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ABSTRACT

While fusing heterogeneous open-source LLMs with varying architectures and
sizes can potentially integrate the strengths of different models, existing fusion
methods face significant challenges, such as vocabulary alignment and merging
distribution matrices. These procedures are not only complex but also prone to
introducing noise and errors. In this paper, we propose an implicit fusion method,
Weighted-Reward Preference Optimization (WRPO), which leverages preference
optimization between the source LLMs and the target LLM to transfer their capa-
bilities effectively. WRPO eliminates the need for vocabulary alignment and matrix
fusion and can be efficiently scaled to accommodate various LLMs. To address
distributional deviations between the source and target LLMs, WRPO introduces a
progressive adaptation strategy that gradually shifts reliance on preferred examples
from the target LLM to the source LLMs. Extensive experiments on the MT-Bench,
AlpacaEval-2, and Arena-Hard benchmarks demonstrate that WRPO consistently
outperforms existing knowledge fusion methods and various fine-tuning baselines.
When applied to Llama-3-8B-Instruct as the target model, WRPO achieves a length-
controlled win rate of 55.9% against GPT-4-Preview-1106 on AlpacaEval-2 and a
win rate of 46.2% against GPT-4-0314 on Arena-Hard. Our code is available at
https://github.com/SLIT-AI/WRPO.

1 INTRODUCTION

Combining the strengths of multiple large language models (LLMs) can potentially enhance the
capabilities of individual models. Model ensemble techniques (Jiang et al., 2023b; Wang et al.,
2024b) aggregate predictions from several models to improve overall performance and robustness
over a single model. However, this approach requires substantial computational resources, as all
models must remain active during inference. The Mixture of Experts (MoE) (Komatsuzaki et al.,
2023; Feng et al., 2024; Sukhbaatar et al., 2024) leverages sparse expert networks to boost capacity
by activating only a subset of parameters. Despite reduced activation, MoEs still incur significant
memory overhead, as all parameters must be maintained. Model merging (Wortsman et al., 2022;
Matena & Raffel, 2022; Yadav et al., 2023), which combines independently trained instances of the
same model through arithmetic operations, allows a single model to be maintained during inference.
While more efficient, this method is restricted to models with identical architectures and sizes.

Another approach is to fuse these LLMs into a target model through multi-teacher knowledge
distillation (Wan et al., 2024a;b; Shi et al., 2024). Unlike traditional knowledge distillation (Gou et al.,
2021), which usually leverages diverse sources (e.g., logits, features, and relations) of knowledge from
teacher models, this method relies exclusively on the probabilistic distribution matrices generated by
source LLMs to transfer knowledge to the target model. We refer to this method as explicit model
fusion (EMF) because it involves a well-defined knowledge transfer process. While applicable to
heterogeneous models with varying architectures and sizes, and without increasing memory overhead
during inference, this approach presents notable challenges such as vocabulary alignment and the
merging of distribution matrices from different LLMs. These issues complicate model fusion, reduce
its efficiency, and may introduce noise and errors and affect the fusion results.
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† Corresponding author.
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Figure 1: Distribution deviations between responses from heterogeneous source LLMs and the Llama-3-8B-
Instruct target LLM before (a) and after (b) DPO fine-tuning, with the prompts from UltraFeedback (Cui et al.,
2024) as input. Subfigure (c) shows the results (πDPO-off) of preference optimization with this deviated preference
dataset, compared to the results (πθ) from directly applying the target model and those (πDPO-on) from DPO
fine-tuning on un-deviated preference data sampled from the target model.

This work aims to enhance the capabilities of a single LLM by implicitly learning from robust open-
source LLMs, a process we term implicit model fusion (IMF). The concept of IMF has been widely
utilized to improve the performance of weaker models. For instance, a weak model can be boosted
through fine-tuning with outputs from stronger LLMs (Ranaldi & Freitas, 2024; Tian et al., 2024;
Kang et al., 2023). Moreover, a reward model can be trained using outputs from various LLMs (Cui
et al., 2024; Zhu et al., 2024a), enabling it to learn and capture the differences in capabilities between
the LLMs. Zephyr (Tunstall et al., 2023) further collects responses from multiple LLMs and ranks
them with GPT-4 to obtain preference data for training the policy using DPO. One advantage of
IMF over EMF (Wan et al., 2024a;b; Shi et al., 2024) is that it eliminates the need for challenging
alignment of vocabularies and fusion of distributions among different LLMs. Inspired by recent
alignment techniques such as Direct Preference Optimization (DPO) (Rafailov et al., 2023) and
Simple Preference Optimization (SimPO) (Meng et al., 2024), we propose a novel IMF method to
transfer the capabilities of source LLMs to a target LLM through preference optimization. However,
directly applying preference learning to outputs from heterogeneous LLMs presents challenges.
Previous works have shown that DPO is highly sensitive to distribution shifts between the policy
model and the preference data (Xu et al., 2024b; Tajwar et al., 2024; Zhou et al., 2024), and training
a policy model on this preference data can lead to sub-optimal performance.

To demonstrate this, we conduct a preliminary experiment on the UltraFeedback dataset (Cui et al.,
2024), using Llama-3-8B-Instruct (Dubey et al., 2024) as the target model and 10 strong open-source
LLMs as source models.1 For each prompt, we first ask each source model to generate several
responses and use the ArmoRM reward model (Wang et al., 2024a) to select the highest-reward
response among all source LLMs as the preferred response, with the dispreferred response coming
from the target LLM’s completions. Figure 1(a) visualizes the average log-probability distribution
of the target LLM πθ for both response types, which reveals a significant deviation between the
distributions of the source and target models. Although applying DPO directly on this deviated
dataset marginally enhances the log-probabilities of source LLMs’ responses relative to those of the
target LLM, as shown in Figure 1(b), this results in sub-optimal performance compared to sampling
both response types exclusively from the target LLM, as illustrated in Figure 1(c).

To address the distributional deviations during implicit model fusion, we introduce a novel approach
called Weighted-Reward Preference Optimization (WRPO). Instead of directly relying on the source
LLMs to provide preferred responses, we propose a progressive adaptation strategy that begins with
the target LLM providing preferred responses and gradually shifts this responsibility to source LLMs.
Specifically, this progressive adaptation is implemented in two stages. First, for each prompt x, we
construct a preference quadruple (x, yws

, ywt
, yl), where yws

is a preferred response generated by the
source LLMs, and ywt and yl are preferred and dispreferred responses, respectively, from the target
LLM. Second, we gradually decrease the weight of internal rewards2 for ywt and increase the weight

1Refer to Section 4.1 for more details.
2We use “internal reward” to refer to the reward generated during preference optimization for preferred or

dispreferred responses, in contrast to the reward provided by an external reward model.
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for yws
during preference optimization. This smoothing process facilitates the integration of strengths

from the source models into the target model while mitigating the distributional discrepancies.

To assess the effectiveness of WRPO in implicit model fusion, we select 10 prominent open-source
LLMs as the source models, with parameter sizes ranging from 9B to 236B. We chose Llama-3-8B-
Instruct (Dubey et al., 2024) as the target model due to its strong performance relative to its size.
Our experiments are conducted on three widely-used instruction-following benchmarks, namely,
MT-Bench (Zheng et al., 2023), AlpacaEval-2 (Li et al., 2023), and Arena-Hard (Li et al., 2024). The
results show that WRPO consistently outperforms existing fusion methods and various baselines. This
highlights its ability to allow a model to implicitly learn from the diverse capabilities of heterogeneous
LLMs while addressing distributional shifts. Notably, the fused model, Llama-3-8B-Instruct-WRPO,
surpasses all source models on AlpacaEval-2 with a length-controlled win rate of 55.9%.

