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A Wavelet based estimators
In this section, we will show how the curse of dimensionality in estimating T0(·) can be mitigated
under Besov type smoothness assumptions, by using wavelet based plug-in estimators for the
probability densities associated with µ and ν. We begin by defining the Besov class of functions
which will play a pivotal role in the sequel.

Definition A.1 (Besov class of functions). We describe Besov classes following the notation
from [131, Section 2.1.1]. Suppose s > 0 and let n > s be a positive integer. Given Ω ⊆ Rd,
h ∈ Rd and f(·) : Rd → Rd, set

∆1
hf(x) := f(x+ h)− f(x),

∆k
hf(x) := ∆1

h

(
∆k−1
h f

)
(x), ∀ 2 ≤ k ≤ n,

where these functions are defined on Ωh,n := {x ∈ Ω : x+ nh ∈ Ω}. For t > 0, we then define

ωn(f, t) := sup
‖h‖≤t

‖∆n
hf‖L2(Ωh,n).

Finally, we define the space Bs(Ω) to be the set of functions for which the quantity

‖f‖Bs(Ω) := ‖f‖L2(Ω) +
∑
j≥0

2sjωn(f, 2−j)

is finite. The above expression can also be used to define Besov spaces (and norms) for s < 0; see [33,
Theorem 3.8.1].

In this subsection, we assume that µ and ν admit Besov smooth densities fµ(·) and fν(·)
(see [33] and Definition A.1 above for details). Given Ω ⊆ Rd and s > 0, let Bs(Ω) denote
the set of Besov smooth functions on Ω of order s.

Assumption (A1) (Regularity of the densities). Suppose that:

1. fµ and fν are supported on compact and convex subsets of Rd, say X and Y respectively.

2. There exists s,M > 0 such that ‖fµ‖Bs(X ) ≤M , ‖fν‖Bs(Y) ≤M and fµ(x), fν(y) ≥M−1 for
all x ∈ X , y ∈ Y .

We now present our wavelet based estimators for fµ(·) and fν(·). Towards this direction, we
begin with sets of functions in L2(X ) (set of square integrable functions on X ), Φ and {Ψj}j≥0,
which form an orthonormal basis of L2(X ) and satisfy the standard regularity assumptions for a
wavelet basis (see [70, 95], [131, Appendix E]). We defer a formal discussion on these assumptions
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to Definition D.3 in the Appendix so as not to impede the flow of the paper. For the moment, it
is worth noting that such sets of functions (e.g., Haar wavelets, Daubechies wavelets) are readily
available in standard statistical softwares, see e.g., the R package wavelets.

Next, fix Jm ∈ N (a truncation parameter to be chosen later depending on the sample size m).
Consider the following:

f̂µ(x) :=
∑
φ∈Φ

aφφ(x) +

Jm∑
j=0

∑
ψ∈Ψj

bψψ(x), (A.1)

where

aφ :=
1

m

m∑
i=1

φ(Xi), bψ :=
1

m

m∑
i=1

ψ(Xi).

Unfortunately f̂µ(·) as defined in (A.1) may not be a probability density and consequently cannot be
used to obtain plug-in estimators for T̃ γm,n(·). We therefore take the same route as in [131, Section
4.1] to define the following estimator for fµ(·):

f̃µ := min
g∈D(X )

‖g − f̂µ‖B−1(X ), (A.2)

where D(X ) is the space of probability density functions on X and B−1(X ) is the Besov norm on X
of order −1 as stated in Definition A.1. We can define f̃ν(·) similarly. Computing both f̃µ(·) and
f̂µ(·) (as it involves infinite sums) is challenging and we would refer the interested reader to [131,
Section 6] and the references therein, for details. Further discussion of this aspect is beyond the scope
of this paper.

We are now in a position to present the main theorem of this subsection.

Theorem A.1. Suppose that T0(·) is L-Lipschitz, and µ̃m and ν̃n are the probability measures
corresponding to the probability densities f̃µ(·) and f̃ν(·) with m

1
d+2s ≤ 2Jm ≤ m 1

d and n
1

d+2s ≤
2Jn ≤ n 1

d , then the following holds for some constant C > 0:

E

[
sup

γ∈Γ̃min

∫
‖T̃ γm,n(x)− T0(x)‖2 dµ̃m(x)

]
≤ Cr̃(m,n)

d,s , (A.3)

where r̃
(m,n)
d,s :=

{
m−1/2 log (1 +m) + n−1/2 log (1 + n) for d = 2,

m−
1+s
d+2s + n−

1+s
d+2s for d ≥ 3,

(A.4)

The same bound also holds for E|W 2
2 (µ̃m, ν̃n)−W 2

2 (µ, ν)|.

Note that 1+s
d+2s →

1
2 as s → ∞. Therefore Theorem A.1 shows that, when m = n, the rate of

convergence for the wavelet based estimator is “close" to n−1/2 provided s is large enough for each
fixed d. This shows that T0(·) obtained using the wavelet estimators for fµ(·) and fν(·) mitigates
the curse of dimensionality, contrast this with the estimator in Theorem B.1. To avoid repetition,
we defer further discussions on the rates observed in Theorem A.1 to Remark 2.7 where a holistic
comparison is drawn with two other “smooth” plug-in estimators.

B Applications

In this section, we will apply our results to two popular problems, namely — estimating the Wasser-
stein barycenter between two probability distributions (see [2, 14, 24, 37]) in Appendix B.1, and
obtaining detection thresholds in some recent optimal transport based independence testing procedures
(see [6, 40, 55, 113, 114]) in Appendix B.2.
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B.1 Wasserstein barycenter estimation
Let µ, ν ∈ P2(Rd). The Wasserstein barycenter between µ and ν is then given by:

ρ0 := min
ρ∈Pac(Rd)

(
1

2
W 2

2 (µ, ρ) +
1

2
W 2

2 (ρ, ν)

)
. (B.1)

In fact, by Proposition 1.1, there exists an optimal transport map T0 from µ to ν and by [2, 14, 17],
an alternative characterization of ρ0 is as follows:

ρ0 =

(
1

2
Id +

1

2
T0

)
#µ, where Id(x) = x. (B.2)

Estimating ρ0 as in (B.1) has attracted significant attention over the past few years in economics [23,
28], Bayesian learning [119, 120], dynamic formulations [27, 32], algorithmic fairness [31, 62],
etc. The most natural strategy employed in estimating ρ0 is to use the empirical plug-in estimator,
i.e., replacing µ, ν in (B.1) with µ̂m, ν̂n. This strategy has been used, approximated and analyzed
extensively in e.g., [17, 24, 37, 85]. Based on (B.2), the natural plug-in estimator of ρ0 would be:

ρ̂γ0 =

(
1

2
Id +

1

2
T̃ γm,n

)
#µ̃m (B.3)

where T̃ γm,n is the plug-in estimator of T0 obtained by solving (1.7), with µ and ν replaced by µ̃m
and ν̂n respectively and γ ∈ Γ̃min. While the consistency of ρ̂γ0 has been analyzed for m = n in [85]
and rates have been obtained for d = 1 in [13], the more general question of obtaining rates of
convergence for ρ̂γ0 for general dimensions d ≥ 1 is yet unanswered. We address this question in the
following result (see Appendix C.2 for a proof).

Theorem B.1. Suppose that the same assumptions from Theorem 2.2 hold. Then, with ρ̂γ0 as defined
in (B.3) and r(m,n)

d , td,α defined in Theorem 2.2, the following holds:

sup
γ∈Γ̃min

W 2
2 (ρ̂γ0 , ρ0) = Op

(
r

(m,n)
d × (log (1 + max{m,n}))td,α

)
.

B.2 Nonparametric independence testing: Optimal transport based Hilbert-Schmidt
independence criterion

Let (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ π, a probability measure on Rd1+d2 , with marginals µ ∈ Pac(Rd1)

and ν ∈ Pac(Rd2). Our problem of interest is the following hypothesis testing problem, given as:

H0 : π = µ⊗ ν versus H1 : π 6= µ⊗ ν. (B.4)

This is the classical nonparametric independence testing problem which has received a lot of attention
in the statistics and machine learning literature (see [11, 63, 71, 122], and [44, 74] for a review).
In keeping with the overall theme of this paper, our focus here will be on a large class of OT
based independence testing procedures, introduced first in [6] followed by recent developments
in [40, 113, 114]. These tests bear resemblance to the Hilbert-Schmidt independence criterion
(HSIC); see [63–65] and have attractive properties such as distribution-freeness (see Proposition B.2),
consistency without moment assumptions and robustness against heavy-tailed distributions and
against contamination [6, 113]. Below, we describe this class of tests, see (B.5) and (B.7). Our main
theoretical contribution of this section will be to provide detection thresholds of these OT based tests.

