNN 82.06 ± 4.54 87.06 ± 1.69 71.13 ± 2.19 92.21 ± 5.85 69.09 ± 9.97 88.32 ± 1.81
BERT-NeoGNN 87.59 ± 3.79 87.77 ± 2.30 70.85 ± 1.71 95.08 ± 0.38 65.43 ± 8.49 86.22 ± 1.93
MiniLM-NeoGNN 87.59 ± 6.28 88.66 ± 2.63 70.62 ± 1.71 95.08 ± 0.38 68.60 ± 11.86 86.10 ± 0.75

BERT-FT 96.99 ± 1.36 92.88 ± 0.99 84.45 ± 2.92 97.32 ± 0.44 87.56 ± 2.05 96.98 ± 0.31
e5-large-v2-FT 96.92 ± 1.35 94.27 ± 0.85 87.23 ± 1.60 97.79 ± 0.14 89.35 ± 1.33 97.39 ± 0.33
MiniLM-L6-v2-FT 96.68 ± 1.69 93.98 ± 0.85 86.80 ± 1.98 97.64 ± 0.36 88.38 ± 1.06 97.25 ± 0.36
all-mpnet-base-v2 97.78 ± 0.66 94.71 ± 1.16 90.69 ± 2.49 98.06 ± 0.19 91.44 ± 0.75 97.36 ± 0.33

MiniLM-GAT-CT 76.99 ± 6.58 76.09 ± 4.18 43.75 ± 5.46 90.11 ± 1.81 25.18 ± 4.17 80.31 ± 3.08
MiniLM-SAGE-CT 82.01 ± 4.19 80.15 ± 2.74 63.18 ± 1.34 94.10 ± 0.21 66.06 ± 2.60 92.63 ± 0.51
mpnet-GIN-CT 97.55 ± 1.86 92.30 ± 2.28 63.42 ± 2.77 94.82 ± 0.42 64.38 ± 3.22 91.97 ± 1.07
mpnet-GAT-CT 86.96 ± 6.71 86.64 ± 5.61 52.43 ± 4.18 91.75 ± 0.86 29.43 ± 3.60 82.50 ± 3.28
mpnet-SAGE-CT 93.88 ± 0.28 89.64 ± 0.96 71.62 ± 2.78 94.60 ± 0.58 66.28 ± 4.50 92.63 ± 0.87

MiniLM-LMGJOINT-C 99.92 ± 0.18 98.24 ± 0.95 99.94 ± 0.08 99.73 ± 0.03 98.16 ± 1.73 99.05 ± 0.25
MiniLM-LMGJOINT 99.84 ± 0.35 97.79 ± 0.66 89.22 ± 4.96 98.30 ± 0.51 91.44 ± 1.34 98.22 ± 0.30
mpnet-LMGJOINT-C 96.28 ± 8.31 94.68 ± 6.81 99.95 ± 0.08 99.42 ± 0.38 77.99 ± 17.20 92.88 ± 6.53
mpnet-LMGJOINT 100.00 ± 0.00 98.78 ± 1.02 97.13 ± 1.74 99.34 ± 0.22 94.85 ± 3.15 98.79 ± 0.49
e5-large-LMGJOINT-C 99.92 ± 0.18 98.36 ± 1.15 100.00 ± 0.00 99.49 ± 0.18 98.01 ± 0.72 98.51 ± 0.12
e5-large-LMGJOINT 98.89 ± 1.02 97.13 ± 1.22 88.41 ± 1.14 98.18 ± 0.12 87.71 ± 1.48 97.51 ± 0.29
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Table 8: Benchmark result of local and global heuristic, graph embedding, vanilla GCNs, GCN2LPs,
LLM-Inf, LLM-FT.

Models Cora PubMed Arxiv 2023
Hits@50 MRR Hits@50 MRR Hits@50 MRR

CN 50.36±0.03 32.88±0.09 33.32±0.02 21.13±0.02 27.20±0.01 14.66±0.06
AA 50.36±0.03 47.33 ± 0.09 33.32±0.02 24.61±0.11 27.20±0.01 19.87±0.30
RA 50.36±0.03 47.17±0.11 33.32±0.02 23.94±0.16 27.20±0.01 19.16±0.27