2 RELATED WORK

Collective LLMs Given that LLMs are trained with various architectures and sizes on different
datasets, it is reasonable to assume they possess unique capabilities and strengths. Therefore,
leveraging the distinct advantages of different LLMs becomes a natural approach to developing more
robust and high-capable models. Recent studies have increasingly emphasized the development of
collective LLMs through the integration of diverse heterogeneous models.

LLM-Blender (Jiang et al., 2023b) presents an ensemble framework that first employs a pairwise
ranking mechanism to identify the top-K outputs generated by different LLMs. These selected outputs
are then refined by a seq2seq model to produce enhanced results. Mixture-of-Agents (MoA) (Wang
et al., 2024b) utilizes a hierarchical structure where each layer consists of multiple LLM agents. The
outputs from a previous layer are concatenated and refined by each agent in the subsequent layer.
However, this approach significantly increases the number of LLMs needed during inference. In
addition to the sequence-level ensemble, Xu et al. (2024c) explored a token-level ensemble method
that aggregates the distributions of LLMs at each decoding step through a global alignment matrix.
Similarly, PackLLMs (Mavromatis et al., 2024) conducts distribution ensembling during inference
utilizing sequence-level weights derived from the perplexity of each LLM on the input.

FuseLLM (Wan et al., 2024a) and FuseChat (Wan et al., 2024b) aim to fuse LLMs of various
architectures and sizes into a more robust model through multi-teacher knowledge distillation. They
start by aligning the vocabularies and probabilistic distributions of the source LLMs, followed by
merging their distributions and continuously fine-tuning the target LLM. ProFuser (Shi et al., 2024)
goes further by integrating both training mode (through cross-entropy loss) and inference mode (via
model outputs), which provides a more comprehensive understanding of the capabilities of source
LLMs. Although applicable to models with varying architectures and sizes, these methods face
challenges such as vocabulary alignment and merging distribution matrices from different LLMs,
which are complex and may also introduce noise and errors that affect the fusion results.

Direct Preference Optimization Aligning LLMs with human preferences is crucial for their
success. Reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Schulman
et al., 2017; Ziegler et al., 2019) is a widely used approach to achieve this alignment. However, RLHF
depends on complex reinforcement learning techniques such as Proximal Policy Optimization (PPO),
which are challenging to implement and often unstable during training. To address these challenges,
approaches such as SLiC-HF (Zhao et al., 2023) and RRHF (Yuan et al., 2023) replace reinforcement
learning with a ranking loss on preference pairs to better align LLMs with human preferences, while
also incorporating a regularization term based on reference responses. Similarly, DPO (Rafailov et al.,
2023) directly optimizes the policy model by training the reward model on human preference data. In
addition to providing more stable training, lower computational costs, and easier implementation,
this approach ensures high-quality alignment with human preferences.

Subsequent research aims to address the potential limitations of DPO. For example, IPO (Azar et al.,
2024) tackles the risk of overfitting by optimizing a nonlinear preference function, thus avoiding
the transformation of pairwise preferences into pointwise rewards. KTO (Ethayarajh et al., 2024) is
based on a new alignment objective of human-aware loss (HALO), which maximizes the utility of
generated outputs directly from a binary signal indicating whether the output is desirable, rather than
maximizing the likelihood of preferences. CPO (Xu et al., 2024a) and ORPO (Hong et al., 2024)
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aim to eliminate the need for a reference model by streamlining the optimization process, combining
supervised fine-tuning (SFT) and preference alignment into a single step. R-DPO (Park et al., 2024)
introduces a length-regularization term into the DPO objective to mitigate length biases that may be
exploited by DPO. Similarly, SimPO (Meng et al., 2024) revises the reward component in DPO to
use the average log probability of positive or negative responses from the policy model. Another
motivation for this method is that the training process aligns more closely with inference.

However, none of the above works consider the hybrid scenario where one response is generated by
the policy itself while the other comes from a different LLM. This situation may introduce serious
distribution shifts relative to the policy, which in turn affects the policy’s optimization. The work
closely related to our setup is WPO (Zhou et al., 2024), which assigns weights to off-policy preference
pairs based on their likelihood under the policy model. These weights indicate the degree of deviation
from the policy’s distribution and mitigate the influence of preference pairs with notable deviations.

3 METHOD

In this section, we begin with a problem statement for implicit model fusion, followed by the
preliminaries of direct preference optimization (DPO) (Rafailov et al., 2023). Finally, we provide a
detailed explanation of our proposed method, Weighted-Reward Preference Optimization (WRPO).

3.1 PROBLEM STATEMENT

Previous works on model fusion primarily focus on transferring knowledge from various heteroge-
neous LLMs into a unified model via multi-teacher knowledge distillation (Wan et al., 2024a;b; Shi
et al., 2024). We refer to this method as explicit model fusion (EMF) because it involves a well-defined
knowledge transfer process. As mentioned earlier, this approach requires complex alignment of
vocabularies and merging of distribution matrices across heterogeneous LLMs. In contrast, this
work proposes implicit model fusion (IMF) to enhance the capabilities of a target LLM by implicitly
learning from the outputs of robust source LLMs, thereby bypassing the difficulties of vocabulary
alignment and distribution fusion. Another advantage of IMF is that the source LLMs can be either
open-source or proprietary; however, for comparison with previous fusion approaches, we focus on
open-source LLMs. Inspired by recent alignment techniques like DPO (Rafailov et al., 2023) and
SimPO (Meng et al., 2024), we propose implementing IMF through preference optimization.

For each prompt xi in the training dataset D, we first sample N (e.g., N=5) responses from each of the
source LLMs. Then, an external reward model is employed to identify the response with the highest
reward score among all source models as preferred, denoted as yws . Next, a dispreferred response
can be sampled from the target LLM. However, as illustrated in Figure 1, significant deviations may
exist between the distributions of the preferred and dispreferred responses, and directly applying
preference optimization under these conditions could yield problematic results.

To address this issue, we propose a progressive adaptation strategy. Specifically, we sample N
responses from the target model and evaluate them using the reward model. The response with
the highest score is labeled as another preferred response ywt , while the lowest-scoring response is
regarded as the dispreferred response yl. To tackle the challenges of distributional discrepancies and
effectively utilize data from the source models, we introduce a novel optimization objective called
Weighted-Reward Preference Optimization (WRPO). As shown in Figure 2, this objective introduces
a fusion coefficient α that dynamically balances the internal reward of the preferred response yws

from source models and that of ywt
from the target during training. This approach enables the target

LLM to transition smoothly from its distribution to align with that of the source LLMs.

3.2 PRELIMINARIES: DIRECT PREFERENCE OPTIMIZATION

Conventional alignment methods such as reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017; Schulman et al., 2017; Ziegler et al., 2019) often involve complex
training pipelines that are unstable and resource-intensive. In contrast, Direct Preference Optimization
(DPO) (Rafailov et al., 2023) provides a more efficient alternative by fine-tuning LLMs to align with
human preferences through a straightforward supervised learning objective using human-labeled
preference data. DPO optimizes the policy to generate outputs that match human preferences without
requiring explicit reward functions or trial-and-error updates. Specifically, DPO reformulates the
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Figure 2: Overview of our proposed WRPO for implicit model fusion.

reward function to yield a closed-form solution for the optimal policy. Given the optimal policy π∗,
the reparameterized form of the optimal reward function r∗(x, y) is expressed as follows:

r∗(x, y) = β log
π∗(y | x)
πref(y | x) + β logZ(x), (1)

where Z(x) is the partition function, πref denotes the reference policy, typically a supervised fine-tuned
(SFT) model, which also serves as the starting point for the policy. Given a human preference dataset
D =

{
(x, yw, yl)

i
}N
i=1

, where yw and yl represent the preferred and dispreferred completions for prompt
x, the reparameterized reward function r∗(x, y) is incorporated into the Bradley-Terry model (Bradley & Terry,
1952), which yields the probability of preference between yw and yl as:

p∗(yw ≻ yl | x) = σ

(
β log

π∗(yw | x)
πref(yw | x) − β log

π∗(yl | x)
πref(yl | x)

)
. (2)

The maximum likelihood objective for a parameterized policy πθ is then:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x) − β log

πθ(yl | x)
πref(yl | x)

)]
. (3)

The preference dataset for DPO training can be sampled from the reference model or sourced from publicly
available data. In the latter case, a supervised fine-tuning process is typically required for the reference model to
mitigate the distribution shift between the true reference distribution and the dataset used for DPO.