Construction: Suppose υ1, υ2 be two compactly supported probability distributions on Rd1 and Rd2

respectively (e.g., υ1 ≡ Unif[0, 1]d1 , υ2 ≡ Unif[0, 1]d2). Let U1, . . . , Un
i.i.d.∼ υ1, V1, . . . , Vn

i.i.d.∼
υ2, ûn := n−1

∑n
i=1 δUi and v̂n := n−1

∑n
j=1 δVj . Recall the definitions of µ̂n (with m = n)

and ν̂n from (1.2). Let T̂1,n (T̂2,n) be obtained by solving (1.7), with µ and ν replaced by µ̂n
and ûn (ν̂n and v̂n) respectively. Consider two non negative definite, continuous, characteristic
kernels (see [52, 118] for definitions) K1(·, ·) and K2(·, ·) on (supp(υ1))2 and (supp(υ2))2. Set
x̂ij := K1(T̂1,n(Xi), T̂1,n(Xj)) and ŷij := K2(T̂2,n(Yi), T̂2,n(Yj)). Our test statistic is as follows:

r̂HSIC := n−2
∑
i,j

x̂ij ŷij + n−4
∑
i,j,r,s

x̂ij ŷrs − 2n−3
∑
i,j,r

x̂ij ŷir. (B.5)
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Proposition B.2 (See [6, 114]). 1. (Distribution-freeness) When X1 and Y1 are independent, the
distribution of n× r̂HSIC is universal, i.e., it does not depend on µ and ν for every fixed n.

2. (Consistency against fixed alternatives) Let cn,α be the upper (1 − α)-th quantile from the

universal distribution in part 1 above. Then r̂HSIC
P−→ rHSIC(π|µ⊗ ν) where

rHSIC(π|µ⊗ ν) := E[K1(T1(X1), T1(X2))K2(T2(Y1), T2(Y2))] + E[K1(T1(X1), T1(X2))]

× E[K2(T2(Y1), T2(Y2))]− 2E[K1(T1(X1), T1(X2))K2(T2(Y1), T2(Y3))], (B.6)

where T1(·) (respectively T2(·)) is the optimal transport map from µ (ν) to υ1 (υ2); see Defini-
tion 1.1. Further rHSIC(π|µ⊗ν) = 0 if and only if π = µ⊗ν. Define the following test function:

φn,α := 1(n× r̂HSIC ≥ cn,α). (B.7)

Then E[φn,α]→ 1 as n→∞ under H1, i.e., when π 6= µ⊗ ν.

Proposition B.2 shows that the test based on r̂HSIC (see (B.5)), i.e., φn,α (see (B.7)), can be carried
out without resorting to the permutation principle as is necessary for the usual HSIC based test
(see [64]). Further, when the sampling distribution is fixed, Proposition B.2 shows that r̂HSIC
consistently estimates rHSIC(π|µ ⊗ ν), a quantity which equals 0 if and only if π = µ ⊗ ν (this
yields the consistency of φn,α) against fixed alternatives.

While consistency against fixed alternatives is an attractive feature of φn,α, a more intricate question
of statistical interest is to understand the local power of φn,α under “changing sequence of alternatives
converging to the null" as n→∞. To study the local power of φn,α, we need to consider a triangular

array setting, where the data distribution changes with n, i.e., (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ π(n),

a probability measure on Rd1+d2 , with marginals µ(n) ∈ Pac(Rd1) and ν(n) ∈ Pac(Rd2). As
rHSIC(·|·) characterizes independence, a mathematical formulation of “alternatives converging to
null" would be to say rHSIC(π(n)|µ(n) ⊗ ν(n))→ 0 as n→∞. Similar questions have attracted a
lot of attention in modern statistics, featuring measures (other than rHSIC(·|·)) which characterize
independence, see e.g., [5, 11, 79, 86]. In the following result (see Appendix C.2 for a proof), we
show that if rHSIC(π(n)|µ(n) ⊗ ν(n)) → 0 slowly enough with n, then φn,α yields a consistent
sequence of tests for problem (B.4).

Theorem B.3. Consider problem (B.4) with π(n), µ(n), ν(n) (changing with n) and suppose T1,n(·)
and T2,n(·) are both L-Lipschitz (L is free of n). Also assume K1(·), K2(·) are Lipschitz, µ(n), ν(n)

are supported on fixed compact sets (supports are free of n). Set r(n,n)
d1,d2

:= r
(n,n)
d1

+ r
(n,n)
d2

where

r
(n,n)
d1

, r
(n,n)
d2

is defined via (2.4). Then,

E[φn,α]→ 1 if (r
(n,n)
d1,d2

)−1/2 × rHSIC(π(n)|µ(n) ⊗ ν(n))→∞,

C Proof of main results
This section is devoted to proving our main results and is organized as follows: In Appendix C.1, we
present the proofs of results from Section 2 and in Appendix C.2, we present the proofs from Ap-
pendix B. Throughout this section, we will use the . sign to hide constants that are free of m,n.

C.1 Proofs from Section 2
Proof of Theorem 2.1. We begin the proof by observing that ϕ∗0(·) is convex and finite on supp(ν),
and hence differentiable ν almost everywhere (a.e.). Further by Lemma D.2, we also have:

∇ϕ∗0(T0(x)) = x µ-a.e. x. (C.1)

Fix any arbitrary γ ∈ Γ̃min and suppose that γ(y|x) denotes the conditional distribution of y given x
under γ. Define,

D1 :=

∫
ϕ∗0(y) dν̃n(y)−

∫
ϕ∗0(y)dν†m(y).
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As γ has marginals µ̃m and ν̃n, we have:

D1 =

∫
x,y

ϕ∗0(y) dγ(y|x) dµ̃m(x)−
∫
x

ϕ∗0(T0(x)) dµ̃m(x). (C.2)

Next, by applying the conditional version of Jensen’s inequality,∫
x

(∫
y

ϕ∗0(y) dγ(y|x)

)
dµ̃m(x) ≥

∫
x

ϕ∗0

(∫
y

y dγ(y|x)

)
dµ̃m(x)

=

∫
x

ϕ∗0(T̃ γm,n(x)) dµ̃m(x). (C.3)

Using (C.3) with (C.2) yields,

D1 ≥
∫

[ϕ∗0(T̃ γm,n(x))− ϕ∗0(T0(x))]dµ̃m(x)

(a)

≥
∫ {
∇ϕ∗0(T0(x))>(T̃ γm,n(x)− T0(x)) +

1

2L
‖T̃ γm,n(x)− T0(x)‖2

}
dµ̃m(x)

(b)
=

∫
x>(T̃ γm,n(x)− T0(x)) dµ̃m(x)︸ ︷︷ ︸

D2

+
1

2L

∫
‖T̃ γm,n(x)− T0(x)‖2 dµ̃m(x). (C.4)

Here (a) follows from the strong convexity of ϕ∗0(·) with parameter (1/L) (see Lemma D.1) and (b)
follows from (C.1).

Next, we will simplify the term D2. Towards this direction, observe that for every γ ∈ Γ̃min,

W 2
2 (µ̃m, ν̃n) =

∫
‖x− y‖2 dγ(x, y)

=

∫
‖x‖2 dµ̃m(x) +

∫
‖y‖2 dν̃n(y)− 2

∫
x

(
x>
∫
y

y dγ(y|x)

)
dµ̃m(x)

=

∫
‖x‖2 dµ̃m(x) +

∫
‖y‖2 dν̃n(y)− 2

∫
x

x>T̃ γm,n(x) dµ̃m(x). (C.5)

Also, as T0 is the gradient of a convex function, it is also an OT map from µ̃m to ν†m (see [1, Section
1.2]), we have:

W 2
2 (µ̃m, ν

†
m) =

∫
‖x− T0(x)‖2 dµ̃m(x)

=

∫
‖x‖2 dµ̃m(x) +

∫
‖y‖2 dν†m(y)− 2

∫
x

x>T0(x) dµ̃m(x). (C.6)

Now (C.5) and (C.6) imply

D2 =
1

2

(
W 2

2 (µ̃m, ν
†
m)−W 2

2 (µ̃m, ν̃n)
)

+
1

2

∫
‖y‖2 d(ν̃n − ν†m)(y). (C.7)

Finally by combining (C.7) and (C.4), we get:
1

2L

∫
‖T̃ γm,n(x)− T0(x)‖2 dµ̃m(x)

≤ 1

2

(
W 2

2 (µ̃m, ν̃n)−W 2
2 (µ̃m, ν

†
m)
)

+

∫
(ϕ∗0(y)− (1/2)‖y‖2) d(ν̃n − ν†m)(y). (C.8)

Now note that the bound on the right hand side of the above display is free of the particular choice of
γ ∈ Γ̃min. Therefore, the same bound holds if we take a supremum over γ ∈ Γ̃min on the left hand
side. We will now provide an upper bound for the right hand side of (C.8). The remainder of the
proof proceeds as in the proof of [19, Proposition 2].

