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Abstract

This paper introduces a novel approach to personalised federated learning within the X -armed
bandit framework, addressing the challenge of optimising both local and global objectives in
a highly heterogeneous environment. Our method employs a surrogate objective function
that combines individual client preferences with aggregated global knowledge, allowing for
a flexible trade-off between personalisation and collective learning. We propose a phase-
based elimination algorithm that achieves sublinear regret with logarithmic communication
overhead, making it well-suited for federated settings. Theoretical analysis and empirical
evaluations demonstrate the effectiveness of our approach compared to existing methods.
Potential applications of this work span various domains, including healthcare, smart home
devices, and e-commerce, where balancing personalisation with global insights is crucial.

1 Introduction

In the rapidly evolving field of machine learning, realising appropriate levels of personalisation has emerged as a
critical challenge. This article addresses this pressing concern within the context of sequential decision-making,
specifically focusing on the X -armed bandit (Bubeck et al., 2011). The need for both data aggregation and
individual customisation is evident in various domains. For instance, in the context of healthcare, data can
be aggregated across subjects to yield population-level insights into (e.g., dosage efficacy), but individual
differences necessitate personalised treatment. Similarly, for smart home devices, data aggregation across
the clients can result in improved general policies, but each individual home has different characteristics;
privacy should be guaranteed to encourage the beneficial aggregation of data for the common good, but
personalised policies need to be implemented at individual devices. These scenarios highlight two key concepts:
“federated learning” (Konečnỳ et al., 2016; McMahan et al., 2017), which enables data aggregation while
maintaining privacy, and “personalisation”(Smith et al., 2017), which tailors strategies to individual needs.
However, the optimal level of personalisation varies across different applications and use-cases; therefore, a
one-size-fits-all approach is insufficient. This article develops a personalised federated learning framework for
the X -armed bandit, designed to allow flexible trade-offs between global and individual objectives, enhancing
user experience by sharing exploration of the decision space, aggregating data securely, and facilitating
individually beneficial decisions.

Federated learning (FL) (Konečnỳ et al., 2016; McMahan et al., 2017) is a distributed learning paradigm
that addresses efficiency and privacy concerns in real-world, unbalanced and non-IID datasets. As datasets
grow and models become more complex, the need to distribute the learning process across multiple machines
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has increased. Conventional distributed learning approaches (Ma et al., 2017; Reddi et al., 2016; Zhang &
Lin, 2015; Shamir et al., 2014) were designed for well-regulated environments like data centers, where data is
typically balanced and i.i.d. across machines. However, these methods are ill suited for privacy-sensitive,
heterogeneous data found on edge devices such as smartphones.

FL emerged as a solution to this challenge, enabling the training of models on rich and privacy-sensitive
data from edge clients. In the FL framework, edge clients collaboratively train a shared global model
under the coordination of a central server. This approach preserves the privacy of local data while reducing
communication costs. By leveraging the collective knowledge of edge clients, FL offers a powerful new
paradigm for distributed learning in real-world settings.

While vanilla FL has shown promise in privacy-preserving distributed learning, it can lead to suboptimal
performance for individual edge clients with heterogeneous local datasets. To address this limitation, FL with
personalisation has been proposed as an extension of the vanilla FL framework. This approach incorporates
client-specific objectives to enhance model performance on heterogeneous data distributions(Smith et al.,
2017; Wu et al., 2020).

In personalised FL, the globally trained model serves as a foundation that is further adapted or fine-tuned to
better align with individual clients’ specific data or preferences. This methodology enables the development
of models that are both privacy-preserving and highly tailored to individual clients, effectively balancing
collective knowledge sharing with local specialisation.

1.1 FL and Multi-Armed Bandits

While state-of-the-art FL research has predominantly focused on supervised learning scenarios, there is a
growing interest in extending FL to the multi-armed bandit (MAB) framework (Lai & Robbins, 1985; Auer
et al., 2002). The MAB problem is a popular framework for studying decision-making under uncertainty.
In its simplest form, the MAB consists of a set of independent “arms”, each providing a random reward
from its corresponding probability distribution. An agent, without prior knowledge of these distributions,
selects one arm in each round, aiming to maximise the total expected reward over time. This process
necessitates a delicate balance between exploring arms to learn the unknown distributions and exploiting the
current knowledge by choosing the arm that has historically provided the highest reward. The extension
of FL to MAB is particularly relevant for applications like recommender systems and clinical trials, where
decision-making is inherently distributed across multiple clients.

Unlike centralised MAB models that assume instant data access, the FL approach processes data locally
at each client, thereby reducing communication overhead and enhancing data privacy. However, federated
bandits introduce unique challenges beyond the classical exploration-exploitation trade-off in centralised
models. These challenges include data heterogeneity and privacy preservation(Shi & Shen, 2021; Shi et al.,
2021; Huang et al., 2021; Li et al., 2024b; Réda et al., 2022). In FL scenarios, collaboration among clients
becomes crucial for accurate inference on the global model, especially given that each client’s data may not
be independent and identically distributed. Yet privacy concerns and communication costs motivate clients
to avoid direct transmissions of local data.

The X -armed bandit (XAB) problem is an extension of the classic MAB problem, where the decision-space is
significantly larger and even continuous, involving a potentially infinite number of arms. Unlike traditional
MAB problems which are limited to a discrete set of options, the XAB framework allows for a broader range
of actions, making it particularly suited for complex environments where actions cannot be easily enumerated.
This complexity introduces unique challenges in terms of exploration and exploitation, as the agent must
efficiently navigate a vastly expanded action space to optimise outcomes. (Bubeck et al., 2011; Kleinberg
et al., 2008)

Balancing exploration and exploitation while achieving privacy and personalisation requires a complex yet
efficient communication protocol between clients and a central server. While Shi et al. (2021) have addressed
this problem for finite, un-structured action spaces in their work on Personalised Federated MAB (PF-MAB),
our work extends the principles of personalised federated learning to the XAB problem. In PF-MAB, the
high probability guarantee that each client’s active set eventually converges to a single best arm enables a
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straightforward shift to pure local exploitation after the best arm is identified. This behavior is critical for
ensuring minimal exploration once the optimal solution is reached. However, in the continuous action space
of XAB, no such discrete “best arm” exists. Instead, the algorithm must continuously balance exploration
and exploitation to approximate the optimal action effectively, as convergence to a single point does not
apply in continuous settings. This necessitates a more refined exploration-exploitation trade-off to keep the
algorithm both efficient and analytically tractable.