3.3 WRPO: WEIGHTED-REWARD PREFERENCE OPTIMIZATION

While fine-tuning the target LLM with high-reward responses from source LLMs can alleviate the distribution
issue in implicit model fusion, empirical results suggest that the distribution deviation remains, particularly when
compared to preference data fully sampled from the target model. Therefore, we propose a progressive adaptation
strategy with a new optimization objective called Weighted-Reward Preference Optimization (WRPO), which
enables the target LLM to smoothly transition and align its distribution with that of the source LLMs.

Derivation of the WRPO objective The preference dataset for WRPO consists of a set of quadruples
(x, yws , ywt , yl), where yws is the highest-reward response from the source LLMs for prompt x, and ywt and yl
are the responses with the highest and lowest reward from the target LLM, respectively. Based on this setup, we
define a new pair of preferred completions yw = {yws , ywt} and an updated preference triple (x, yw, yl). We
then extend the DPO framework by introducing a weighted-reward mechanism. In particular, the Bradley-Terry
(BT) model is reformulated as:

p(yw ≻ yl | x) = σ(r(x, yw)− r(x, yl)), (4)
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where r(x, yw) is a compound reward calculated as a weighted average of r(x, yws) and r(x, ywt):

r(x, yw) = α · r(x, yws) + (1− α) · r(x, ywt), (5)

where α represents the fusion coefficient that dynamically balances the internal reward of the preferred response
yws from source models and that of ywt from the target model during training. Next, by substituting r∗(x, y)
from Eq. (1) into Eq. (4) and Eq. (5), we derive the WRPO training objective:

LWRPO(πθ;πref) = −E(x, yws , ywt , yl) ∼ D[
log σ

(
α · β log

πθ(yws | x)
πref(yws | x) + (1− α) · β log

πθ(ywt | x)
πref(ywt | x) − β log

πθ(yl | x)
πref(yl | x)

)]
, (6)

which can be reformulated as:

LWRPO(πθ;πref) = −E(x, yws , ywt , yl) ∼ D[
log σ

(
α·
(
β log

πθ(yws | x)
πref(yws | x) − β log

πθ(yl | x)
πref(yl | x)︸ ︷︷ ︸

hybrid-policy internal reward margin

)
+(1−α)·

(
β log

πθ(ywt | x)
πref(ywt | x) − β log

πθ(yl | x)
πref(yl | x)︸ ︷︷ ︸

on-policy internal reward margin

))]
.

(7)

The above process seeks to maximize the margin of internal rewards between preference responses, utilizing
both on-policy sampling from the target model and hybrid-policy sampling from the source and target models.
Initially, it emphasizes on-policy sampling and gradually transitions to hybrid-policy sampling. This process
helps mitigate distributional deviations and ensures a smoother optimization process.

Gradient analysis We examine the gradient of WRPO to understand the impact of the weighted-reward
mechanism on the training process. The gradient of loss function LWRPO in Eq. (6) with respect to the policy
model πθ can be expressed as:

∇θLWRPO(πθ;πref) = −βE(x,yws ,ywt ,yl,)∼D

[
σ

(
r̂θ(x, yl)− α · r̂θ(x, yws)− (1− α) · r̂θ(x, ywt)︸ ︷︷ ︸

higher weight when reward estimation is wrong

)
·

(
α · ∇θ log πθ(yws |x)︸ ︷︷ ︸

increase likelihood on yws

+(1− α) · ∇θ log πθ(ywt |x)︸ ︷︷ ︸
increase likelihood on ywt

− ∇θ log πθ(yl|x)︸ ︷︷ ︸
decrease likelihood on yl

)]
, (8)

where r̂θ(x, y) = β log πθ(y|x)
πref(y|x)

represents the internal reward function. Intuitively, the gradient flow of
LWRPO tends to increase the likelihood of preferred responses yws and ywt while decreasing the likeli-
hood of dispreferred yl. The function σ(.) represents the reward estimation error that controls the rate
of increasing or decreasing the likelihood of preferred or dispreferred completions in WRPO. When
the reward estimation is incorrect, WRPO will accelerate the gradient flow for updates. To further an-
alyze the impact of yws and hyperparameter α on gradient update, we reformulate the σ(.) term as
σ (α · (r̂θ(x, yl)− r̂θ(x, yws)) + (1− α) · (r̂θ(x, yl)− r̂θ(x, ywt))). We can see that α serves as a constraint
term on the gradient update for the policy model learning from yws . A larger α means the policy will absorb
more gradient information from yws . At the beginning of training process, since there exists a distributional gap
between yws from source models and yl from target model, we assign a relatively low α to the estimation term
(r̂θ(x, yl)− r̂θ(x, yws)) and progressively increase α during the training process. In this way, we smoothly
shift the target model πθ from the distribution of ywt to that of yws .

Therefore, WRPO balances the contributions of diverse responses from heterogeneous LLMs and provides
richer preference signals for preference optimization. Moreover, this weighted approach reduces distribution
mismatches and enhances the fusion process by leveraging the strengths of both target and source models.

4 EXPERIMENTS

In our experiments, we use Llama-3-8B-Instruct (Dubey et al., 2024) as the target LLM. As for the source LLMs,
we include ten advanced open-source models of varying architectures and sizes, as detailed in Table 1.

4.1 EXPERIMENTAL SETUP

Training Dataset Following prior work (Meng et al., 2024; Zhou et al., 2024), we chose UltraFeedback (Cui
et al., 2024) to construct our training dataset. UltraFeedback includes approximately 64K prompts gathered
from six established datasets that emphasize instruction-following, truthfulness, honesty, and helpfulness.
However, the original dataset comprises preference data derived from old versions of LLMs, which are often
less capable than our target model. Therefore, we discarded the original responses and instead used their
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Table 1: Details of the source LLMs used in our experi-
ments along with the percentage of the highest-scoring
responses from each source LLM.

Source LLMs Percentage

Mistral-Large-Instruct-2407 (Jiang et al., 2023a) 28.24%
Gemma-2-27B-it (Team et al., 2024) 15.45%
Qwen-2-72B-Instruct (Yang et al., 2024) 12.38%
Llama-3-70B-Instruct (Dubey et al., 2024) 9.92%
Gemma-2-9B-it (Team et al., 2024) 9.91%
InternLM-2.5-20B-Chat (Cai et al., 2024) 7.54%
DeepSeek-V2-Chat (Liu et al., 2024) 6.20%
DeepSeek-Coder-V2-Instruct (Zhu et al., 2024b) 4.01%
Yi-1.5-34B-Chat (Young et al., 2024) 3.86%
Phi-3-medium-4k-instruct (Abdin et al., 2024) 2.49%

prompts to construct a new preference dataset D for
our implicit model fusion, as described in Section 3.1.
Specifically, for each prompt in the dataset, we sam-
pled N = 5 responses from each source model using
top-p sampling (p = 0.95) with a temperature of 0.8.
This approach aims to ensure that the sampled outputs
capture the capabilities of the source LLMs to the great-
est extent possible. ArmoRM-Llama-3-8B-v0.1 (Wang
et al., 2024a) is then employed as the reward model
to score and rank these responses. We selected the
highest-scoring response across all source models as
yws , with the percentage contribution from each source
LLM detailed in Table 1.