By the dual representation presented in (1.4) and (1.5), and the definitions of Ψµ̃m,ν̃n(·) and
Ψµ̃m,ν

†
m

(·) in the statement of Theorem 2.1, we have

1

2
W 2

2 (µ̃m, ν̃n) =
1

2

∫
‖x‖2 dµ̃m(x) +

1

2

∫
‖y‖2 dν̃n(y)− Sµ̃m,ν̃n(Ψµ̃m,ν̃n),
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and
1

2
W 2

2 (µ̃m, ν
†
m) =

1

2

∫
‖x‖2 dµ̃m(x) +

1

2

∫
‖y‖2 dν†m(y)− Sµ̃m,ν†m(Ψµ̃m,ν

†
m

).

By subtracting the two equations above, we get:
1

2
W 2

2 (µ̃m, ν̃n)− 1

2
W 2

2 (µ̃m, ν
†
m) =

1

2

∫
‖y‖2 d(ν̃n− ν†m)−Sµ̃m,ν̃n(Ψµ̃m,ν̃n) +Sµ̃m,ν†m(Ψµ̃m,ν

†
m

).

(C.9)
Next, we use (1.5) to make the following observations:

Sµ̃m,ν̃n(Ψµ̃m,ν̃n) ≤ Sµ̃m,ν̃n(Ψµ̃m,ν
†
m

), Sµ̃m,ν†m(Ψµ̃m,ν
†
m

) ≤ Sµ̃m,ν†m(Ψµ̃m,ν̃n). (C.10)

Note that (C.10) immediately yields the following conclusions:

Sµ̃m,ν†m(Ψµ̃m,ν
†
m

)− Sµ̃m,ν̃n(Ψµ̃m,ν
†
m

) ≤ Sµ̃m,ν†m(Ψµ̃m,ν
†
m

)− Sµ̃m,ν̃n(Ψµ̃m,ν̃n),

and
Sµ̃m,ν†m(Ψµ̃m,ν

†
m

)− Sµ̃m,ν̃n(Ψµ̃m,ν̃n) ≤ Sµ̃m,ν†m(Ψµ̃m,ν̃n)− Sµ̃m,ν̃n(Ψµ̃m,ν̃n).

By combining the above two displays, we have:∣∣∣Sµ̃m,ν†m(Ψµ̃m,ν
†
m

)− Sµ̃m,ν̃n(Ψµ̃m,ν̃n)
∣∣∣

≤ max
{∣∣∣Sµ̃m,ν†m(Ψµ̃m,ν̃n)− Sµ̃m,ν̃n(Ψµ̃m,ν̃n)

∣∣∣ , ∣∣∣Sµ̃m,ν†m(Ψµ̃m,ν
†
m

)− Sµ̃m,ν̃n(Ψµ̃m,ν
†
m

)
∣∣∣} .
(C.11)

By (1.5) and some simple algebra, the following holds:∣∣∣Sµ̃m,ν†m(Ψµ̃m,ν̃n)− Sµ̃m,ν̃n(Ψµ̃m,ν̃n)
∣∣∣ =

∣∣∣∣∫ Ψ∗µ̃m,ν̃n d(ν†m − ν̃n)

∣∣∣∣ .
A similar expression holds for |Sµ̃m,ν†m(Ψµ̃m,ν

†
m

)− Sµ̃m,ν̃n(Ψµ̃m,ν
†
m

)|. Using the above observation
in (C.11), we get:∣∣∣Sµ̃m,ν†m(Ψµ̃m,ν

†
m

)− Sµ̃m,ν̃n(Ψµ̃m,ν̃n)
∣∣∣ ≤ max

{∣∣∣∣ ∫ Ψ∗µ̃m,ν̃n d(ν̃n − ν†m)

∣∣∣∣, ∣∣∣∣ ∫ Ψ∗
µ̃m,ν

†
m
d(ν̃n − ν†m)

∣∣∣∣} .
Combining the above display with (C.9), we further have:∣∣∣∣12W 2

2 (µ̃m, ν̃n)− 1

2
W 2

2 (µ̃m, ν
†
m)−

(
1

2

∫
‖y‖2 d(ν̃n − ν†m)

)∣∣∣∣
≤ max

{∣∣∣∣ ∫ Ψ∗µ̃m,ν̃n d(ν̃n − ν†m)

∣∣∣∣, ∣∣∣∣ ∫ Ψ∗
µ̃m,ν

†
m
d(ν̃n − ν†m)

∣∣∣∣} . (C.12)

Combining (C.12) with (C.8) then completes the proof.

Proof of Theorem 2.2. First observe that

lim sup
M→∞

lim sup
m,n→∞

P
(∣∣∣ ∫ ϕ∗0 d(ν̂n − ν†m)

∣∣ ≥M (
r

(m,m)
d + r

(n,n)
d

))
= 0

by the weak law of large numbers as (r
(n,n)
d )−1n−1/2 = O(1) and (r

(m,m)
d )−1m−1/2 = O(1).

Combining the above observation with Theorem 2.1, we have:

lim sup
M→∞

lim sup
m,n→∞

P

(
sup

γ∈Γ̃min

∫
‖T̃ γm,n(x)− T0(x)‖2 dµ̃m(x) ≥Mr

(m,n)
d

)

≤ lim sup
M→∞

lim sup
m,n→∞

P
(

max

{∣∣∣∣ ∫ Ψ∗µ̃m,ν̃n d(ν̃n − ν†m)

∣∣∣∣, ∣∣∣∣ ∫ Ψ∗
µ̃m,ν

†
m
d(ν̃n − ν†m)

∣∣∣∣} ≥ M

2
r

(m,n)
d

)
≤ lim sup

M→∞
lim sup
m,n→∞

[
P
(∣∣∣∣∫ Ψ∗µ̃m,ν̃n d(ν̃n − ν)

∣∣∣∣ ≥ M

2
r

(n,n)
d

)
+ P

(∣∣∣∣∫ Ψ∗µ̃m,ν̃n d(ν†m − ν)

∣∣∣∣ ≥ M

2
r

(m,m)
d

)

+ P
(∣∣∣∣∫ Ψ∗

µ̃m,ν
†
m
d(ν̃n − ν)

∣∣∣∣ ≥ M

2
r

(n,n)
d

)
+ P

(∣∣∣∣∫ Ψ∗
µ̃m,ν

†
m
d(ν†m − ν)

∣∣∣∣ ≥ M

2
r

(m,m)
d

)]
.

(C.13)
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In the sequel, we will only discuss how to bound the first term on the right hand side of (C.13). Once
that is understood, the other terms can be bounded similarly. Therefore, our focus is on showing

lim sup
M→∞

lim sup
m,n→∞

P
(∣∣∣∣∫ Ψ∗µ̃m,ν̃n d(ν̃n − ν)

∣∣∣∣ ≥ M

2
r

(n,n)
d (log (1 + max{m,n}))td,α

)
= 0. (C.14)

For the next part, to simplify notation, let us begin with some notation. Set Y := supp(ν) and Xn,µ
denote the closure of the convex hull of X1, . . . , Xn.