PPR/sym 84.74±0.00 58.86±0.98 69.81±0.02 28.04±0.91 65.68±0.02 26.57±0.82
Katz 69.25±0.02 38.17±0.12 66.02±0.02 30.94±0.08 55.39±0.01 21.76±0.21
DeepWalk 81.07±0.02 33.88±0.81 64.97±0.03 25.49±0.52 13.57±0.08 2.54±0.00
Node2Vec 80.38±0.03 38.76±0.60 64.57±0.03 19.48±0.15 19.12±0.21 3.86±0.02

GCN 91.46±2.36 45.84±8.40 83.11±2.19 24.55±4.02 45.07±0.87 17.62±3.34
GAT 89.80±2.00 49.82±10.04 74.23±2.54 18.13±5.81 43.09±1.22 13.58±4.33
SAGE 86.40±3.73 46.03±6.70 86.55±0.55 35.63±5.75 45.42±3.12 11.52±1.67
GIN 91.54±2.91 51.90±6.65 86.92±1.68 24.63±2.24 45.35±2.58 14.79±4.53

RotatE 27.51 ± 6.39 2.98 ± 0.41 26.10 ± 2.89 4.41 ± 1.24 24.76 ± 1.31 5.65 ± 1.20
TransE 32.17 ± 6.52 3.97 ± 0.90 38.58 ± 3.64 7.74 ± 1.71 21.27 ± 1.81 5.11 ± 1.16
ComplEx 62.53 ± 1.71 17.82 ± 2.58 38.14 ± 3.55 6.50 ± 2.48 22.33 ± 1.05 5.16 ± 1.07
DistMult 64.90 ± 1.59 19.28 ± 2.11 39.09 ± 3.93 6.90 ± 2.50 21.32 ± 0.45 5.02 ± 1.24

SEAL 87.38±3.06 37.81±9.93 84.62±3.53 49.02±13.91 56.98±1.89 22.47±3.69
NeoGNN 81.03±3.11 41.48±5.11 73.17±5.29 31.44±3.85 64.54±11.14 28.07±15.62
ELPH 87.30±4.94 39.86±10.20 59.19±5.58 24.61±3.17 57.66±1.55 29.22±5.95
BUDDY 87.82±3.41 30.78±5.55 76.14±3.46 19.46±2.42 52.25±2.01 18.75±3.71
NCN 96.16±1.62 45.76±16.39 86.44±2.03 25.92±4.33 82.34±2.45 37.92±13.21
NCNC 95.42±2.41 48.68±18.60 86.49±0.99 20.31±6.51 81.86±1.64 35.67±12.30

Bert 35.79±2.50 3.42±0.47 36.12±0.37 6.56±0.70 37.66±1.57 10.04±0.85
MiniLM 83.39±0.00 34.29±4.10 66.35±0.29 21.54±0.11 68.15±0.09 16.91±0.18
e5-large-v2 64.35±1.56 24.40±2.48 71.32±0.86 21.79±1.58 75.03±0.28 21.69±0.03
Llama-3-8B 89.15±0.72 31.19±3.49 79.87±1.19 22.87±4.47 83.18±1.19 22.85±1.12