Training Details We conducted experiments with a batch size of 128 and a maximum length of 2048 tokens
on 8x80GB NVIDIA A800 GPUs. The training was performed on a single epoch for our method. A cosine
learning rate schedule with a warmup ratio of 0.1 is employed. The training process is divided into two stages.
In the first stage, we applied supervised fine-tuning (SFT) on the set of yws with one-third of the dataset, with
the learning rate empirically set to 7e-6. The resulting fine-tuned model, Target-SFT, is the foundation for
subsequent preference optimization. In the next stage, the remaining dataset is used for preference optimization,
during which ywt and yl are generated from the SFT model, i.e., Target-SFT. For WRPO, we used a learning
rate of 3e-7 and set β = 0.01, with the weight α assigned to yws linearly increasing from 0 to 0.1. Further
details on hyperparameter tuning can be found in Appendix A.

Evaluation Benchmarks We assess the performance of our models on three representative instruction-
following benchmarks: MT-Bench (Zheng et al., 2023), AlpacaEval-2 (Li et al., 2023), and Arena-Hard (Li
et al., 2024). These benchmarks are well-regarded for their comprehensive coverage of diverse tasks and their
effectiveness in providing robust evaluations of the instruction-following capabilities of LLMs.

• MT-Bench contains 80 multi-turn dialogues with 160 questions across eight categories, including writing,
roleplay, reasoning, math, coding, extraction, STEM, and humanities. Each response is evaluated by GPT-4
on a scale from 1 to 10, with the average score reported for each dialogue turn across the 80 dialogues.
Different from the official setting, we follow the latest works (Wang et al., 2024c; Wan et al., 2024b) to
adopt GPT-4-0125-Preview as the evaluator and baseline.

• AlpacaEval-2 comprises 805 instructions from five different datasets and assesses models using two
metrics: length-controlled (LC) win rate and raw win rate (WR) (Dubois et al., 2024). In this benchmark,
GPT-4-Preview-1106 serves as both the baseline model and the evaluator for the other models.

• Arena-Hard is a more challenging benchmark that closely aligns with the human preference ranking
from Chatbot Arena (Chiang et al., 2024), a crowd-sourced platform for evaluating LLMs. It spans 250
high-quality topic clusters including 500 well-defined technical problem-solving queries. We report the win
rate against GPT-4-0314 using GPT-4-Preview-1106 as the judge model.

Baselines We compare WRPO with three categories of baselines, including source&target LLMs, collective
LLMs, and preference optimization methods. For source&target LLMs, the results are obtained from official
leaderboards or our local tests if unavailable. For collective LLMs, we include PackLLM-Top1-PPL (Mavromatis
et al., 2024), LLM-Blender-Top1 (Jiang et al., 2023b), MoA (Wang et al., 2024b), FuseLLM (Wan et al., 2024a),
and FuseChat (Wan et al., 2024b). For PackLLM-Top1-PPL, we select the response from the source or target
LLMs with the lowest perplexity on the test instruction. For LLM-Blender-Top1, we rank LLM outputs via
pairwise comparisons and select the top response.3 For MoA (Wang et al., 2024b), we select Mistral-Large-
Instruct-2407 as the aggregator LLM to combine input responses into a single response. For FuseLLM (Wan
et al., 2024a) and FuseChat (Wan et al., 2024b), limited by the complex vocabulary alignment and distribution
merging process, we only include Gemma-2-27B-it, Gemma-2-9B-it, Qwen-2-72B-Instruct, Llama-3-70B-
Instruct, and Yi-1.5-34B-Chat as source LLMs, with Llama-3-8B-Instruct serving as the target/pivot LLM to
reimplement their methods. For a fair comparison, we select the same 5 source LLMs to implement WRPO and
obtain Target-SFT-WRPO-Medium. For preference optimization methods, we include DPO (Rafailov et al.,
2023), SimPO (Meng et al., 2024), and IPO (Azar et al., 2024). The results on AlpacaEval-2 and Arena-Hard
are referenced from (Meng et al., 2024), while the results on MT-Bench are obtained by running the checkpoints
released by Meng et al. (2024). In the following experimental results, these baselines are denoted as Target-DPO,
Target-SimPO, and Target-IPO, respectively.

4.2 OVERALL RESULTS

In Table 2, we present the overall results of our WRPO method compared to various baseline methods of different
categories, architectures, and scales on AlpacaEval-2, Arena-Hard, and MT-Bench benchmarks. These results
offer valuable insights into WRPO’s performance and efficiency as detailed below.

3Due to the fuser model’s limited input length, we only use the ranker model to select the 1st-ranked output.
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Table 2: Overall results of our proposed WRPO method with Llama-3-8B-Instruct as the target model, compared
against various baseline categories on AlpacaEval-2, Arena-Hard, and MT-Bench. “T1” and “T2” represent the
average scores for the first and second turns, respectively. Bold indicates the best performance in 8B models.

Model Size
AlpacaEval-2 Arena-Hard MT-Bench

(GPT-4-1106-Preview) (GPT-4-1106-Preview) (GPT-4-0125-Preview)
LC(%) WR(%) WR(%) T1 T2 Overall

Source&Target LLMs
Target 8B 26.0 25.3 20.6 7.41 7.04 7.23
Mistral-Large-Instruct-2407 123B 54.3 46.8 70.4 8.83 8.31 8.57
Gemma-2-27B-it 27B 55.5 41.0 57.5 8.34 8.03 8.19
Qwen-2-72B-Instruct 72B 38.1 29.9 46.9 8.44 7.84 8.15
Llama-3-70B-Instruct 70B 34.4 33.2 46.6 8.61 7.77 8.19
Gemma-2-9B-it 9B 51.1 38.1 40.8 8.27 7.44 7.86
InternLM-2.5-20B-Chat 20B 37.4 45.3 31.2 8.03 7.23 7.64
DeepSeek-V2-Chat 236B 51.4 51.3 68.3 8.65 7.96 8.31
DeepSeek-Coder-V2-Instruct 236B 50.7 54.0 66.3 8.80 7.42 8.13
Yi-1.5-34B-Chat 34B 37.5 44.5 42.6 7.99 7.64 7.81
Phi-3-Medium-4K-Instruct 14B 29.8 24.2 33.4 8.63 7.46 8.04

Collective LLMs
PackLLM-Top1-PPL 849B 49.1 48.0 64.8 8.29 8.20 8.25
LLM-Blender-Top1 849B 46.2 44.3 58.2 8.69 8.06 8.38
MoA 849B 61.3 77.2 83.1 9.04 8.03 8.54
Target-FuseLLM 8B 36.0 33.8 32.1 7.53 7.13 7.33
Target-FuseChat 8B 38.1 35.2 32.7 7.68 7.07 7.38

Preference Optimization Methods
Target-DPO 8B 48.2 47.5 35.2 7.68 7.23 7.46
Target-SimPO 8B 53.7 47.5 36.5 7.73 7.00 7.38
Target-IPO 8B 46.8 42.4 36.6 7.89 7.19 7.54

Our Methods
Target-SFT 8B 27.2 26.0 24.7 7.69 7.03 7.36
Target-SFT-DPO 8B 50.7 53.1 40.2 7.98 7.23 7.61
Target-SFT-WRPO-Medium 8B 53.5 53.8 41.6 7.80 7.03 7.42
Target-SFT-WRPO 8B 55.9 57.6 46.2 7.95 7.31 7.63

WRPO strikes a balance between effectiveness and efficiency compared to collective LLMs.
Starting with the same target LLM and involving the same source LLMs, Target-SFT-WRPO-Medium out-
performs existing model fusion techniques such as FuseLLM and FuseChat by notable margins. It achieves
improvements of 17.5 and 15.4 points in the length-controlled (LC) win rate on AlpacaEval-2, and 9.5 and 8.9
points in the win rate (WR) on Arena-Hard, respectively. This highlights the superior effectiveness of WRPO
for implicit model fusion (IMF) compared to previous explicit model fusion (EMF) methods. Particularly, our
fused model, Target-SFT-WRPO, surpasses all larger source LLMs on AlpacaEval-2, showcasing WRPO’s
potential to enable a target model to outperform much larger models. Furthermore, compared to collective LLM
fusion architectures that are 106 times larger in scale, WRPO outperforms most of these models, only falling
short of MoA on AlpacaEval-2, while incurring substantially lower computational costs. While WRPO may
not exceed the absolute performance of larger ensemble systems across all evaluation metrics, its ability to
achieve comparable results with far lower computational demands presents an elegant solution to the ongoing
efficiency-effectiveness trade-off in language model deployment.