Note that if we replace Ψµ̃m,ν̃n(·) by Ψµ̃m,ν̃n(·)− C for some constant C > 0, then Ψ∗µ̃m,ν̃n(·) 7→
Ψ∗µ̃m,ν̃n + C. However replacing Ψ∗µ̃m,ν̃n(·) by Ψ∗µ̃m,ν̃n(·) + C in (C.14) doesn’t change its value as
ν̃n and ν are both probability measures. Therefore, without loss of generality, we can assume that
Ψµ̃m,ν̃n(X1) = 0 for all m,n. We will stick to this convention for the rest of the proof. Also note that
Ψµ̃m,ν̃n(·) is only determined at the data points X1, . . . , Xn. Without loss of generality, we extend
Ψµ̃m,ν̃n(·) to the whole of Rd by linear interpolation for any x ∈ Xn,µ and setting Ψµ̃m,ν̃n(x) =∞
for x ∈ X cn,µ.

The proof now proceeds using the following steps:

Step I: There exists a constant C1 > 0 and yn ∈ supp(ν) = Y such that

|Ψ∗µ̃m,ν̃n(yn)| ≤ max
1≤i≤m

‖Xi‖.

Proof of step I. By Kantorovich duality, there exists yn such that

Ψ∗µ̃m,ν̃n(yn) + Ψµ̃m,ν̃n(X1) = 〈X1, yn〉 =⇒ |Ψ∗µ̃m,ν̃n(yn)| ≤ C1‖X1‖ ≤ C1 max
1≤i≤m

‖Xi‖,

where C1 := sup{‖y‖ : y ∈ Y}.

Step II: There exists a constant C2 > 0 such that the following holds:

‖Ψ∗µ̃m,ν̃n‖∞,Y ≤ C2 max
1≤i≤n

‖Xi‖,

where ‖·‖∞,Y is the uniform norm on the support of ν.

Proof of step II. As Ψµ̃m,ν̃n(x) = ∞ for x ∈ X cn,µ, using (1.6), we can write Ψ∗µ̃m,ν̃n(y) =

maxx∈Xn,µ(〈x, y〉 − Ψµ̃m,ν̃n(x)) for all y ∈ Y . For any y0 ∈ Y , let x0 ∈ Xn,µ be such that
Ψ∗µ̃m,ν̃n(y0) = 〈x0, y0〉 −Ψµ̃m,ν̃n(x0). Then, for any y ∈ X , we have:{

Ψ∗µ̃m,ν̃n(y0) = 〈x0, y0〉 −Ψµ̃m,ν̃n(x0)

Ψ∗µ̃m,ν̃n(y) ≥ 〈x0, y〉 −Ψµ̃m,ν̃n(x0)

=⇒ |Ψ∗µ̃m,ν̃n(y0)−Ψ∗µ̃m,ν̃n(y)| ≤ |〈x0, y0 − y〉| ≤
(

max
1≤i≤m

‖Xi‖
)
‖y0 − y‖.

where the last line uses the fact that y0, y are arbitrary. In particular, by setting y0 := yn from step I,
we get:

‖Ψ∗µ̃m,ν̃n‖∞,Y ≤ |Ψ
∗
µ̃m,ν̃n

(yn)|+
(

max
1≤i≤m

‖Xi‖
)

sup
y∈Y
‖yn − y‖ ≤ C2

(
max

1≤i≤m
‖Xi‖

)
,

where C2 := 3C1 with C1 defined as specified in the proof of step I.

The above lemma allows us to bound (with high probability) the L∞-norm of Ψ∗µ̃m,ν̃n(·) on Y , using
the tail assumption E exp(t‖X1‖α) < ∞ for some t > 0 and α > 0. This is the focus of the next
step.

Step III: For K > 0, define the following two sets:

Am,n,K :=

{∫
(Ψ∗µ̃m,ν̃n(u))2 dν(u) ≥ K

}
, and,
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Ãm,n,K :=
{
‖Ψ∗µ̃m,ν̃n‖∞,Y ≥ K

(
log n

)1/α}
.

Then there exists K0 > 0 such that for any K ≥ K0, we have:

lim
m,n→∞

P(Ãm,n,K) = 0. (C.15)

and
lim

m,n→∞
P(Am,n,K) = 0. (C.16)

Proof of step III. By using the exponential Markov’s inequality coupled with the standard union
bound, we have:

P
(

max
1≤i≤m

‖Xi‖ ≥ K(logm)1/α

)
≤ mP

(
‖X1‖ ≥ K(logm)1/α

)
≤ m exp(−tKα(logm))E exp(t‖X1‖α)

m→∞−→ 0

provided K > t−α. Using the above observation coupled with step II, (C.15) follows by choosing
K0 > C2t

−α.

For the next part, we define another set:

Bm,n,ε :=

{∫ ∣∣Ψ∗µ̃m,ν̃n(u)−Ψ∗µ,ν(u)|2 dν(u) ≥ ε
}

for ε > 0, where, as in (1.5), we have:

W 2
2 (µ, ν) =

∫
‖x‖2 dµ(x) +

∫
‖y‖2 dν(y)− 2

(∫
Ψµ,ν(x) dµ(x) +

∫
Ψ∗µ,ν(y) dν(y)

)
.

Now by using [7, Theorem 2.10], we have P(Bm,n,ε)→ 0 as m,n→∞ for all ε > 0. As∫
(Ψ∗µ̃m,ν̃n(u))2 dν(u) ≤ 2

∫ ∣∣Ψ∗µ̃m,ν̃n(u)−Ψ∗µ,ν(u)|2 dν(u) + 2

∫
(Ψ∗µ,ν(u))2 dν(u),

(C.16) follows with K0 > 2
∫

(Ψ∗µ,ν(u))2 dν(u) + 1 if we choose ε = 1/2.

We are now in a position to complete the proof of Theorem 2.2 using steps I-III. Towards this direction,
set K ′ := 2K0 where K0 is defined as in the proof of step III and observe that for any M > 0,

lim sup
M→∞

lim sup
m,n→∞

P

(∣∣∣∣∣
∫

Ψ∗µ̃m,ν̃n(u) d(ν̃n − ν)

∣∣∣∣∣ ≥Mr
(n,n)
d (log (1 +m))td,α

)

≤ lim sup
M→∞

lim sup
m,n→∞

P

(∣∣∣∣∣
∫

Ψ∗µ̃m,ν̃n(u) d(ν̃n − ν)

∣∣∣∣∣ ≥Mr
(n,n)
d (log (1 +m))td,α , Acm,n,K′ ∩ Ãcm,n,K′

)
+ lim sup

n→∞
P(Ãm,n,K′) + lim sup

m,n→∞
P(Am,n,K′)

≤ lim sup
M→∞

lim sup
m,n→∞

P

(∣∣∣∣∣
∫

Ψ∗µ̃m,ν̃n(u) d(ν̃n − ν)

∣∣∣∣∣ ≥Mr
(n,n)
d (log (1 +m))td,α , Acm,n,K′ ∩ Ãcm,n,K′

)
,

(C.17)
where the last step follows from step III. Observe that the left hand side of (C.17) is the same as (C.14).
Therefore, it is now enough to bound the right hand side of (C.17).

In order to achieve the above task, let us define the following class of functions:

CΓ,L(Y) := {f : Y → R, f is convex, ‖f‖∞,Y ≤ Γ, ‖f‖L2(ν) ≤ L}.

By setting Γ := K ′(logm)1/α and L := K ′, (C.17) yields the following conclusion:

lim sup
M→∞

lim sup
m,n→∞

P

(∣∣∣∣∣
∫

Ψ∗µ̃m,ν̃n(u) d(ν̃n − ν)

∣∣∣∣∣ ≥Mr
(n,n)
d (log (1 +m))td,α

)

≤ lim sup
M→∞

lim sup
m,n→∞

P

(
sup

f∈CΓ,L(Y)

∣∣∣∣∣
∫
f d(ν̃n − ν)

∣∣∣∣∣ ≥Mr
(n,n)
d (log (1 +m))td,α

)
.
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By an application of Markov’s inequality, it thus suffices to show that:

E

[
sup

f∈CΓ,L(Y)

∣∣∣∣∣
∫
f d(ν̃n − ν)

∣∣∣∣∣
]

= O
(
r

(n,n)
d (log (1 +m))td,α

)
. (C.18)

In order to bound (C.18), we will use some standard empirical process techniques. In particular, by
using [22, Theorem 5.11], the following bound holds:

E

[
sup

f∈CΓ,L(Y)

∣∣∣∣∣
∫
f d(ν̃n − ν)

∣∣∣∣∣
]

≤ D inf

{
a ≥ Γ√

n
: a ≥ D√

n

∫ Γ

a

√
logN[](ε, CΓ,L(Y), L2(ν)) dε

}
, (C.19)

for some positive constant D > 0, where N[](ε, CΓ,L(Y), L2(ν)) is the ε-bracketing number of the
class of functions CΓ,L(Y) with respect to the L2(ν) norm. Note that by [17, Equation 26], we have:

logN[](ε, CΓ,L(Y), L2(ν)) ≤ γd
(

log
Γ

ε

)d+1(
L

ε

)d/2
for some γd > 0 depending only on fand the diameter of Y .