To effectively manage exploration in a continuous setting, our approach uses a partitioning strategy for the
action space. This partitioning allows the algorithm to iteratively focus on progressively refined regions with
high potential rewards. By adaptively adjusting the granularity of the partitions based on number of samples
taken, the algorithm can efficiently explore and narrow down the action space without needing a singular
“best” action to emerge.

Our research considers the critical addition of personalisation to recent works in federated XABs, particularly
the novel method proposed by Li et al. (2024b). We realise this through a surrogate reward function that
combines local and global knowledge, inspired by Hanzely & Richtárik (2020). Specifically, we defined a
surrogate reward function for each client as a linear combination of their local reward function and the average
reward function across all clients. This formulation inherently emphasises the importance of integrating
global information, which is particularly beneficial in scenarios where data heterogeneity is significant and
global insights are crucial for informed decision-making. Our approach offers a tunable balance between
global and individualised optimisation, enabling clients to benefit from collective learning while still tailoring
the model to their specific conditions.

While a recent extension (Li et al., 2024a) also considers a personalised variant of federated XAB, our
approaches differ substantively. The approach of Li et al. (2024a) seeks to optimise each local functions
directly, rather than personalised mixtures of local and global effects (as we do), under an assumption that
differences among individuals are bounded (via constraints on local reward functions). This model and
assumptions leads to an alternative notion of regret, for which the theoretical guarantees are ostensibly
sharper, but since the settings are different, the results are not directly comparable. Our framework can
capture broader heterogeneity among clients, and allows improved flexibility since the level of personalisation
can be determined by the practitioner rather than environment alone.

The flexibility of our framework offers significant potential benefits across various domains. In healthcare
applications, specifically clinical trials, this approach allows the derivation of general medical insights from
aggregated data while keeping treatment recommendations personalized to each patient’s medical history
and condition. To better illustrate this, imagine several hospitals collaborating to determine the optimal
dosage of a new drug. The action space, denoted as X , represents the continuous range of possible dosages.
Each hospital acts as a client, with a local objective function µm(x) that quantifies the effectiveness of dosage
x ∈ X for their specific patient population. Factors such as demographics, medical history, and prevalent
disease strains contribute to the uniqueness of each µm(x). The global model, aiming to ascertain the average
drug effectiveness across all hospitals, utilizes the average of all local objective functions, represented as µ(x).
The personalized objective function, denoted as µ′

m(x), combines each hospital’s local objective with the
global objective, striking a balance between individual hospital needs and overall drug efficacy.

1.2 Main Contributions

Our primary contributions are as follows:

1. We propose a novel personalised federated XAB model that accounts for user preferences and data
heterogeneity. This model is strategically designed to optimise the trade-offs between communication
efficiency and learning performance in a federated bandit setting.

2. We introduce PF-XAB, a novel algorithm tailored to the personalised federated XAB problem. Key
features of PF-XAB include: a) edge clients communicate only their local reward estimates, preserving
privacy of raw observations, b) the algorithm achieves sublinear regret while maintaining logarithmic
communication cost.
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3. We provide theoretical analysis demonstrating that PF-XAB achieves sublinear regret bounds while
maintaining logarithmic communication cost.

2 Preliminaries

In this section, we define the framework for our study of the personalised federated XAB problem. We will
outline our model and specific objectives, introducing the key notation and assumptions that underpin our
analysis. For an integer n ∈ N, we let [n] represent the set of integers {1, 2, . . . , n}. For a set A, |A| denotes
the size of set A.

2.1 Problem Formulation

Clients and local models. Let X be the measurable space of arms. We model the problem, following
Li et al. (2024b), as a federation of M ∈ N clients, each with access to a distinct bounded local objective
µm(x) : X → [0, 1], m ∈ [M ]. These objectives may be non-convex, non-differentiable, and even discontinuous.
As we focus on bounded functions, without loss of generality, we assume these functions are bounded within
the unit interval [0, 1].

Given a fixed number of rounds T , each client queries its local objective oracle once per round by selecting an
arm xm,t ∈ X in round t ∈ [T ]. This evaluation yields a noisy feedback rm,t = µm(xm,t) + ϵm,t, where ϵm,t

is a zero-mean, bounded random noise, independent of previous observations or other clients’ observations.
Importantly, the local objectives can capture client-specific preferences, i.e., µm(x) and µn(x) are not
necessarily equal for distinct clients m and n.

The global model. The global model is a X -armed bandit model that shares the search space with the
local models but uses the average of local objectives over all clients as its objective. This average, known as
global objective, is defined as

µ(x) := 1
M

M∑
m=1

µm(x), x ∈ X .

It is important to note that while the global model represents the average of local models, the global rewards
are not directly accessible to any individual client, as local observations remain private.

The personalised model. In conventional federated learning framework, clients collaborate to optimise
the global objective µ. However, this approach may not always align with individual client interests. To
address this, we capture the personalisation aspect via a mixed objective, inspired by the well-established
and popular technique of Hanzely & Richtárik (2020) in federated learning literature.

Similar to (Shi et al., 2021; Salgia et al., 2023), we define a personalised objective µ′
m, which is a convex

combination of global and local objectives:

µ′
m(x) := αµm(x) + (1 − α)µ(x), x ∈ X , (1)

where α ∈ [0, 1] is the personalisation parameter.

The components of the mixed objective bear similarity to the objectives in (Li et al., 2024b) and (Li et al.,
2024a), however handling the mixed objective brings additional challenges, as well as the flexibility to capture
more diverse sets of clients. The personalisation parameter α allows for explicit control over the level of
personalisation:

• α = 1: Complete personalisation (equivalent to local objective)

• α = 0: Complete reliance on the global model (no personalisation)

• α ∈ (0, 1): Balances global knowledge with local preferences
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By varying α, we address the trade-off between global and local performance. This model integrates
personalisation while retaining the benefits of global generic knowledge, potentially mitigating overfitting
risks common in fine-tuned models.