WRPO consistently outperforms preference optimization baselines. In terms of preference opti-
mization, WRPO delivers notable improvements over prior methods. After fine-tuning yws using one-third of the
data, Target-SFT performs slightly better than the target model. Following further optimization on the remaining
two-thirds of the dataset, WRPO consistently outperforms all preference optimization baselines. Specifically,
WRPO outperforms the best-performing preference optimization baseline on three benchmarks by 2.2, 9.6, and
0.09 points, respectively. Besides, starting from Target-SFT, WRPO achieves 5.2 points improvement over
DPO in the length-controlled win rate on AlpacaEval-2, and a 6.0 points increase in win rate on Arena-Hard.
Compared to these approaches which utilize responses exclusively from the target LLM, the proposed WRPO
method effectively incorporates responses sampled from various source LLMs for preference optimization, thus
facilitating the integration of diverse knowledge and capabilities through implicit model fusion.

4.3 ADAPTABILITY OF WRPO TO VARIED OBJECTIVES AND SOURCE LLM SCALING

In this section, we examine how WRPO adapts to diverse preference optimization objectives and scales with
varying numbers of source LLMs, demonstrating its flexibility in both dimensions.
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Table 3: Results of WRPO combined with
different preference optimization objectives.

Method
AlpacaEval-2 MT-Bench

LC(%) WR(%) Overall

SimPO 53.9 49.9 7.39
IPO 51.1 52.4 7.67

WRPOSimPO 55.8 51.8 7.42
WRPOIPO 53.3 57.7 7.72

Adaptation to different preference optimization objec-
tives Beyond DPO, we also investigate integrating our WRPO
mechanism with alternative preference optimization objectives,
utilizing the same SFT target model as the above experiments
for DPO. Specifically, we experiment with IPO, which employs
a similar internal reward formulation to DPO but optimizes a
nonlinear objective, as well as SimPO, which defines its re-
ward function based on the average log-likelihood of a response,
thereby eliminating the need for a reference model. Detailed
descriptions of the training objectives and the hyperparameter
search ranges for these methods are provided in Appendix A.
We refer to the methods combining WRPO with SimPO and IPO as WRPOSimPO and WRPOIPO, respectively.
The performance of these methods on AlpacaEval-2 and MT-Bench is summarized in Table 3. We note that
combining WRPO with IPO and SimPO consistently improves their performance, highlighting our WRPO’s
generalizability and efficacy in integrating preference signals from heterogeneous LLMs into the target LLM
across various preference optimization objectives.

Table 4: Results of our WRPO implemented
with varying numbers of source LLMs on
AlpacaEval-2 and MT-Bench.

Num
AlpacaEval-2 MT-Bench

LC(%) WR(%) Overall

1 48.9 50.3 7.29
2 52.3 50.4 7.54
5 53.5 53.8 7.42
10 55.9 58.0 7.63

Scaling with different numbers of source LLMs We
conduct experiments with varying numbers of source LLMs to
implement the WRPO framework. For the five source LLMs con-
figuration, we select Gemma-2-27B-it, Gemma-2-9B-it, Qwen-2-
72B-Instruct, Llama-3-70B-Instruct, and Yi-1.5-34B-Chat, align-
ing our setup with the comparisons made in FuseLLM and
FuseChat. Moreover, we utilize two subsets of these five source
LLMs for experiments involving fewer source LLMs. One subset
includes a single LLM, Gemma-2-27B-it, while the other con-
sists of two LLMs: Gemma-2-27B-it and Qwen-2-72B-Instruct.
The results in Table 4 show that the performance of WRPO ex-
hibits an overall upward trend as the number of source LLMs
increases on AlpacaEval-2 and MT-Bench. This trend demonstrates the potential effectiveness of scaling up the
number of source LLMs to enhance our method.

4.4 ANALYSIS OF THE WEIGHTED-REWARD MECHANISM IN WRPO

In this section, we conduct an in-depth analysis of the weighted-reward mechanism in our implicit model fusion
framework, focusing on three distinctive views.

Balancing internal reward dynamics Figure 3 demonstrates the evolution of internal reward dynamics
during preference optimization in the Target-SFT model across various preference pairs, with consistent learning
rate and β parameters. The internal reward margin, as defined in Eq. (7), comprises an on-policy reward margin
r(x, ywt)− r(x, yl) weighted by 1−α, and a hybrid-policy reward margin r(x, yws)− r(x, yl) weighted by α.
Figure 3(a) presents the analysis of solely utilizing the on-policy reward margin (α = 0). The observed reward
margin approximates 0.2, indicating a relatively conservative optimization approach. This modest margin growth
can be attributed to the model’s limited exploration capability due to its exclusive reliance on on-policy samples.
In contrast, Figure 3(b) illustrates the effect of employing only the hybrid-policy reward margin (α = 1).
This configuration exhibits more aggressive optimization behavior, yielding reward margins exceeding 1.0.
While this suggests enhanced discriminative capability between positive and negative samples, the substantial
distribution shift inherent in the hybrid setting may compromise training stability and ultimately yield suboptimal
results. Figure 3(c) showcases our proposed weighted-reward mechanism, which synthesizes both on-policy and
hybrid-policy reward margins through dynamic weighting. This approach achieves an optimal balance between
the aforementioned extremes, generating moderate reward margins of approximately 0.5 and facilitating smooth
margin transitions throughout the training process. The harmonious integration of on-policy and hybrid-policy
components, as evidenced by the balanced optimization process, appears to be instrumental in the superior
performance of our weighted-reward mechanism.

Effectiveness of weighted-reward mechanism Figure 4 illustrates the ablation studies on the effec-
tiveness of incorporating preferred responses from both source and target LLMs. We conduct these studies
on two configurations: the baseline target model (Target) and its fine-tuned version (Target-SFT) to ensure a
comprehensive evaluation. The analysis involves systematically removing either the source model’s chosen
response yws or the target model’s chosen response ywt from the optimization objective in Eq. (6) by setting
α = 0 or α = 1, respectively. In the Target setting, the removal of ywt leads to a substantial decline of
25.8 points in the length-controlled win rate, indicating that the distribution shift between yws and yl creates
challenges in directly utilizing source model responses for preference optimization. Moreover, this finding
emphasizes the crucial role of ywt in bridging this distribution gap. In the Target-SFT setting, although SFT
helps mitigate the performance deterioration caused by removing ywt , its performance still lags behind our
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Figure 3: Internal reward dynamics on Target-SFT model under different preference optimization setups. (a)
DPO-on: DPO training on on-policy preference pairs (x, ywt , yl). (b) DPO-hybrid: DPO training on hybrid-
policy preference pairs (x, yws , yl). (c) WRPO α = 0.5: WRPO training with α increasing from 0 to 0.5.
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Figure 5: AlpacaEval-2 length-controlled win rate
and hybrid-policy reward accuracy under different
fusion coefficient α settings.