We will now bound the right hand side of (C.19). Also we will use Dd to denote changing constants
which can depend on d.

1. When d = 1, 2, 3: Choose a = Dd
(logn)

1
α
∨ 2α+2dα−d+4

4α√
n

. Observe that:

1√
n

∫ Γ

a

√
logN[](ε, CΓ,L(Y), L2(ν)) dε ≤ (log n)(d+1)/2

√
n

·
[
ε1−d/4

1− d/4

]Γ

0

.
(log n)(4−d)/(4α) × (log n)(d+1)/2

√
n

. a.

2. When d = 4: Choose a = Dd
(logn)

1
α
∨ 7

2√
n

. Observe that:

1√
n

∫ Γ

a

√
logN[](ε, CΓ,L(Y), L2(ν)) dε ≤ (log n)5/2

√
n

· [log ε]
Γ
DdΓ/

√
n

.
(log n)(7/2)

√
n

. a.

3. When d > 4: Choose a = Dd
(logn)2(1+d−1)

n2/d . Observe that:

1√
n

∫ Γ0

a

√
logN[](ε, CΓ,L(Y), L2(ν)) dε ≤ (log n)(d+1)/2

√
n

·
[
ε1−d/4

1− d/4

]Γ

a

.
a1−d/4(log n)(d+1)/2

√
n

. a.

This completes the proof after applying the same technique on the other 3 terms on the right hand
side of (C.13).

Proof of Corollary 2.3. First observe that

E
[∫

ϕ∗0 dν̂n

]
= E

[∫
ϕ∗0 dν

†
m

]
=

∫
ϕ∗0 dν.

Using the above observation and the same approach used as in the proof of Theorem 2.2, we will
only focus on bounding

E
∣∣∣∣ ∫ Ψ∗µ̃m,ν̃n d(ν̃n − ν)

∣∣∣∣. (C.20)
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The general strategy to bound the term in (C.20) is derived from some intermediate steps in the proofs
of [5, Lemmas 3 and 4]. We still present a sketch here for completeness.

By the same argument as in the proof of Theorem 2.2 and using the fact that there exists fixed R > 0
such that max1≤i≤m‖Xi‖ ≤ R, we have Ψ∗µ̃m,ν̃n(·) is a convex and R-Lipschitz function on Y . This
observation implies:

E
∣∣∣∣ ∫ Ψ∗µ̃m,ν̃n d(ν̃n − ν†m)

∣∣∣∣ ≤ E

[
sup

ψ∈FR(Y)

∣∣∣∣∫ ψ d(ν̂n − ν)

∣∣∣∣
]

(C.21)

where FR(Y) is the set of convex and R-Lipschitz functions on Y . By [25, Theorem 5.22], we then
have:

E

[
sup

ψ∈FR(Y)

∣∣∣∣∫ ψ d(ν̂n − ν)

∣∣∣∣
]
. inf
δ>0

(
δ + n−1/2

∫ R2

δ

√
logN∞(FR(Y), ε) dε

)
, (C.22)

where N∞(FR(Y), ε) is the ε-covering number of the set FR(Y) with respect to the uniform metric.
By using [13, Theorem 1] (also see [4]), there exists constants C1, C2 > 0 such that whenever
ε/R2 ≤ C1, then logN∞(FR(Y), ε) ≤ C2(u/R2)−d/2. By using this bound in (C.22), we get:

E

[
sup

ψ∈FR(Y)

∣∣∣∣∫ ψ d(ν̂n − ν)

∣∣∣∣
]
. inf
δ>0

(
δ + n−1/2

∫ 1

δ

ε−d/4 dε

)
. (C.23)

Setting δ = 0 for d < 4 and δ = n−2/d for d ≥ 4 in (C.22), followed by a direct application
of (C.21), we have:

E
∣∣∣∣ ∫ Ψ∗µ̃m,ν̃n d(ν̃n − ν†m)

∣∣∣∣ . r
(n,n)
d .

This completes the proof.

Proof of Theorem A.1. For this proof, we will use an intermediate step in the proof of Theorem 2.1,
which is (C.7), that can alternatively be written as:

E
[∫
‖T̃ γm,n(x)− T0(x)‖2 dµ̃m(x)

]
. E|W 2

2 (µ̃m, ν̃n)−W 2
2 (µ, ν)|+ E

∣∣∣∣∫ h(y) d(ν̃n − ν†m)(y)

∣∣∣∣
(C.24)

where h(y) := ϕ∗0(y)− (1/2)‖y‖2 and C > 0 is some constant. As X and Y are compact sets, the
function h(·) is Lipschitz. Therefore,

E
∣∣∣∣∫ h(y) d(ν̃n − ν)(y)

∣∣∣∣ .W1(ν̃n, ν) ≤W2(ν̃n, ν).

Further, as T0(·) is also Lipschitz, we further have:

E
∣∣∣∣∫ h(y) d(ν†m − ν)(y)

∣∣∣∣ .W1(T0#µ̃m, T0#µ) .W1(µ̃m, µ) ≤W2(µ̃m, µ).

Finally, by the triangle inequality, we also have:

E|W 2
2 (µ̃m, ν̃n)−W 2

2 (µ, ν)| . E|W2(µ̃m, ν̃n)−W2(µ̃m, ν)|+ E|W2(µ̃m, ν)−W2(µ, ν)|
≤ EW2(µ̃m, µ) + EW2(ν̃n, ν).

Combining the three displays above and plugging them back in (C.24), we get:

E
[∫
‖T̃ γm,n(x)− T0(x)‖2 dµ̃m(x)

]
. EW2(µ̃m, µ) + EW2(ν̃n, ν).

The conclusion then follows from [131, Theorem 1].

Proof of Theorem 2.5. Part 1. By the same arguments (see e.g., (C.13)) as used in the proof of The-
orem 2.2, it suffices to show that

E
∣∣∣∣∫ Ψ∗µ̃m,ν̃n(u)(f̃M

′

ν (u)− fν(u)) du

∣∣∣∣ . r
(n,n)
d,s (C.25)
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for some M ′ > 0.

The general structure of the proof is similar to that of Theorem 2.2. The crucial observation is that
f̃M

′

µ (·) and f̃M
′

ν (·) are elements of Cs(X ;TM) and Cs(Y;TM) respectively, for any M ′ > 0.
Note that, by Caffarelli regularity theory; see [16, Theorem 33], there exists M ′ > 0 such that
‖Ψ∗µ̃m,ν̃n(·)‖Cs+2(Y) ≤M ′.

Next, let us define the following class of functions:

GLt (Y) := {g : Y → R, g(·) is convex, ‖g‖Ct(Y)≤ L}.

Observe that

E
∣∣∣∣∫ Ψ∗µ̃m,ν̃n(u)(f̃M

′

ν (u)− fν(u)) du

∣∣∣∣ ≤ E sup
g∈GM′s+2(Y)

∣∣∣∣∫ g(u)(f̃M
′

ν (u)− fν(u)) du

∣∣∣∣
≤ 2E sup

g∈GM′s+2(Y)

∣∣∣∣∫ g(u)(f̂ν(u)− fν(u)) du

∣∣∣∣+ r
(n,n)
d,s

(C.26)

where the last line follows from (2.6).

Set Kd,hn(·) := h−dn Kd(·/hn). Following the same decomposition as in [21], we write:

E sup
g∈GM′s+2(Y)

∣∣∣∣∫ g(u)(f̂ν(u)− fν(u)) du

∣∣∣∣
= E sup

g∈GM′s+2(Y)

∣∣∣∣∫ g(u+ u′)Kd,hn(u′) dν̂n(u) du′ −
∫
g(u)fν(u) du

∣∣∣∣
≤ E sup

g∈GM′s+2(Y)

∣∣∣∣∫ g(u+ u′)Kd,hn(u′) d(ν̂n − ν)(u) du′
∣∣∣∣

+ sup
g∈GM′s+2(Y)

∣∣∣∣∫ g(u+ u′)Kd,hn(u′)fν(u) du du′ −
∫
g(u)fν(u) du

∣∣∣∣ . (C.27)

We will now bound the two terms on the right hand side of (C.27). For the first term, define

gn(u) :=

∫
g(u+ u′)Kd,hn(u) du′.