Llama-BUDDY 91.23 ± 1.66 29.10 ± 5.72 88.10 ± 2.08 24.57 ± 3.66 75.15 ± 3.55 28.74 ± 5.29
e5-large-BUDDY 92.17 ± 1.32 34.19 ± 10.77 88.07 ± 0.57 22.90 ± 5.86 64.52 ± 3.00 20.79 ± 4.67
BERT-BUDDY 63.32 ± 5.74 14.64 ± 3.70 62.03 ± 3.16 13.15 ± 2.84 35.19 ± 1.54 10.20 ± 2.88
MiniLM-BUDDY 92.41 ± 1.62 41.05 ± 11.41 85.98 ± 1.19 25.45 ± 4.86 38.33 ± 2.89 11.31 ± 1.78
Llama-NCN 94.94 ± 0.85 49.62 ± 10.03 90.05 ± 1.66 30.73 ± 10.11 86.43 ± 0.24 32.48 ± 12.29
e5-large-NCN 95.57 ± 1.02 49.65 ± 14.61 90.97 ± 1.77 32.19 ± 4.80 84.36 ± 0.56 32.23 ± 14.04
BERT-NCN 73.04 ± 4.08 43.37 ± 8.81 67.95 ± 3.42 23.16 ± 6.75 61.93 ± 0.78 37.05 ± 8.86
MiniLM-NCN 98.58 ± 0.60 46.59 ± 11.01 88.85 ± 0.89 33.60 ± 7.51 61.95 ± 0.54 31.86 ± 13.16
Llama-NCNC 95.57 ± 1.02 27.45 ± 7.86 84.65 ± 1.95 20.51 ± 9.80 84.68 ± 1.72 27.16 ± 11.48
e5-large-NCNC 96.13 ± 1.13 39.23 ± 12.99 90.86 ± 1.95 27.02 ± 5.96 83.24 ± 1.20 25.14 ± 9.39
BERT-NCNC 77.47 ± 1.77 25.39 ± 12.42 72.80 ± 1.78 23.49 ± 3.07 58.83 ± 3.91 22.80 ± 2.55
MiniLM-NCNC 96.13 ± 1.20 38.96 ± 13.20 90.32 ± 1.52 22.56 ± 3.30 65.65 ± 1.80 29.10 ± 3.83
Llama-NeoGNN 77.63 ± 4.33 47.11 ± 8.51 64.00 ± 0.87 33.82 ± 3.81 56.20 ± 10.94 22.39 ± 13.38
e5-large-NeoGNN 78.91 ± 2.49 47.04 ± 8.63 64.74 ± 2.03 32.65 ± 5.49 63.56 ± 11.23 24.70 ± 11.08
BERT-NeoGNN 80.08 ± 4.22 45.50 ± 8.99 64.10 ± 1.50 33.01 ± 5.49 57.40 ± 9.79 23.92 ± 8.63
MiniLM-NeoGNN 81.35 ± 5.27 43.83 ± 6.82 65.13 ± 0.26 33.89 ± 6.18 62.53 ± 14.04 21.49 ± 18.99

BERT-FT 89.17±2.86 30.90±4.33 73.70±4.01 17.11±3.90 77.75±3.46 29.54±3.98
e5-large-v2-FT 92.09±1.70 38.63±9.39 76.26±2.55 19.75±5.81 80.48±2.52 31.73±6.62
MiniLM 92.49±2.13 35.55±5.82 75.87±3.72 20.79±6.32 80.20±2.62 29.86±5.82
all-mpnet-base-v2 93.44 ± 1.64 22.55 ± 10.71 63.27 ± 31.76 9.38 ± 3.12 82.72 ± 1.28 8.42 ± 6.49

MiniLM-GAT-CT 54.23 ± 4.08 13.74 ± 5.21 29.44 ± 2.84 4.26 ± 1.75 13.76 ± 2.22 2.62 ± 0.55
MiniLM-SAGE-CT 63.04 ± 9.23 15.09 ± 1.35 45.31 ± 3.83 6.70 ± 3.61 49.11 ± 4.22 11.48 ± 3.41
mpnet-GIN-CT 89.01 ± 5.54 29.06 ± 7.96 46.82 ± 4.22 11.86 ± 3.68 55.11 ± 3.70 18.88 ± 5.89
mpnet-GAT-CT 74.90 ± 9.22 23.16 ± 11.10 35.82 ± 3.81 5.36 ± 1.69 19.50 ± 1.91 4.49 ± 0.91
mpnet-SAGE-CT 82.01 ± 4.19 25.34 ± 8.06 57.58 ± 3.78 11.91 ± 3.58 52.97 ± 5.05 14.51 ± 3.37

MiniLM-LMGJOINT-C 99.92±0.18 41.52±19.50 99.91 ± 0.09 44.99 ± 10.82 90.61 ± 2.25 35.47 ± 10.91
MiniLM-LMGJOINT 98.34±0.59 60.84±7.75 78.56 ± 6.32 22.72 ± 1.51 84.57 ± 1.93 40.27 ± 11.91
mpnet-LMGJOINT-C 93.28±14.16 28.92±7.14 99.27 ± 1.19 23.99 ± 11.63 73.09 ± 16.32 14.68 ± 6.17
mpnet-LMGJOINT 100.00±0.00 68.43±14.23 91.67 ± 4.96 31.66 ± 5.33 89.17 ± 5.45 45.70 ± 3.88
e5-large-LMGJOINT-C 99.92±0.18 41.46±25.49 99.11 ± 1.54 21.66 ± 9.66 83.97 ± 4.23 12.66 ± 2.66
e5-large-LMGJOINT 96.29±2.08 65.26±11.52 77.34 ± 2.19 23.80 ± 3.29 80.01 ± 2.53 42.02 ± 5.56
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