WRPO by 6.3 points, which combines both yws and ywt . On the other hand, removing yws reduces WRPO to
DPO based solely on self-sampled on-policy data. Notably, the exclusion of source model responses leads to
performance declines of 3.5 points and 5.2 points in the Target and Target-SFT settings, respectively, highlighting
the important role of yws in providing valuable preference signals through the weighted-reward mechanism.

Influence of fusion coefficient We evaluate the impact of varying the fusion coefficient α in the weighted-
reward mechanism, with α ∈ [0.1, 0.3, 0.5, 0.7, 0.9], by recording the length-controlled (LC) win rate on
AlpacaEval-2 and the hybrid-policy reward accuracy on a held-out set of the UltraFeedback dataset. Hybrid-
policy reward accuracy is defined as the percentage of instances where the internal reward r(x, yws) from source
LLMs surpasses r(x, yl) from the target LLM. As shown in Figure 5, hybrid-policy reward accuracy improves
as α increases, indicating that progressively increasing α over a wide range leads to higher hybrid-policy reward
accuracy. However, the LC win rate on AlpacaEval-2 shows an initial decline followed by an improvement. This
suggests that although increasing α may provide richer preference signals and achieve higher hybrid-policy
reward accuracy on the UltraFeedback held-out set, it does not always correlate with real-world benchmark
performance. Nonetheless, WRPO consistently outperforms the DPO baseline (50.7) across all α settings.

5 CONCLUSION

In this work, we introduce Weighted-Reward Preference Optimization (WRPO) for the implicit model fusion
of heterogeneous open-source LLMs with diverse architectures and sizes, aiming to create a more capable and
robust target LLM. To address distributional deviations between source and target LLMs, WRPO utilizes a
progressive adaptation strategy that gradually shifts reliance on preferred responses from the target LLM to
the source LLMs. Extensive experiments on three public benchmarks demonstrate that WRPO consistently
outperforms existing knowledge fusion methods and various fine-tuning baselines.
This study concludes with three notable findings. First, implicit model fusion presents a promising approach
to enhancing the capabilities of LLMs by eliminating the need for vocabulary alignment and distribution
merging. Second, the fusion of LLMs can be redefined as a preference optimization task, distinguishing it from
conventional methods such as knowledge distillation and fine-tuning. Finally, our WRPO effectively addresses
challenges related to hybrid-policy sampling, enabling efficient scaling to accommodate various LLMs.
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A HYPERPARAMETER TUNING

Table 5: Various preference optimization objectives and hyperparameter search range.

Method Objective Hyperparameter

DPO (Rafailov et al., 2023) − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
β ∈ [0.01, 0.05, 0.1]

SimPO (Meng et al., 2024) − log σ
(

β
|yw| log πθ(yw|x)− β

|yl| log πθ(yl|x)− γ
)

β ∈ [5.0, 10.0]
γ ∈ [0, 1.0, 2.0]

IPO (Azar et al., 2024)
(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x) −

1
2τ

)2

τ ∈ [0.01, 0.1, 1.0]

WRPODPO − log σ
(
α · β log

πθ(yws |x)
πref(yws |x)

+ (1− α) · β log
πθ(ywt |x)
πref(ywt |x)

− β log πθ(yl|x)
πref(yl|x)

)
β = 0.01
α ∈ [0.1, 0.3, 0.5, 0.7, 0.9]

WRPOSimPO − log σ
(
α · β

|yws |
log πθ(yws

|x) + (1− α) · β
|ywt |

log πθ(ywt
|x)− β

|yl| log πθ(yl|x)− γ
)

β = 10.0, γ = 0
α ∈ [0.1, 0.3, 0.5]

WRPOIPO

(
α · log πθ(yws |x)

πref(yws |x)
+ (1− α) · log πθ(ywt |x)

πref(ywt |x)
− log πθ(yl|x)

πref(yl|x) −
1
2τ

)2 τ ∈ [0.01, 0.1]
α ∈ [0.1, 0.3, 0.5]

Table 6: Hyperparameter settings for
preference optimization methods using
Target-SFT as the policy model. “LR”
denotes the learning rate.

Method β γ α LR

DPO 0.01 - - 3e-7
SimPO 10 1.0 - 6e-7
IPO - - 0.01 1e-6

WRPODPO 0.01 - 0.1 3e-7
WRPOSimPO 10 0 0.5 6e-7
WRPOIPO - 0.01 0.1 1e-6

Prior works such as SimPO (Meng et al., 2024) suggest that hyper-
parameter tuning is crucial for achieving optimal performance of
preference optimization methods. To avoid getting suboptimal base-
line results, we followed the recommendation by Meng et al. (2024) to
apply hyperparameter tuning for all preference optimization methods,
including DPO (Rafailov et al., 2023), SimPO (Meng et al., 2024),
and IPO (Azar et al., 2024). Specifically, we individually search
the learning rates in the range of [3e-7, 5e-7, 6e-7, 1e-6] for each
preference optimization method. The specific training objectives and
hyperparameter search ranges for these preference optimization base-
lines, along with our method, are outlined in Table 5. We used a batch
size of 128 and trained these methods for a single epoch. The best
hyperparameter values under the Target-SFT setting are summarized
in Table 6. Besides, a learning rate of 7e-6 was used with a single epoch for supervised fine-tuning (SFT). For
the model fusion methods, including FuseLLM (Wan et al., 2024a) and FuseChat (Wan et al., 2024b), we used a
learning of 7e-6 and conducted training over three epochs, with the parameter λ empirically set to 0.9.

B EVALUATION ON ADDITIONAL BENCHMARKS

To further investigate the impact of WRPO on downstream tasks, we evaluate the models we trained using six
tasks from the Huggingface Open LLM Leaderboard (Beeching et al., 2023). These tasks include:

AI2 Reasoning Challenge (ARC) (Clark et al., 2018): A collection of grade-school science questions in a
25-shot setting.

HellaSwag (Zellers et al., 2019): A commonsense inference task in a 10-shot setting.

MMLU (Hendrycks et al., 2021): A set of 57 diverse tasks spanning high-school and college subjects, social
sciences, STEM, and others, in a 5-shot setting.

TruthfulQA (Lin et al., 2022): A set of measuring how language models mimic human falsehoods with 6-shot
setting4.

Winogrande (Levesque et al., 2012): A set of adversarial and difficult Winograd benchmarks for commonsense
reasoning in a 5-shot setting.

GSM8K (Cobbe et al., 2021): A set of grade-school math word questions evaluates mathematical reasoning
capabilities in a 5-shot setting.

We followed the established evaluation pipelines by using the lm-evaluation-harness tool5 for our evaluation. The
results are presented in Table 7, from which we draw several key observations. Firstly, after undergoing SFT with
one-third of the data entries, Target-SFT shows a significant performance decline compared to Target, particularly
on ARC and GSM8K, likely due to catastrophic forgetting during training. Next, all preference optimization
methods display varying performance drops on MMLU and GSM8K, which may stem from the UltraFeedback

4Although TruthfulQA is traditionally regarded as 0-shot, it is technically a 6-shot task because each example
is associated with 6 Q&A pairs.

5We used an updated version of v0.4.3 at https://github.com/EleutherAI/
lm-evaluation-harness/tree/v0.4.3 for more accurate evaluation.

15

https://github.com/EleutherAI/lm-evaluation-harness/tree/v0.4.3
https://github.com/EleutherAI/lm-evaluation-harness/tree/v0.4.3


Published as a conference paper at ICLR 2025

Table 7: Results of evaluations on Huggingface Open LLM Leaderboard. “Target” denotes Llama-3-8B-Instruct.