If g ∈ GLt (Yo), then by [9, Proposition 8.10] and using Assumption (A2), we have gn ∈ GcM
′

s+2 (Yo),
for some constant c > 0 (depending on the constants involved in Assumption (A2) and the diameter
of Y). Combining these observations with (C.27), we get:

E sup
g∈GM′s+2(Y)

∣∣∣∣∫ g(u+ u′)Kd,hn(u′) d(ν̂n − ν)(u) du′
∣∣∣∣

≤ E sup
g∈GcM′s+2 (Y)

∣∣∣∣∫ g(u) d(ν̂n − ν)(u)

∣∣∣∣
≤ D inf

{
a ≥ cM ′√

n
: a ≥ D√

n

∫ cM ′

a

√
logN[](ε,GcM

′
s+2 (Y), L2(ν)) dε

}
, (C.28)

for some positive constant D > 0, where N[](ε,GcM
′

s+2 (Y), L2(ν)) is the ε-bracketing entropy of the
class of functions GcM ′s+2 (Y) with respect to the L2(ν) norm. The last line follows from standard
empirical process theory as used in the proof of Theorem 2.2; see (C.19). Note that by [24, Corollary
2.7.2], we have:

logN[](ε,GcLs+2(Yo), L2(ν)) ≤ γd
(

1

ε

)d/(s+2)
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for some γd > 0 depending only on dimension and the diameter of Y .

We now plug-in the above bound into (C.28). By using Dd to denote constants that change with
d and choosing a = Ddn

−1/2 for 2(s + 2) > d, a = Ddn
−1/2 log (1 + n) for 2(s + 2) = d and

a = Ddn
−(s+2)/d for 2(s+ 2) < d in (C.28), we have:

E sup
g∈GM′s+2(Y)

∣∣∣∣∫ g(u+ u′)Kd,hn(u′) d(ν̂n − ν)(u) du′
∣∣∣∣ . r

(n,n)
d,s . (C.29)

We now move on to the bounding the second term on the right hand side of (C.27). For this part, our
main technical tool will be the classical arguments for smoothed empirical processes developed in [11].
Towards this direction, set g(u) = g(−u) (different from gn(·) defined earlier) for g(·) ∈ GM ′s+2 and
note that by [11, Lemma 4], we have:∣∣∣∣∫ g(u+ u′)Kd,hn(u′)fν(u) du du′ −

∫
g(u)fν(u) du

∣∣∣∣ =

∣∣∣∣∫ Kd(u) [(g ∗ fν)(hnu)− (g ∗ fν)(0)] du

∣∣∣∣ ,
(C.30)

where (g ∗ fν)(·) is the standard convolution between g(·) and fν(·), and with a notational abuse
0 denotes the d-dimensional zero vector. The important observation now is to note that (g ∗ fν)(·)
belongs to a higher order Sobolev class compared to g(·) and fν(·). In particular, as fν(·) ∈
Cs(Y;M) and g(·) ∈ GM ′s+2(Y), we have (g ∗ fν)(·) ∈ GM ′′2s+2(Y) where M ′′ depends on both M ′
and M .

Next, write Dt(g ∗ fν)(·) to be the t-th derivative of (g ∗ fν)(·) and note that by a multivariate
Taylor’s approximation∫

Kd(u) [(g ∗ fν)(hnu)− (g ∗ fν)(0)] du

=

∫
Kd(u)

2s+1∑
r=1

hrn
∑

(i1,i2,...,ir)∈{1,2,...,d}r
[Dr(g ∗ fν)(0)]i1,...,irui1 . . . uir du+O(h2s+2

n ).

Recall that Kd(u) = K(u1)K(u2) . . .K(ud). As K(·) is of order 2s + 2 (see Assumption (A2)),
all the integrals on the right hand side of the above display vanish. We then appeal to (C.30) to get:∣∣∣∣∫ g(u+ u′)Kd,hn(u′)fν(u) du du′ −

∫
g(u)fν(u) du

∣∣∣∣ . h2s+2
n =. n−

2s+2
d+2s (log n)2s+2.

We now compare the right hand side of the above display with r(n,n)
d,s .

When d < 2(s+2): d+2s < 4(s+1), and therefore 2s+2
d+2s >

1
2 . This implies n−

2s+2
d+2s (log n)2s+2 .

n−
1
2 = r

(n,n)
d,s .

When d = 2(s+ 2): In this case n−
2s+2
d+2s (log n)2s+2 . n−

1
2 (log n)2s+2 . r

(n,n)
d,s .

When d > 2(s+ 2): Note that
2s+ 2

d+ 2s
>
s+ 2

d
⇔ 2ds+ 2d > sd+ 2s2 + 2d+ 4s⇔ d > 2(s+ 2).

Therefore, once again n−
2s+2
d+2s (log n)2s+2 . n−

s+2
d = r

(n,n)
d,s .

Therefore, combining the above observations, we have:∣∣∣∣∫ g(u+ u′)Kd,hn(u′)fν(u) du du′ −
∫
g(u)fν(u) du

∣∣∣∣ . r
(n,n)
d,s .

Combining the above display with (C.29) establishes (C.25).

Part 2. This proof uses ideas from [14, Theorem 7], [20] and [2, Lemmas 2 and 3]. First recall all
the notation introduced in Definition 2.4. Next, we will prove the following sequence of displays:

lim sup
m,n→∞

max
k≤s

max
|m|=k

‖∂mEf̂µ‖L∞(X̃ ) ≤ (T − 1)M, (C.31)
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lim sup
m,n→∞

‖Ef̂µ − fµ‖L∞(X̃ ) = 0 (C.32)

lim sup
m,n→∞

P
(
‖f̂µ − Ef̂µ‖Cs(X̃ ) ≥ ε

)
= 0, (C.33)

for any arbitrary ε > 0 and L∞(X ) denotes the uniform norm on X .

Clearly, (C.31), (C.32), and (C.33) together yield part 1 of the theorem.

Proof of (C.31). Observe that

Ef̂µ(x) =
1

hdm
EKd

(
x−X1

hm

)
=

1

hdm

∫
Kd

(
x− z
hm

)
fµ(z) dz. (C.34)

Since the maximums taken in (C.31) are over finite sets, it suffices to show that for any fixed m with
|m| ≤ s, we have:

sup
x∈X̃
|∂mEf̂µ(x)| = sup

x∈X

∣∣∣∣ 1

hdn

∫
Kd

(
z

hn

)
∂mf(x+ z) dz

∣∣∣∣∣ ≤ (T − 1)M. (C.35)

Here the first equality in the above display follows from (C.34) and Fubini’s Theorem. Here ∂mfµ(·)
is defined in the weak sense, i.e., it is defined naturally in the interior of the support of fµ(·), denoted
by X ; it is set to be 0 outside X and defined arbitrarily on the boundary of X . Note that the definition
on the boundary doesn’t matter as we are integrating with respect to the Lebesgue measure and the
boundary of X has Lebesgue measure 0.

Next note that, by (C.35), we have:

sup
x∈X̃
|∂mEf̂µ(x)| ≤ ‖fµ‖Cs(X )h

−d
m

∫
|Kd(z/hm)| dz ≤ (T − 1)‖fµ‖Cs(X ).

This establishes (C.31).

Proof of (C.32). First note that, as X̃ is a compact subset of X o, there exists δ > 0 such that

X̃δ′ := {x+ z : ‖z‖ ≤ δ; , x ∈ X̃} ⊆ X o ∀ 0 < δ′ ≤ δ.

Clearly, X̃δ′ is compact for all δ′ > 0. Fix an arbitrary δ′ ≤ δ. By using (C.34) and a change of
variable formula, we have:

‖Ef̂µ − fµ‖L∞(X̃ ) = sup
x∈X̃

∣∣∣∣ 1

hdm

∫
Kd

(
z

hm

)
(f(x+ z)− f(x)) dz

∣∣∣∣
≤ (T − 1) sup

x∈X̃
sup
‖z‖≤δ′

|f(x+ z)− f(x)|+ 2M

∫
‖z‖>δ′h−1

m

|Kd(z)| dz

≤ (T − 1)Mδ′ + 2M

(
hm
δ′

)2s+2 ∫
‖z‖2s+2|Kd(z)| dz.