It is important to note that optimising this personalised objective is more challenging than scenarios where
clients collectively optimise a generic global objective (α = 0) or individually focus on local objectives (α = 1).
The mixed nature of the objective introduces complexities in balancing the local and global information.

In this personalised model, each client aims to optimise its own personalised objective, which is unique to that
client. However, this introduces a significant challenge: the estimation of a client’s personalised objective µ′

m

requires knowledge of other clients’ local objectives {µn}n ̸=m, which are not directly observable by client m.

Optimising this personalised objective is more complex than traditional federated learning scenarios where
clients either collectively optimize a global objective (α = 0) or individually focus on local objectives (α = 1).
The mixed nature of µ′

m introduces complexities in balancing local and global information, particularly
because client m can only directly infer the local component of its personalised objective, while the global
component, (1 − α)µ(x), remains partially unobservable.

2.2 Performance Measure

In our proposed framework, we aim to devise a collaborative optimisation strategy across a federation of
personalised models. We assess the performance of this strategy through the expected cumulative regret,
which is essentially the sum of the individual clients’ regrets, calculated with respect to their individual
personalised objectives. Formally, we define the expected regret as

E
[
R(T )

]
= Eπ

[ T∑
t=1

M∑
m=1

µ′∗
m −

T∑
t=1

M∑
m=1

µ′
m(xm,t)

]
,

where µ′∗
m denotes the optimal value of µ′

m on X . The expectation is taken with respect to randomness in the
sequence of actions, which arises from the stochasticity of local rewards rm,t.

It is important to note that in the context of regret, an inevitable increase over time is expected. Our focus,
therefore, lies in understanding and minimising the rate at which this increase occurs, aiming to minimise the
average regret over time.

2.3 Hierarchical Partitioning of Search Space

We employ a recursive partitioning approach denoted by P := {Ph,i}h,i, which splits X into a hierarchy of
nodes at various depths. The partitioning follows the rule:

P0,1 = X , Ph,i := Ph+1,2i−1
⋃

Ph+1,2i,

where:

• Each node Ph,i is defined by its depth h and index i, corresponding to a specific region within the
discretisation of the search space.

• For each h ≥ 0, i > 0 the set {Ph+1,2i−j}1
j=0 consists of two disjoint children nodes of Ph,i.

• At each depth h, the union of all nodes is equivalent to the entire space X .

The partition is fixed and shared among all clients and the central server prior to the beginning of the FL
process. This ensures a consistent structure for exploration and information sharing across the federation.
While we employ binary partitioning of the space in this work, our principles could readily be adapted to a
k-ary partitioning approach.

This hierarchical partitioning provides a structured approach to exploring the continuous action space X ,
facilitating efficient search and information sharing in our federated XAB framework.
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2.4 Assumptions

To evaluate the performance of the proposed algorithms, we employ a set of assumptions commonly used in
prior works on X -armed bandit (Bubeck et al., 2011; Gheshlaghi Azar et al., 2014; Grill et al., 2015; Li et al.,
2024b).
Assumption 2.1. (Dissimilarity Function) The space X is equipped with a dissimilarity function
ℓ : X 2 → R such that ℓ(x, y) ≥ 0, ∀(x, y) ∈ X 2 and ℓ(x, x) = 0.

Given a dissimilarity ℓ, we define:

• Diameter of any subset A ⊆ X : diam(A) := supx,y∈A ℓ(x, y)

• Open ball with a radius r centered at c: B(c, r) := {x ∈ X : ℓ(x, c) ≤ r}

Assumption 2.2. (Local Smoothness) We assume that there exist ν1, ν2 > 0 and 0 < ρ < 1 such that
for all nodes Ph,i, Ph,j ∈ P on depth h,

• diam(Ph,i) ≤ ν1ρh

• ∃ xh,i ∈ Ph,i s.t. Bh,i := B(xh,i, ν2ρh) ⊂ Ph,i

• Bh,i

⋂
Bh,j = ∅ for all i ̸= j

• For any objective µ ∈ {µ1, . . . , µm} we have for all x, y ∈ X ,

µ∗ − µ(y) ≤ µ∗ − µ(x) + max{µ∗ − µ(x), ℓ(x, y)}.

This assumption pertains to the “smoothness” of the objective functions and ensures that as the depth
increases, the search regions become increasingly fine, allowing for a more detailed exploration of promising
areas within the hierarchical partitioning approach.
Remark 2.3. Similar to the existing works on the X -armed bandit problem, knowledge of dissimilarity function
ℓ is not required for our algorithm. However, knowledge of the smoothness constants ν1, ρ is necessary.
Remark 2.4. In this setup, we do not impose specific assumptions on clients’ objective functions beyond
the regular smoothness conditions typical in X -armed bandit literature. This contrasts with (Li et al.,
2024a), the only prior research on this problem and most related and similar to ours, which imposes two
additional constraining assumptions (Assumptions 3 and 4 in their work). These assumptions jointly require
that near-optimal points with respect to the global objective are also near-optimal with respect to all local
objectives. Our problem setup is more flexible, allowing for a wider range of real-world scenarios with varying
degrees of data heterogeneity.

3 Algorithm and Analysis

In this section, we introduce a novel phase-based elimination algorithm to address the challenges of personalised
federated XAB. We highlight its distinctive features compared to existing algorithms and provide a theoretical
analysis of its performance.

A bespoke algorithm is sorely necessitated for the personalised federated XAB, as existing XAB algorithms
will fail to meet the challenges of the setting. Unlike the focus on optimisation of the global objective as
explored in works by Shi & Shen (2021) and Li et al. (2024b), our interest lies in simultaneously optimising
the personalised objectives of the clients. This task is evidently more challenging since it can be viewed as a
problem of multi-objective optimisation with communication budget constraint.

Consequently, developing an effective communication strategy that enables an unbiased estimation of the
global objective becomes a critical element of algorithm design. This is particularly important in scenarios
involving a large number of clients. Furthermore, the constraints on communication budget mean that local
rewards are not instantly accessible. As a result, algorithms that depend on immediate reward feedback, such
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as HOO(Bubeck et al., 2011) and HCT (Gheshlaghi Azar et al., 2014), are not appropriate for addressing this
problem.