Model ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K Avg.
Target 61.43 78.48 65.71 51.64 75.61 75.21 68.01

Target-SFT 51.19 79.83 64.56 45.93 76.87 62.77 63.53
Target-SFT-DPO 60.67 81.7 64.98 50.3 76.95 68.76 67.23
Target-SFT-SimPO 61.77 82.23 65.13 54.76 78.45 69.6 68.66
Target-SFT-IPO 60.58 81.68 65.5 53.93 77.9 69.67 68.21

Target-SFT-WRPO 62.63 82.38 64.91 54.72 78.53 71.57 69.12
Target-SFT-WRPOSimPO 61.69 81.95 65.08 57.11 78.69 68.69 68.87
Target-SFT-WRPOIPO 59.98 81.53 65.35 53.48 78.14 69.83 68.05

dataset’s focus on alignment over general knowledge and mathematics. In contrast, these preference optimization
methods consistently improve performance on HellaSwag and Winogrande, suggesting the presence of relevant
prompts for commonsense inference in UltraFeedback. Similarly, all preference optimization methods show
consistent gains on TruthfulQA, except for Target-SFT-DPO. Lastly, the performance of ARC demonstrates only
minor improvements or declines across all methods. In summary, while not explicitly designed for these tasks,
our fused model, Target-SFT-WRPO, surpasses the initial Target model while preserving general knowledge and
mathematical abilities with minimal decline. This illustrates the generalization potential of our WRPO method.

C TRAINING COST ANALYSIS

Increasing the number of source LLMs does not affect the time complexity of our method during training. First,
the interaction with source LLMs occurs exclusively during the data collection phase before training, where
we conduct offline sampling from the source LLMs and utilize ArmoRM as a reward model to evaluate the
responses and select one response with the highest reward score for each prompt. This step constitutes a fixed,
one-time computational cost that is independent of the training process. Importantly, the source LLMs do not
participate in the actual training phase. Therefore, the inclusion of additional source LLMs does not introduce
additional computational costs during WRPO training. Furthermore, our comparative analysis in Table 8 shows
that WRPO maintains consistent computational efficiency across different numbers of source LLMs. Notably,
WRPO incurs only a modest overhead of approximately 16% in training time compared to DPO (which does not
involve source LLMs) on 8×A800 GPUs, regardless of the number of source LLMs involved.

Table 8: Runtime comparisons for DPO and WRPO across different numbers of source LLMs.

Num. Runtime of DPO (min) Runtime of WRPO (min) Increase (%)

1 183 212 15.88%
2 185 215 16.22%
5 186 216 16.13%
10 185 215 16.22%

D DIFFERENT COMBINATIONS OF SOURCE LLMS

Table 9: Results of our WRPO implemented
with varying combinations of source LLMs
on AlpacaEval-2.

Method
AlpacaEval-2

LC(%) WR(%) Length

Rank1 55.9 57.6 2159
Rank2 53.7 55.4 2143

Group1 53.5 53.8 2098
Group2 53.7 60.7 2440

To explore the impact of different source model combinations,
we conducted additional experiments using the AlpacaEval-2
benchmark. Specifically, we examined the influence of the re-
sponse quality from source LLMs by comparing responses with
different reward rankings. The experimental results in Table 9 in-
dicate that responses from top-ranked source models consistently
outperform those from second-ranked models. This reinforces
the importance of selecting high-quality responses to achieve
optimal performance. In addition, we investigated the impact of
model composition by dividing our ten source models into two
balanced groups, each comprising five models with strong perfor-
mance characteristics. The first group includes Gemma-2-27B-it,
Gemma-2-9B-it, Qwen-2-72B-Instruct, Llama-3-70B-Instruct,
and Yi-1.5-34B-Chat. The second group comprises Mistral-Large-Instruct-2407, InternLM-2.5-20B-Chat,
DeepSeek-V2-Chat, DeepSeek-Coder-V2-Instruct, and Phi-3-Medium-4K-Instruct. The experimental results in
Table 9 show that various combinations of source models achieve comparable length-controlled (LC) win rate.
These findings demonstrate the robust performance of WRPO across a range of source model configurations.
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E TUNING STRATEGIES FOR FUSION COEFFICIENT
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Figure 6: Comparisons of dynamic and static
tuning strategies for the fusion coefficient on
AlpacaEval-2, utilizing the length-controlled
win rate metric.

In WPRO, we implement a dynamic adjustment mechanism for
the fusion coefficient α to facilitate a gradual transition of the
target model’s distribution toward that of the source models. In
practice, the fusion coefficient α is initialized at 0.0 and increases
linearly throughout the training process until it reaches a pre-
determined target value (Clark et al., 2019). To determine the
optimal target value, we employ a simple greedy search over the
range [0.1, 0.3, 0.5, 0.7, 0.9]. This dynamic adjustment strategy
effectively balances the contributions from both source and tar-
get models while addressing potential distribution discrepancies,
making it suitable for various tasks and eliminating the need
for complex parameter configurations or exhaustive optimiza-
tion procedures. Moreover, we conducted ablation experiments
comparing static and dynamic tuning strategies. In the static
strategy, α remains fixed at a target value throughout training,
while in the dynamic strategy, α linearly increases from 0 to the
target value. The experimental results in Figure 6 show that the
dynamic tuning strategy generally outperforms the static strategy,
except for setting α = 0.7, further demonstrating the effectiveness of the dynamic tuning approach.

F INCLUDING DISPREFERRED RESPONSES FROM SOURCE MODELS

We conducted additional experiments to investigate the impact of incorporating extra dispreferred responses
from the source models. Specifically, we use an extension of the WRPO loss in Eq. (9), where ylt denotes the
dispreferred response from the target model, and yls denotes the dispreferred response from the same source
model corresponding to the preferred response yws .

LWRPOw/yls
(πθ;πref) = −E(x, yws , ywt , yls , ylt) ∼ D

[
log σ

(
α · β log

πθ(yws | x)
πref(yws | x)

+ (1− α) · β log
πθ(ywt | x)
πref(ywt | x) − α · β log

πθ(yls | x)
πref(yls | x) − (1− α) · β log

πθ(ylt | x)
πref(ylt | x)

)]
. (9)

Table 10: Results of WRPO combined
with additional dispreferred responses from
source models.

Method
AlpacaEval-2 MT-Bench

LC(%) WR(%) Overall

WRPO 55.9 57.6 7.63
WRPOw/yls

54.0 56.0 7.52

First, we perform a comparative analysis of the reward scores
across four categories of responses. The average reward scores
for yws , ywt , yls , and ylt are 0.180, 0.152, 0.158, and 0.132,
respectively. We observe that the source model’s dispreferred
responses yls have higher average scores than the target model’s
preferred responses ywt . This finding indicates that incorporat-
ing dispreferred responses from source models into the training
objective could potentially lead to an undesirable reduction in
the probability of higher-scoring responses. Such results would
contradict our optimization objectives and potentially compro-
mise the overall training effectiveness. Furthermore, the results in Table 10 show that the inclusion of rejected
responses from the source model leads to a decrease in performance on AlpacaEval-2 and MT-Bench. Moreover,
this approach increases computational costs due to the need for extra forward passes during training.

G DETAILS OF OPEN-SOURCE MODELS AND THE DATASET

The selection of source models and the dataset is primarily determined by specific objectives. When a target
model exhibits limitations in particular domains, domain-specific source models and datasets can be strategically
used to enhance its capabilities. In our study, we focus on instruction-following tasks to align with prior
preference optimization research. Therefore, we selected ten prominent open-source LLMs with parameter
sizes ranging from 9B to 236B, all of which exhibit strong performance on relevant benchmarks. Moreover,
we chose one of the most popular instruction-following datasets, the UltraFeedback (Cui et al., 2024), as
our training dataset. In Table 11, we provide the Huggingface repository names of the target LLM, source
LLMs, reward model, and preference optimization baseline checkpoints used in our experiments. For the
UltraFeedback (Cui et al., 2024) dataset, we select the same prompts as provided by Meng et al. (2024) in
princeton-nlp/llama3-ultrafeedback-armorm for fair comparison to baselines.
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Table 11: Details of open-source models in our experiments. “Target” denotes Llama-3-8B-Instruct.