Observe that as m,n→∞, the second term on the right hand side of the above display converges to
0. This implies

lim sup
m,n→∞

‖Ef̂µ − fµ‖L∞(X̃ ) ≤ (T − 1)Mδ′.

As δ′ can be chosen arbitrarily small, this completes the proof of (C.32).

Proof of (C.33). The main technical tool for this part is Lemma D.3 which we borrow from [2,
Lemma 9] (also see [18, Theorem 4.1]). The proof is very similar to [2, Lemma 3]. Consider the
following class of functions:

G =

{
gx(z, h) : gx(z, h) = ∂mKd

(
(x− z)
h

)
, x ∈ X̃ , |m| ≤ s

}
.

Observe that

sup
|m|≤s

sup
x∈X̃

sup
h∈(0,1)

h−dE
[
∂mKd

(
(x− z)
h

)]2

≤ ‖K‖Cs(Rd)‖f‖Cs(X ) sup
|m|≤s

∫
|∂mKd(v)| dv <∞.
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Further, by Assumption (A2), ∂mKd(·) is differentiable for each |m| ≤ s. Consequently G is point
wise measurable and of VC-type (see [8, Lemma A.1]; also see [24, Section 2.6] for definitions of
point wise differentiability and VC classes). This verifies the assumptions of Lemma D.3. Observe
that

1

n

m∑
i=1

∂mK

(
x−Xi

hm

)
= hd+|m|

m ∂mf̂µ(x), E
[
∂mK

(
x−X
hm

)]
= hd+|m|

m E
[
∂mf̂µ(x)

]
.

A direct application of Lemma D.3 for all |m| ≤ s, then implies

sup
x∈X̃

√
m

hdm logm
· hs+dm ‖f̂µ − Ef̂µ‖Cs(X̃ ) = Op(1).

Using the observation that mhd+2s
m / logm→ 0 as m→∞ then completes the proof.

Proof of Proposition 2.6. As µ 6= ν, we have W2(µ, ν) > 0. Therefore,

|W2(µ̃m, ν̃n)−W2(µ, ν)| = W 2
2 (µ̃m, ν̃n)−W 2

2 (µ, ν)|
W2(µ̃m, ν̃n) +W2(µ, ν)

≤ W 2
2 (µ̃m, ν̃n)−W 2

2 (µ, ν)|
W2(µ, ν)

.

The conclusion then follows from Theorem 2.5.

Proof of Theorem 2.7. Recall that µ̃m and ν̃n are defined as the empirical distributions induced by
M = n

s+2
2 random samples drawn from f̂µ and f̂ν respectively, where f̂µ, f̂ν are the kernel density

estimates as presented in (2.5). Let us write µhn and νhn for the probability measure induced by the
kernel density estimates f̂µ and f̂ν respectively. Once again, by using Theorem 2.2, (C.8), it suffices
to prove the following:

E
∣∣W 2

2 (µ̃m, ν̃n)−W 2
2 (µ, ν)

∣∣ . (C.36)
Next note that by the triangle inequality, (C.36) can be bounded above by:

E
∣∣W 2

2 (µ̃m, νhn)−W 2
2 (µ̃m, ν̃n)

∣∣+ E
∣∣W 2

2 (µ̃m, νhn)−W 2
2 (µhn , νhn)

∣∣
+ E

∣∣W 2
2 (µhn , νhn)−W 2

2 (µ̃m, ν̃n)
∣∣. (C.37)

Next note that, by Theorem 2.5, we have:

E
∣∣W 2

2 (µhn , νhn)−W 2
2 (µ̃m, ν̃n)

∣∣ . r
(n,n)
d,s . (C.38)

Next we show that
E
∣∣W 2

2 (µ̃m, νhn)−W 2
2 (µhn , νhn)

∣∣ . r
(n,n)
d,s . (C.39)

The other term in (C.37) can be bounded similarly.

Note that, conditioned on X1, . . . , Xn, Y1, . . . , Yn, µhn and νhn are non-random measures and µ̃m
and ν̃n are the empirical distributions on M = n

s+2
2 random samples from the measures µhn and

νhn , respectively. Therefore, conditioned on X1, . . . , Xn, Y1, . . . , Yn (which have fixed compact
supports), we can invoke Corollary 2.3 to get:

E
∣∣W 2

2 (µ̃m, νhn)−W 2
2 (µhn , νhn)

∣∣ . r
(M,M)
d ,

with M = n
s+2

2 . Recall that:

r
(M,M)
d =


n−

s+2
4 if d ≤ 3

n−
s+2

4 log (1 + n) if d = 4

n−
s+2
d if d > 4

.

It therefore only remains to compare r(M,M)
d and r(n,n)

d,s .

Case 1: d ≤ 2(s + 2). In this case, if d = 1, 2, 3, then r(M,M)
d = n−

s+2
4 = n−

1
2 × n− s4 . n−

1
2 .

If d = 4, then r
(M,M)
d = n−

s+2
4 log (1 + n) = n−

1
2 ×

(
n−

s
4 log n

)
. n−

1
2 . If d > 4, then

r
(M,M)
d = n−

s+2
d . n−

1
2 as s+2

d ≥ 1
2 . Therefore, in all the cses, r(M,M)

d . n−
1
2 = r

(n,n)
d,s for

d ≤ 2(s+ 2).

Case 2: d > 2(s+ 2). As s > 0, then d > 4. In this case, once again r(M,M)
d = n−

s+2
d = r

(n,n)
d,s .

This establishes (C.39) and completes the proof.
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C.2 Proofs from Appendix B
Proof of Theorem B.1. First define the following measure:

ρOR
0 :=

(
1

2
Id +

1

2
T0

)
#µ̃m.

Fix any γ ∈ Γ̃min. By applying the triangle inequality followed by a power mean inequality, we have:

sup
γ∈Γ̃min

W 2
2

(
ρ̂γ0 , ρ0

)
.W 2

2

(
ρOR

0 , ρ0

)
+ sup
γ∈Γ̃min

W 2
2

(
ρ̂γ0 , ρ

OR
0

)
. (C.40)

Next observe that ρOR
0 is the empirical distribution corresponding to m random samples drawn

according to ρ0. Therefore, by using [10, Theorem 1], we get:

W 2
2

(
ρOR

0 , ρ0

)
. r

(m,m)
d . (C.41)

Next we will bound the second term on the right hand side of (C.40). Towards this direction, recall
the definition of Π(·, ·) from Section 1.1. Consider the following coupling:

πγ0 :=

(
1

2
Id +

1

2
T̃ γm,n,

1

2
Id +

1

2
T0

)
#µ̃m.

Observe that πγ0 ∈ Π
(
ρ̂γ0 , ρ

OR
0

)
. By plugging the coupling πγ0 into the definition of 2-Wasserstein

distance in (1.3), we further get:

sup
γ∈Γ̃min

W 2
2

(
ρ̂γ0 , ρ

OR
0

)
≤ sup
γ∈Γ̃min

∫
‖x− y‖2 dπγ0 (x, y)

= sup
γ∈Γ̃min

∫
‖T̃ γm,n(x)− T0(x)‖2 dµ̃m(x)

= Op

(
r

(m,n)
d × (log (1 + max{m,n}))td,α

)
(C.42)

where the last inequality follows from Theorem 2.2. Combining (C.41) and (C.42) with (C.40)
completes the proof.

Proof of Theorem B.3. Let T (n)
1 (·) and T (n)

2 (·) be the optimal transport maps from µ(n) to υ1 and
ν(n) to υ2. Set

x̂OR
ij := K1(T

(n)
1 (Xi), T

(n)
1 (Xj)), ŷOR

ij := K2(T
(n)
2 (Yi), T

(n)
2 (Yj))

and define the oracle version of r̂HSIC as follows:

r̂HSIC
OR

:= n−2
∑
i,j

x̂OR
ij ŷOR

ij︸ ︷︷ ︸
ÂOR
n,1

+n−4
∑
i,j,r,s

x̂OR
ij ŷOR

rs︸ ︷︷ ︸
ÂOR
n,2

−2n−3
∑
i,j,r

x̂OR
ij ŷOR

ir︸ ︷︷ ︸
ÂOR
n,3

. (C.43)

The proof of Theorem B.3 now proceeds using the following steps:

Step I: We show that:

E
∣∣r̂HSIC

OR
− rHSIC(π(n)|µ(n) × ν(n))

∣∣ . n−1/2, (C.44)

where r̂HSIC
OR

(·|·) is defined in (B.6).