In the context of federated bandit algorithms, the requirement for minimal communication overhead indeed
renders algorithms that are built on phase-based elimination techniques appealing(Shi & Shen, 2021; Shi
et al., 2021; Réda et al., 2022). Therefore, algorithms such as our own proposal, which eliminate sub-optimal
nodes in phases, are more suitable for the federated XAB problem, as suggested in works like (Li et al.,
2024b;a).

3.1 The PF-XAB Algorithm

We now introduce our new phased-elimination algorithm, called Personalised Federated X -Armed Bandit
(PF-XAB), designed to address the challenges outlined above.

Algorithm 1 Fed-XAB: server
Input: T , M
while not reaching the time horizon T do

Receive Am(p) from all clients
Broadcast A(p) =

⋃
m∈[M ]

Am(p) and f(p) = 2 log(T )
Mν2

1 ρ2h

Receive local estimates {µ̄(h,i),m}m∈[M ],(h,i)∈Am(p)
for every (h, i) ∈ A(p) do

Update µ̄(h,i)(p) = 1
M

∑M
m=1 µ̄(h,i),m(p)

end for
Broadcast {µ̄(h,i)(p)}(h,i)∈A(p)
p = p + 1

end while

The PF-XAB algorithm comprises two components: a client-side algorithm (Algorithm 2) and a server-side
algorithm (Algorithm 1). The algorithm operates in dynamic phases, leveraging the hierarchical partition to
gradually identify the optimum by systematically eliminating sub-optimal nodes within the search domain.

The server acts as a coordinator with two primary functions. It broadcasts active nodes A(p) in phase p,
which represent the collective active nodes across all clients. Additionally, It aggregates empirical estimates
of the local objectives µ̄(h,i)(p) for all active nodes (h, i) ∈ A(p) from clients, and subsequently broadcasts
the empirical estimates of the global objective back to all clients.

On the client side, the algorithm involves a phased interaction with the environment, segmented into three
distinct sub-phases: global exploration, local exploration, and exploitation. During both the global and local
exploration sub-phases, clients take actions from two sets: the global active set A(p), and their own local
active set Am(p). They use the feedback to these actions to construct empirical estimates of their local
objective. These local estimates are then communicated to the server, allowing for centralized estimation of
global objective. While a client waits for the server to provide the empirical estimates of the global objective
(as other clients may have more exploration to perform), it enters the exploitation sub-phase, where it simply
exploits the best action based on the most recent evaluations.

PF-XAB offers a degree of privacy and confidentiality by sharing only average rewards (µ̄(h,i),m(p)) with the
server and not individual reward values (rm,(h,i),t).The server then shares summary statistics with other
clients. However, we acknowledge the need for a more formal treatment of privacy considerations in this
setting.
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Algorithm 2 PF-XAB: m-th client
Input: partitioning P, time horizon T , client count M , personalization parameter α, stopping depth H
Initialize p = 1, Am(1) = {(1, 1), (1, 2)}
while not reaching the depth H do

Receive A(p) and f(p) from the server
for each (h, i) ∈ A(p) sequentially do ▷ Global exploration

Pull the node ⌈(1 − α)f(p)⌉ times and receive rewards {rm,(h,i),t}
Update s(h,i),m = s(h,i),m +

∑
t rm,(h,i),t and Tm,(h,i) = Tm,(h,i) + ⌈(1 − α)f(p)⌉

end for
for each (h, i) ∈ Am(p) sequentially do ▷ Local exploration

Pull the node ⌈Mαf(p)⌉ times and receive rewards {rm,(h,i),t}
Update s(h,i),m = s(h,i),m +

∑
t rm,(h,i),t and Tm,(h,i) = Tm,(h,i) + ⌈Mαf(p)⌉

end for
Calculate µ̄(h,i),m(p) = s(h,i),m/Tm,(h,i) for every (h, i) ∈ A(p)
Send {µ̄(h,i),m(p)}(h,i)∈A(p) to the server
Set (hp, ip) = arg max(h,i)∈Am(p){µ̄(h,i),m(p)}
Pull node (hp, ip) until {µ̄(h,i)(p)}(h,i)∈A(p) are received from the server ▷ Exploitation
for all (h, i) ∈ Am(p) do

µ̄′
(h,i),m(p) = αµ̄(h,i),m(p) + (1 − α)µ̄(h,i)(p)

end for
Compute the elimination set Em(p) =

{
(h, i) ∈ Am(p) | µ̄′

(h,i),m(p) + ν1ρh ≤ µ̄′
(hp,ip),m(p) − 2Bp

}
Compute the new set of active nodes

Am(p + 1) = {(h + 1, 2i − j) | j ∈ {0, 1}, (h, i) ∈ (Am(p) \ Em(p))}

Send Am(p + 1) to the server
p = p + 1

end while
Select and play the optimal action for the remainder of the time

The algorithm details are presented in Algorithms 1 and 2. In these algorithms, we use the notation (h, i)
to index node Ph,i in the partitioning tree. Tm,(h,i) denotes the number of pulled samples from m-th local
objective in (h, i). By convention, we always sample the midpoint when playing a node. Due to the structure
of the algorithm, Tm,(h,i) is equal to ⌈Mαf(p)⌉ + ⌈(1 − α)f(p)⌉ and ⌈(1 − α)f(p)⌉ for local and global active
nodes, respectively. Consequently, the total number of samples taken to compute the empirical mean of
the personalised objective µ̄′

m,(h,i) is lower bounded by ⌈Mαf(p)⌉ + M⌈(1 − α)f(p)⌉ ≥ Mf(p) and the

corresponding confidence bound in elimination rule is Bp = c
√

log(T )
Mf(p) .

3.2 Theoretical Analysis

This section contains our main theoretical analysis and results. Here, we establish an upper bound on the
cumulative regret of the PF-XAB algorithm, operating under the assumptions previously outlined. Before this
statement in Theorem 3.9, several key lemmas are introduced. Analysing the regret of PF-XAB is more complex
than that of algorithms like Fed-PNE because PF-XAB does not directly observe the personalised objectives
µ′(m). Instead, it works with estimates µ̄(h,i),m(p) constructed from local and global objective estimates. The
proof must carefully account for the discrepancy between these estimates and the true personalised objectives.