Model Huggingface ID
Target meta-llama/Meta-Llama-3-8B-Instruct
Mistral-Large-Instruct-2407 Mistral-Large-Instruct-2407
Gemma-2-27B-it google/gemma-2-27b-it
Qwen-2-72B-Instruct Qwen/Qwen2-72B-Instruct
Llama-3-70B-Instruct meta-llama/Meta-Llama-3-70B-Instruct
Gemma-2-9B-it google/gemma-2-9b-it
InternLM-2.5-20B-Chat internlm/internlm2_5-20b-chat
DeepSeek-V2-Chat deepseek-ai/DeepSeek-V2-Chat-0628
DeepSeek-Coder-V2-Instruct deepseek-ai/DeepSeek-Coder-V2-Instruct-0724
Yi-1.5-34B-Chat 01-ai/Yi-1.5-34B-Chat
Phi-3-medium-4k-instruct microsoft/Phi-3-medium-4k-instruct

ArmoRM-Llama-3-8B-v0.1 RLHFlow/ArmoRM-Llama3-8B-v0.1

Target-DPO princeton-nlp/Llama-3-Instruct-8B-DPO-v0.2
Target-SimPO princeton-nlp/Llama-3-Instruct-8B-SimPO-v0.2
Target-IPO princeton-nlp/Llama-3-Instruct-8B-IPO-v0.2

H LIMITAIONS AND FUTURE WORK

First, the WRPO training objective currently incorporates only the highest-scoring response from source models
as the preferred output for each prompt. This selective approach may overlook other valuable responses,
potentially underutilizing the full range of capabilities offered by the source models. Future work could explore
more inclusive methods that incorporate multiple responses from source models into the training objective.
Second, while WRPO demonstrates strong empirical performance, it relies heavily on existing preference
optimization frameworks. A more rigorous theoretical analysis is needed to provide deeper insights into the
internal fusion dynamics of WRPO and to further strengthen its theoretical foundation. Finally, while WRPO
significantly improves performance on instruction-following tasks, it may not perform as well on other tasks,
such as MMLU. This limitation can largely be attributed to the narrow domain coverage of the training dataset.
Future studies could address this by incorporating more diverse datasets from a wider range of domains.

I CASE STUDY

Finally, we evaluate the performance of our WRPO method using a sample instruction from Arena-Hard (Li
et al., 2024), which features a math puzzle centered on Situation Puzzle Challenges. Using Llama-3-8B-Instruct
as the target model, we compare the performance of Target-SFT, Target-SFT-DPO, and Target-SFT-WRPO
against the baseline model GPT-4-0314. As shown in table 12, Target-SFT misinterprets the puzzle, providing
an incorrect answer of 3 dots as the maximum. In contrast, Target-SFT-DPO approaches the problem through a
graph theory, arriving at a solution of 5 dots. Although this answer is logically derived from graph theory, it
remains incorrect. Notably, Target-SFT-WRPO demonstrates significant improvement over the other models,
surpassing the GPT-4-0314 baseline by correctly solving the puzzle and offering a comprehensive explanation.
This response not only accurately addresses the puzzle but also discusses practical limitations related to page size
and provides effective strategies for solving similar puzzles in real-world contexts. The combination of factually
sound reasoning and a thorough, user-friendly explanation underscores the superiority of the WRPO approach.
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Table 12: Case study of a math puzzle on Situation Puzzle Challenges from Arena-Hard. Our Target-SFT-WRPO
model delivers a mathematically sound and user-oriented response, highlighting the efficacy of WRPO in
enhancing model performance in challenging problem-solving scenarios.

Topic: Situation Puzzle Challenges
Instruction: Help me find out how to solve a math puzzle. It’s: "How many dots you can joint down on a
page while drawing lines between them, without three of them ever forming a straight line?"

GPT-4-0314 Reference Answer: This math puzzle is related to the concept of "no three points being
collinear." In this case, you want to find the maximum number of points you can place on a page such that no
three of them are in a straight line. The answer to this puzzle is that you can place an infinite number of
points without having three of them form a straight line. One way to achieve this is by placing the points in a
non-linear pattern, such as arranging them in a spiral or a circle. However, if you are looking for a more
specific answer, you can consider placing the points in a triangular grid pattern. In this arrangement, you can
place as many points as you want without having three of them form a straight line. Each new point added
will be connected to the existing points without creating a straight line with any other two points.

Target-SFT Answer: This is a classic puzzle known as the "Three Dots Puzzle" or "No Straight Lines
Puzzle." The answer is 3. Here’s why: If you draw lines between 3 dots, you can’t avoid creating at least one
straight line. If you draw lines between 4 dots, you can create a triangle with two straight sides, which means
three dots are forming a straight line. If you draw lines between 5 dots, you can create a pentagon with three
straight sides, which means three dots are forming a straight line. Therefore, the maximum number of dots
you can connect without three of them forming a straight line is 3.

Target-SFT-DPO Answer: This puzzle is a classic example of a graph theory problem, specifically a planar
graph challenge. Here’s a breakdown and solution: Understanding the Problem:
Graph: Think of each dot as a node, and the lines connecting them as edges.
Planarity: The key constraint is that no three nodes (dots) can be connected by straight lines, forming a
triangle. This ensures no three edges intersect at a single point.
Goal: Find the maximum number of dots you can connect without violating this planarity condition.
Solution: The maximum number of dots you can connect while maintaining planarity is 5. Why 5?
Proof: Imagine arranging the dots in a pentagon (a five-sided shape). Each edge of the pentagon connects
two dots, and no three dots form a straight line within the pentagon.
Generalization: For any number of dots greater than 5, it’s impossible to draw a planar graph without three
dots forming a straight line. This is because as you add more dots, the likelihood of forming triangles
increases, eventually leading to intersections.
Key Takeaway: For any planar graph, the maximum number of nodes (dots) without three forming a straight
line is 5. This fundamental limit arises from the inherent geometry of planar graphs.
I hope this explanation helps you solve your math puzzle!

Target-SFT-WRPO Answer: Unraveling the Puzzle: This problem is a classic example of "Non-Collinear
Point Arrangement" with a twist. Let’s break it down step by step:
Key Insights:
1. No Straight Triangles: The core constraint is that no three dots (points) should ever form a straight line.
2. Geometric Considerations:
- A straight line requires three points in a specific arrangement (collinear).
- We need to avoid this configuration.
Strategies for Solving:
1. The Fundamental Approach:
Inductive Reasoning: Start with two dots. Adding a third dot that doesn’t create a straight line is always
possible (e.g., forming a triangle with slightly obtuse or acute angles).
Generalization: If you can place three dots without a straight line, you can always add more dots, ensuring
each new addition maintains this property.
2. Mathematical Proof (for the curious):
Proof by Contradiction: Assume, for the sake of contradiction, that you’ve found a set of dots where three
form a straight line.
Analysis: This implies a triangle with all angles equal (180°), which is impossible in a non-degenerate
triangle (no sides are zero-length).
Conclusion: Therefore, it’s impossible to construct a set of dots where three always form a straight line.
Practical Implications: Infinite Solutions: There are infinitely many ways to arrange dots without creating
straight lines between any three.
Page Limitation: While theoretically infinite, the practical limitation is your page size. You can draw as
many dots as your paper allows, ensuring no three forms a straight line.
Solving on Paper:
Start with two dots: This sets the foundation.
Add dots gradually: Choose each new dot carefully to avoid creating a straight line with the existing ones.
Visual Inspection: Continuously check that no three dots form a straight line as you add more.
Remember: The beauty of this puzzle lies in its simplicity and the creative process of finding arrangements
that satisfy the constraint. Happy dot-connecting!
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