Step II: We prove that:

E
∣∣r̂HSIC

OR
− r̂HSIC

∣∣ .√r(n,n)
d . (C.45)

Step III: We combine steps I and II to prove Theorem B.3. Let us begin with this step first. Note that
by using the triangle inequality, we have:

r̂HSIC ≥ rHSIC(π(n)|µ(n) × ν(n))−
∣∣r̂HSIC

OR
− rHSIC

∣∣− ∣∣r̂HSIC
OR
− r̂HSIC

∣∣. (C.46)
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Next observe that by steps I and II,

max

{∣∣r̂HSIC
OR
− rHSIC

∣∣, ∣∣r̂HSIC
OR
− r̂HSIC

∣∣} = Op
(√

r
(n,n)
d1,d2

)
.

Using the above display with (C.46) and the assumption (r
(n,n)
d1,d2

)−1/2rHSIC(π(n)|µ(n)×ν(n))→∞,
we have: (

r
(n,n)
d1,d2

)−1/2
r̂HSIC

P−→∞.

Therefore, as n
√
r

(n,n)
d1,d2

→∞ and cn,α = O(1) (see [6, Theorem 4.1]), we have:

Eφn,α = P(n× r̂HSIC ≥ cn,α)→ 1

under (r
(n,n)
d1,d2

)−1/2rHSIC(π(n)|µ(n) × ν(n))→∞. This completes the proof.

It therefore remains to prove steps I and II. For step I, let (X ′1, Y
′
1), . . . , (X ′n, Y

′
n)

i.i.d.∼ π(n). Fix an
arbitrary 1 ≤ j ≤ n. Let ÂOR,′

n,1,j be the same as ÂOR
n,1 except with (Xj , Yj) replaced by (X ′j , Y

′
j ). It is

easy to check by the compactness of supports of all distributions involved, that:

max
1≤j≤n

∣∣ÂOR
n,1 − Â

OR,′

n,1,j

∣∣ . n−1.

Therefore by using Mcdiarmid’s inequality (see [3, Theorem 6.5]), we have, for any t > 0,

P
(√

n(ÂOR
n,1 − EÂOR

n,1) ≥ t
)
≤ exp(−Ct2)

for some constant C > 0 free of n and t. Similar concentrations can be derived for ÂOR
n,2 and ÂOR

n,3 .
Combining these concentrations with the observation that

rHSIC(π(n)|µ(n) × ν(n)) = EÂOR
n,1 + EÂOR

n,2 − 2EÂOR
n,3

completes the proof of step I.

We now move on to step II. Recall the definition of r̂HSIC from (B.5) and write:

r̂HSIC = n−2
∑
i,j

x̂ij ŷij︸ ︷︷ ︸
Ân,1

+n−4
∑
i,j,r,s

x̂ij ŷrs︸ ︷︷ ︸
Ân,2

−2n−3
∑
i,j,r

x̂ij ŷir︸ ︷︷ ︸
Ân,3

.

By the Lipschitzness of K1(·, ·) and K2(·, ·), we have:∣∣x̂ij − x̂OR
ij

∣∣ . ‖T̂1,n(Xi)− T (n)
1 (Xi)‖+ ‖T̂1,n(Xj)− T (n)

1 (Xj)‖,∣∣ŷij − ŷOR
ij

∣∣ . ‖T̂2,n(Yi)− T (n)
2 (Yi)‖+ ‖T̂2,n(Yj)− T (n)

2 (Yj)‖.
Therefore, by using the fact that the probability measures υ1 and υ2 are compactly supported, we get:∣∣Ân,1 − ÂOR

n,1

∣∣ . 1

n

n∑
i=1

‖T̂1,n(Xi)− T (n)
1 (Xi)‖+

1

n

n∑
j=1

‖T̂2,n(Yj)− T (n)
2 (Yj)‖.

The same bound can similarly be verified for |Ân,2 − ÂOR
n,2 | and |Ân,3 − ÂOR

n,3 |. Combining these
observations, we have:∣∣r̂HSIC− r̂HSIC

OR∣∣ . 1

n

n∑
i=1

‖T̂1,n(Xi)− T (n)
1 (Xi)‖+

1

n

n∑
j=1

‖T̂2,n(Yj)− T (n)
2 (Yj)‖

≤

√√√√ 1

n

n∑
i=1

‖T̂1,n(Xi)− T (n)
1 (Xi)‖2 +

√√√√ 1

n

n∑
j=1

‖T̂2,n(Yj)− T (n)
2 (Yj)‖2.

Step II then follows by invoking Corollary 2.3.
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D Auxiliary definitions and results
Definition D.1 (Subdifferential set and subgradient). Given a convex function f : Rd → R ∪ {∞},
we define the subdifferential set of f(·) at x ∈ dom(f) := {z ∈ Rd : f(z) <∞} as follows:

∂f(x) := {ξ ∈ Rd : f(x) + 〈ξ, y − x〉 ≤ f(y), for all y ∈ Rd}.

Any element in the set ∂f(x) is called a subgradient of f(·) at x.

Definition D.2 (Strong convexity). A function f : Rd → R∪{∞} is strongly convex with parameter
λ > 0, if, for all x, y ∈ dom(f) = {z ∈ Rd : f(z) <∞}, the following holds:

f(y) ≥ f(x) + 〈ξx, y − x〉+
λ

2
‖y − x‖2,

where ξx ∈ ∂f(x), the subgradient of f(·) at x as in Definition D.1.

Definition D.3 (Wavelet basis). We present our main assumptions on the wavelet basis discussed
in Appendix A only for the wavelets on the space X . The same assumptions are also required for the
wavelets on Y . These are essentially a subset of the assumptions laid out in [131, Appendix E] as we
heavily rely on [131, Theorem 1] for proving Theorem A.1.

1. (Regularity). Fix r > max{s, 1}. The functions in Φ and Ψj , j ≥ 0 have r continuous
derivatives, and all polynomials of degree at most r on X lie in the span of the functions in Φ.

2. (Tensor construction). Each ψ(·) ∈ Ψj can be expressed as ψ(x) =
∏d
i=1 ψi(xi), where

x = (x1, . . . , xd), for some univariate functions ψi(·)’s.

3. (Locality). For each ψ(·) ∈ Ψj there exists a rectangle Iψ ⊆ X such that supp(ψ) ⊆ Iψ,
diam(Iψ) ≤ C1 · 2−j , and supx∈X

∑
ψ(·)∈Ψj

1(x ∈ Iψ) ≤ C2 for some constants C1, C2 > 0.

4. (Bernstein estimate). ‖∇f‖L2(X ) ≤ C3 · 2j‖f‖L2(X ) for any f(·) in the span of the functions in
span (Φ ∪ {∪0≤k<jΨj}). Here C3 is some positive constant.

Lemma D.1 (Strong convexity and Lipschitzness, see [15]). ϕ∗0(·) is strongly convex with parameter
(1/L) if and only if T0(·) is L-Lipschitz continuous.

Lemma D.2 (Gradient of dual). Recall the definition of f∗(·) from (1.5) and ∂f(·) from Defini-
tion D.1. Then the following equivalence holds:

〈x, y〉 = f(x) + f∗(y) ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y).

Lemma D.3 (Bounding expected supremum of empirical process, see [2, 18]). Let f(·) be a prob-
ability density supported on some subset of Rd, and say Z ∼ f(·). Let G be a class of uniformly
bounded measurable functions from Rd × (0, 1] to R, such that:

sup
g(·)∈G

sup
h∈(0,1]

h−dE[g2(Z, h)] <∞,

and such that the class

G0 := {x 7→ g(x, h) : g(·) ∈ G, h ∈ (0, 1)}

is point wise measurable and of VC-type (see [24, Section 2.6] for relevant definitions of VC classes
of sets/functions and point wise measurability). Then there exists b0 ∈ (0, 1) such that if Z1, Z2, . . .
is an i.i.d. sequence of observations from the probability density f(·), we have:

sup
g(·)∈G

sup
logn
n ≤hd≤b0

√
n

hd log n

∣∣∣∣∣ 1n
n∑
i=1

g(Zi, h)− E[g(Z, h)]

∣∣∣∣∣ = Op(1).
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