We first determine the variance proxy of the empirical estimates of personalised objectives in Lemma 3.3, and
use this to construct a high-probability “good event” in Lemma 3.4, under which the empirical estimates
of personalised objectives are sufficiently close to the actual personalised objectives. Lemmas 3.5 and 3.6
demonstrate two key aspects: firstly, that the optimal nodes (those containing the optimal point) will never
be eliminated, and secondly, that all points within the remaining region are, in fact, sub-optimal. Proofs of
the lemmas are deferred to Appendix B.
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To proceed we recall some facts concerning sub-Gaussian random variables.
Definition 3.1. (Sub-Gaussian Random Variables) A zero-mean random variable X ∈ R is said to be
sub-Gaussian with variance proxy σ2 if E [X] = 0 and its moment generating function satisfies

E [exp(sX)] ≤ exp
(

σ2s2

2

)
, ∀s ∈ R.

Definition 3.2. (Sum of sub-Gaussian Random Variables) If {X1, X2, · · · , Xn} are independent
{σ2

1 , σ2
2 , · · · , σ2

n}-sub-Gaussian random variables, then Y =
n∑

i=1
aiXi, for any a ∈ Rn,is a σ̃2(Y )-sub-Gaussian

random variable, where

σ̃2(Y ) =
n∑

i=1
a2

i σ2
i .

As discussed, we first establish the sub-Gaussianity of our estimators, and from this build a high-probability
event.
Lemma 3.3. (Sub-Gaussian Estimators) Let µ̄′

(h,i),m(p) denote the empirical estimate of µ′
(h,i),m at the

end of phase p. Then, µ̄′
(h,i),m(p) is a sub-Gaussian random variable with variance proxy

√
1

4Mf(p) .

Lemma 3.4. (High Probability Event) Define the good event GT as

GT :=
{

∀p ∈ PT , ∀m ∈ [M ], ∀(h, i) ∈ Am(p) :
∣∣∣µ̄′

(h,i),m(p) − µ′
(h,i),m

∣∣∣ ≤ c

√
log(T )
Mf(p)

}
,

where the right hand side is the confidence bound Bp for node Ph,i and c =
√

2 is a constant. Then for any
fixed t, we have P(GT ) ≥ 1 − 2M2T −3

On this high-probability event, we can establish guarantees both that the optimal node will not be eliminated,
and that all other non-eliminated nodes are of a good quality.
Lemma 3.5. (Permanence of Optimal Nodes) Under the assumption that the high probability event
GT holds, it can be stated for any client m that by the end of phase p ∈ PT , the node Php,i∗

m,p
will not be

eliminated. This particular node contains the global optimum x∗
m of the personalised objective µ′

m(x) at the
depth hp. More precisely, this implies that (hp, i∗

m,p) will not be included in the set of eliminating nodes
Em(p).
Lemma 3.6. (Quality of Un-eliminated Nodes) Assuming the high probability event GT holds and
f(p) = 2 log(T )

Mν2
1 ρ2h , all points in every un-eliminated nodes upon the conclusion of phase p, is at least 12ν1ρhp-

optimal.

The algorithm’s performance is sensitive to the smoothness parameters ν1 and ρ, which influence the confidence
bounds in the elimination process. A conservative estimate of ρ results in smaller confidence bounds and
shorter exploration phases, potentially leading to premature convergence to suboptimal regions and unbounded
regret. In contrast, overestimating ρ produces larger confidence bounds and longer exploration phases, yielding
regret commensurate with this estimate. Therefore, accurate estimation of these parameters is crucial for
achieving robust performance.

To complete the proof of Theorem 3.9, we need one additional concept: that of near-optimality dimension.
Definition 3.7. (Near-optimality dimension) Given a function f : X → R, the ν-near-optimality
dimension, denoted by df (ϵ, νϵ), is the smallest d > 0 such that there exists C > 0 such that for any ϵ > 0,
the covering number of ϵ-optimal subset of X , denoted as Xf,ϵ, with ℓ-balls of radius νϵ is less than Cϵ−d.

Remark 3.8. The near-optimality dimension d reflects the complexity of an objective function’s landscape.
For smooth functions with few local optima, d is usually low, as near-optimal points remain limited even

9
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with a larger search radius. In contrast, highly non-smooth functions with many local optima tend to have a
higher d, complicating the search for the global optimum. Typically, d is an intrinsic property of the problem
and cannot be directly controlled. In many black-box optimisation cases, d = 0 is common, indicating a
simpler landscape, as observed by Bubeck et al. (2011) and Valko et al. (2013).

Using the definition of near-optimality dimension, we denote dm = dµ′
m

(12ν1ρh, ν1ρh) for every m ∈ [M ].

We now present the central result that establishes an upper bound on the expected cumulative regret of the
PF-XAB algorithm.
Theorem 3.9. (Regret Upper Bound) Suppose that µm(x) satisfies Assumptions 2.2, and let dm denote
the near-optimality dimension of the mixed objective as defined in Definition 3.7. The expected cumulative
regret of the PF-XAB algorithm is bounded above by

E[R(T )] = Õ(T
d′+2
d′+3 ),

where d′ = max{d1, . . . , dM }.

Proof. Let 1G denote the indicator function associated with event G. Firstly we decompose the regret into
two terms based on the presence of the good event

R(T ) =
M∑

m=1

T∑
t=1

µ′∗
m − µ′

(ht,it),m =
M∑

m=1

T∑
t=1

(
µ′∗

m − µ′
(ht,it),m

)
1GT

+
M∑

m=1

T∑
t=1

(
µ′∗

m − µ′
(ht,it),m

)
1Gc

T
.

Thus E [R(T )] = E
[
RG(T )

]
+ E

[
RGc(T )

]
.

The second term of expected regret can be bounded as follows by using Lemma 3.4:

E
[
RGc

(T )
]

= E

[
M∑

m=1

T∑
t=1

(
µ′∗

m − µ′
(ht,it),m

)
1Gc

T

]
≤

M∑
m=1

T∑
t=1

P(Gc
T ) ≤ 2M3T −2.

To bound E
[
RG(T )

]
, we first bound the regret that we incur under the good event within each phase. This

regret could be decomposed into three parts, incurred by three sub-phases that we have in the proposed
algorithm.

RG(T ) =
∑

p∈PT

Rp
G-expr + Rp

L-expr + Rp
expt

Here, Rp
G-expr, Rp

L-expr, and Rp
expt denote the regret within phase p that incurs to the algorithm in the global

exploration, local exploration and exploitation sub-phases, respectively.

During the global exploration sub-phase, each client has to pull non-optimal arms from the active nodes of
other clients included in A(p). Therefore, the regret term associated to the global exploration Rp

G-expr, can
be upper bounded by the length of this sub-phase

EG[Rp
G-expr] ≤ |A(p)| ⌈(1 − α)f(p)⌉ ≤ M · max

m∈[M ]
|Am(p)|⌈(1 − α)f(p)⌉.

The nodes in Am(p) are direct descendants of the un-eliminated nodes in Am(p − 1) \ Em(p − 1), and the size
of Am(p − 1) \ Em(p − 1) is bounded by Cρ−dmhp−1 by the definition of near-optimality dimension (Definition
3.7) and Lemma 3.6. Therefore, it means

|Am(p)| = 2|Am(p − 1) \ Em(p − 1)| ≤ 2Cρ−dmhp−1

and results the following bound

EG[Rp
G-expr] ≤ |A(p)|⌈(1 − α)f(p)⌉ ≤ 2MCρ−hp−1d′

× 2(1 − α) 2 log(T )
Mν2

1ρ2hp
= 8C(1 − α) log(T )

ν2
1ρ2 ρ−hp−1(d′+2).

10
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Next, we bound the regret incurred in the rest of each phase, given by Rp
L-expr + Rp

expt. From Lemma 3.6,
we know that all the actions clients take in these two sub-phases are sub-optimal, thus we can establish the
following upper bound:

EG[Rp
L-expr + Rp

expt] ≤ 12ν1ρhp−1 × ⌈Mαf(p)⌉ × max
m∈[M ]

|Am(p)| (2)

≤ 12ν1ρhp−1 × 2Mα
2 log(T )
Mν2

1ρ2hp
× 2Cρ−d′hp−1 ≤ 96Cα log(T )

ν1ρ2 ρ−hp−1(d′+1). (3)

Having established the key components of proof, we now proceed to the final step of the proof. It involves
determining the depth H at which we will halt exploration and start to do pure exploitation. The expected
regret under the presence of the good event is bounded as follows

EG[R(T )] ≤ 8C(1 − α) log(T )
ν2

1ρ2

P∑
p=1

(
ρ−(d′+2)

)hp−1
+ 96Cα log(T )

ν1ρ2

P∑
p=1

(
ρ−(d′+1)

)hp−1
+ 12ν1ρhP (T − TP )

≤ 16Mc(1 − α) log(T )
ν2

1ρ2(ρ−(d′+2) − 1)

(
ρ−(d′+2)

)H

+ 96M2αc log(T )
ν1ρ2(ρ−(d′+1) − 1)

(
ρ−(d′+1)

)H

+ 12ν1ρHT,

where H represents the depth of the partitioning tree by the end of phase P . Thus, the proof concludes by
putting everything together as

E[R(T )] ≤ 2M3T −2 + 16Mc(1 − α) log(T )
ν2

1ρ2(ρ−(d′+2) − 1)

(
ρ−(d′+2)

)H

+ 96M2αc log(T )
ν1ρ2(ρ−(d′+1) − 1)

(
ρ−(d′+1)

)H

+ 12ν1ρHT,

(4)

and choosing H such that ρH = O(T −1/d′+3).

While a bespoke lower bound for the personalised federated XAB problem is not yet available to assess the
tightness of this bound, we can compare our Õ(T

d′+2
d′+3 ) to results for similar problems. Notably, based on the

lower bound by Bubeck et al. (2011), the lower bound for the scenario in which all clients have complete access
to each other’s rewards at all timesteps is of order O(MT

d′+1
d′+2 ) where d′ denotes the maximum near-optimality

dimension among the personalised objectives. This bound, which holds under centralised conditions, provides
a useful baseline for evaluating the performance of our approach in the federated setting. Providing a regret
lower bound for the personalised federated XAB problem, whether under the definition of PF-PNE with
respect to local objectives or our definition with respect to personalised objectives, remains an open problem.

The setting of Theorem 3.9 is more general compared to that of Li et al. (2024a), and therefore the slightly
increased order of the regret bound is perhaps unsurprising. Under the restrictive assumptions of (Li et al.,
2024a), our algorithm achieves the same regret upper bound as PF-PNE, which is of order Õ(T

d′+1
d′+2 ). A sketch

of the proof for this claim is provided in the appendix. In any case, the existence of a method which is
competitive under stronger assumptions and robust enough to attain sublinear regret under our weaker
assumptions is encouraging with a view to real-world challenges where strong assumptions may be challenging
to verify.

Remark 3.10 (Communication Cost). The number of communication rounds is always depends logarithmically
on T , as the length of each phase h is proportional to ρ−(d′+1)h. The communication cost measured by the
number of messages exchanged between clients and the server, can be bounded by CM log(T )T

d+2
d+3 , where C

is a constant.
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Remark 3.11 (Effect of Personalisation Parameter). As shown in (4), the personalisation parameter α
influences the second and third terms of the regret bound. However, the third term is dominated by the
second and fourth terms, which masks the impact of α on the overall bound. We conjecture that this lack
of dependence on α may be due to the upper bound not being tight, as well as the absence of a parameter
bounding the differences between local objectives. Establishing such a bound could reduce the pessimism in
our analysis, potentially clarifying the role of personalisation parameter in the regret performance.

4 Experiments

In this section we evaluate the empirical performance of PF-XAB through a series of experiments employing
synthetic objective functions and real-world dataset. To provide a comprehensive assessment, we benchmark
PF-XAB against relevant existing algorithms. Specifically, we compare to the federated X -armed bandit
algorithm Fed-PNE (Li et al., 2024b) and the personalised federated X -armed bandit algorithm PF-PNE (Li
et al., 2024a). Each of these methods adopts a different notion of regret, reflecting their distinct models,
which makes a truly fair comparison challenging. However, we choose to compare to closest counterparts
in the literature, not to suggest their perfect compatibility with our problem, but rather to illustrate the
necessity of a bespoke solution. This comparison highlights a performance gap when the algorithms of (Li
et al., 2024b) and (Li et al., 2024a) are applied to our specific problem domain.Throughout this section, all
experiments has been conducted on a federation with M = 10 clients.

Figure 1: Comparison of Cumulative Regret for PF-XAB, Fed-PNE, and PF-PNE Algorithms on the Garland
Dataset Across Varying Levels of Personalisation α, with M = 10 machines over T = 2 × 106 Time Steps.
Each graph demonstrates the impact of personalisation on the algorithms’ performance, with α representing
the degree of personalisation from low (α = 0.1) to high (α = 0.9).

We first conduct a range of experiments on two synthetic objective functions: the Garland and DoubleSine
functions with varying levels of personalisation in the regret definition and in PF-XAB. These two synthetic
functions are frequently used in the experiments of X -armed bandit algorithms due to their large number of
local optima and extreme non-smoothness (Gheshlaghi Azar et al., 2014; Grill et al., 2015; Shang et al., 2019;
Bartlett et al., 2019). The experimental design takes the canonical functions as a baseline and modulates these
such that each client’s local optimum is distinct, whereas the global optimum is strategically positioned to be
sub-optimal with respective to the local objectives. The average cumulative regrets of different algorithms are
provided in Figure 1 and 4 (see Appendix B) for the Garland and DoubleSine functions, respectively. The
curves in these figures represent the averages over 10 independent runs of each algorithm, with the shaded
regions indicating 1-standard deviation error bars.

In addition to our initial experiments with synthetic objective functions, we extended our experiments to a
real-world-inspired scenario using the landmine dataset (Liu et al., 2007). This dataset comprises data from
multiple landmine fields, each assigned to a client, with features extracted from radar images to determine
the presence of landmines at each location. Each client aims to optimise their performance on a classification
task, using a Support Vector Machine (SVM) classifier equipped with RBF kernels. Our experiments explore
d = 2 kernel parameters, γ ranging in [0.01, 10], and the regularisation parameter C, selected from the range
[10−4, 104], forms the domain space of our experiments. The local objective for each client is defined as the
AUC-ROC score of the classifier on their assigned landmine dataset. The performance of different algorithms
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Figure 2: Cumulative regret comparison of PF-XAB, Fed-PNE, and PF-PNE on the Landmine dataset.

in this real-world setting is illustrated in Figure 2. This figure presents the average cumulative regret of
each algorithm with α = 0.4, showcasing our algorithm’s effectiveness by its ability to achieve the smallest
regret. This outcome not only validates our approach in synthetic settings but also demonstrates its practical
applicability and superiority in handling complex, real-world tasks, such as landmine detection.

In the third and final experiment, our intention was to assess PF-XAB’s performance in achieving a balance
between personalisation and generalisation across the federated landscape. Figure 3 indicates that PF-XAB
successfully converges to optimal choices across different values of α, effectively demonstrating its proficiency
in balancing the trade-off between personalisation and generalisation. This figure outlines the averaged
per-step reward attained by the PF-XAB under varying values of α ∈ [0, 1]. It benchmarks these results against
the theoretical maximums for both global and local mean rewards, referred to as “best global” and “best
local”, respectively.

The analysis encompasses three definition of rewards: personalised, global, and local, each labeled accordingly
and derived by clients’ actions. At α = 0, both personalised and global rewards align with the optimal global
reward, while local rewards are significantly sub-optimal. As α is progressively increased, the personalised
and local rewards trend up, indicating a shift in focus towards optimizing local rewards, and simultaneously
the global reward trends down. At α = 1, both personalised and local rewards almost approximate the
optimal local reward, while the global rewards are poor. This trend highlights the role of α in mediating a
gradual balance between local and global reward optimization, suggesting its importance in the strategic
adjustment of reward focus.

Figure 3: PF-XAB averaged per-step reward over varying α. Personalised (green) adepts to α, while local (red)
and global (purple) remain fixed. Blue and yellow lines show optimal local and global values.
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5 Conclusion

In this article we have introduced a new model for personalised, federated, bandit learning on continuous
action spaces, and proposed an effective solution method utilising hierarchical partitioning, batched decision-
making and optimism in the face of uncertainty. Our approach achieves a sublinear regret (evidenced both
theoretically and empirically) and requires minimal communication - ensuring a good level of privacy in the
federated regime.

Our method shows a near-deterministic behaviour in certain problems: we notice little variability in its regret.
This is likely a result of its phased structure - the main decisions (eliminations) of the policy are made during
the small number of communication rounds. If the outcomes of these decisions are identical same across
replications, the expected regret will also coincide. Future work may do well do explore whether there is
scope to speed up exploration through the use of a randomised policy, e.g. a variant Thompson Sampling for
continuous spaces (Kandasamy et al., 2018; Grant & Leslie, 2020), or through the use of ideas from Bayesian
Optimisation (Frazier, 2018) which have also proven successful in X -armed-type problems, particularly with
smooth functions.
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A Supplementary Proofs

A.1 Proof of Lemma 3.3

Proof. Let N(h,i)(p) represent the total count of samples collected from the node P(h,i) during phase p. This
total can be broken down into two components: Ng

(h,i)(p) = ⌈(1 − α)f(p)⌉, the number of samples acquired
during the global exploration sub-phase, and N l

(h,i)(p) = ⌈Mαf(p)⌉, the number of samples gathered during
the local exploration sub-phase.

The empirical estimate µ̄′
(h,i),m(p) can be decomposed into two parts, namely local estimates and a global

estimate, such that the proxy variance satisfies

σ̃2
(

µ̄′
(h,i),m(p)

)
=

(
α + 1 − α

M

)2 1
4N(h,i)(p) +

(
1 − α

M

)2 ∑
n ̸=m

1
4Ng

(h,i)(p)

≤
(

Mα + 1 − α

M

)2 1
4(Mα + 1 − α)f(p) +

(
1 − α

M

)2 ∑
n ̸=m

1
4(1 − α)f(p)

= Mα + 1 − α

4M2f(p) + (1 − α)(M − 1)
4M2f(p) = 1

4Mf(p) ,

where the inequality follows by the required sampling length specified in algorithm.

A.2 Proof of Lemma 3.4

Proof. in every phase p ∈ PT and for each client m ∈ [M ], the Hoeffding bound can be applied to the
empirical estimate of personalized objective corresponding to each node (h, i) ∈ Am(p)

P
(∣∣∣∣µ̄′

(h,i),m(p) − µ′
(h,i),m

∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
− ϵ2

2σ̃2
(

µ̄′
(h,i),m(p)

))
= 2 exp(−2ϵ2Mf(p)),

where it holds true because µ̄′
(h,i),m(p) is a 1

4Mf(p) -sub-Gaussian random variable, as in Lemma 3.3.

Consequently, by utilizing a union bound, the probability of event Gc
T , the complement of event GT , can be

upper bounded by ∑
p∈PT

M∑
m=1

∑
(h,i)∈Am(p)

P
(∣∣∣µ̄′

(h,i),m(p) − µ′
(h,i),m

∣∣∣ > Bp

)

≤ 2
T∑

p=1

M∑
m=1

∑
(h,i)∈Am(p)

exp
(
−2c2 log(T )

)
= 2T −2c2

T∑
p=1

M∑
m=1

|Am(p)|

≤ 2T −2c2
M

T∑
p=1

|A(p)| ≤ 2M2T × T −2c2
≤ 2M2T −3,

(5)

where the second inequality is derived from the relation Am(p) ⊂ A(p). The third inequality is based on the
fact that the cumulative count of active nodes across all phases is less than or equal to the total number
of samples collected throughout the entire process, considering that each active node is sampled at least
once.
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A.3 Proof of Lemma 3.5

Proof. Under the assumption of event GT , the following inequality holds for every node Ph,i ∈ Am(p):

|µ̄′
(h,i),m(p) − µ′

(h,i),m| ≤ Bp. (6)

Consequently, we have the following inequalities for the node with the node Php,i∗
m,p

, at the completion of
phase p:

µ̄′
(hp,i∗

m,p),m(p) + Bp + ν1ρhp ≥ µ′
(hp,i∗

m,p),m + ν1ρhp

≥ µ′
m(x∗

m) ≥ µ′
(hp,ip),m

≥ µ̄′
(hp,ip),m(p) − Bp,

(7)

where the second inequality follows from the local smoothness property of the objective function in Assumption
2.2 and (hp, ip) is the index of node with the highest empirical estimate of personalised objective for client
m. Thus, it can be concluded that (hp, i∗

m,p) will not be designated for elimination for client m upon the
conclusion of phase p, or in more formal terms, Php,i∗

m,p
/∈ Em(p).

A.4 Proof of Lemma 3.6

Proof. This proof consists of two parts. In the first part, we demonstrate that the mid-point of every
un-eliminated node is at least 6ν1ρhp -optimal.

Under event GT , for every (h, i) ∈ Am(p) \ Em(p) we have the following sequence of inequalities

µ′
(h,i),m + ν1ρhp + 2Bp ≥ µ̄′

(h,i),m(p) + ν1ρh + Bp

≥ µ̄′
(hp,ip),m(p) − Bp

≥ µ̄′
(h∗,i∗),m(p) − Bp

≥ µ′
(h∗,i∗),m − 2Bp

≥ µ′
m(x∗

m) − ν1ρh − 2Bp,

(8)

where (h∗, i∗) represent the node that contains the global optimum of the personalised objective. The first
and fourth inequalities directly results from event GT , and the second inequality follows the fact that node
(h, i) has not been designated for elimination at the end of phase p, and the third inequality follows from the
definition of (hp, ip) in Algorithm 2.

Selecting an appropriate sampling length would lead to the dominance of optimization error over statistical
error, in more precise terms, this implies that Bp ≤ ν1ρh. Therefore, by considering f(p) = c2 log(T )

Mν2
1 ρ2h , the

latter inequality remains true, resulting in the following:

µ′∗
m − µ′

(h,i),m ≤ 2ν1ρh + 4Bp ≤ 6ν1ρh. (9)

In the second part, we use an existing result from (Bubeck et al., 2011). Let Xf,ϵ := {x ∈ X : f∗ − f(x) ≤ ϵ}
denote the subset of X where the function f is within an ϵ range of its optimal value f∗, representing the
ϵ-optimal region for f . According to Lemma 3 from Bubeck et al. (2011), if a node is cν1ρh-optimal, then
every point in the corresponding region of that node is max(2c, c + 1)ν1ρh-optimal.

Therefore, we can conclude that every point in the set of un-eliminated nodes at the end of phase p is
12ν1ρh-optimal, by the previous inequality. This completes the proof of the lemma.
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A.5 Regret Bound Comparison with PF-PNE

As we claimed in the paper, PF-XAB achieves the same regret bound as PF-PNE when operating under the
assumptions of the PF-PNE framework. Specifically, Assumptions 3 and 4 in Li et al. (2024a) state that any
ϵ-near-optimal region of the global objective is uniformly wϵ-near-optimal for all local objectives for some
w ≥ 1. Personalised objectives, defined as a convex combination local and global objectives, inherit a similar
near-optimality structure. Subsequently, any point in the ϵ-near-optimal region of the global objective will be
uniformly at least ((1 − α) + αw)ϵ-near-optimal for the personalised objectives, where α is the weight given
to the local objectives in the convex combination.

With this similarity between the near-optimal regions of personalised objectives, the regret incurred by pulling
arms from the active set of other clients in the global exploration sub-phase can be bounded by this shared
sub-optimality gap rather than a pessimistic upper bound of 1. Under this refinement, we get the following
bound on the incurred regret during the phase p under the good event G:

RG
p = Rp

G-expr + Rp
L-expr + Rp

expt

≤ 12ν1ρhp−1 × M max
m∈[M ]

|Am(p)|⌈(1 − α)f(p)⌉ + 12ν1ρhp−1 × ⌈Mαf(p)⌉ × max
m∈[M ]

|Am(p)|

≤ 12ν1ρhp−1Mf(p) max
m∈[M ]

|Am(p)| ≤ 12ν1ρhp−1 × 2M
2 log(T )
Mν2

1ρ2hp
× 2Cρ−d′hp−1

≤ 96C log(T )
ν1ρ2 ρ−hp−1(d′+1)

The remainder of the proof follows similarly to the main theorem.

B Supplementary Experiments

Figure 4: Cumulative regret of PF-XAB, Fed-PNE, and PF-PNE on DoubleSine dataset. Varying α (0.1 to 0.9)
shows impact of personalisation. M = 10, T = 2 × 106.
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