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A Related Work213

Following the success of foundation models in computer vision and natural language processing214

(NLP), and with the rise of time series as a valid modality within the broader context of deep learning,215

a growing number of foundation models have been proposed to tackle time series. While different216

downstream applications are possible, the majority of these models have focused on forecasting.217

Some approaches, such as GPT4TS [18] and Time-LLM [8], adapt existing large language models by218

“reprogramming” them for the temporal domain, freezing most layers while finetuning lightweight,219

time series–specific modules. In contrast, a wave of recent work has introduced models trained220

entirely from scratch on large-scale, heterogeneous time series corpora.221

Lag-Llama [12] presents a general-purpose foundation model for univariate probabilistic forecast-222

ing, built on a decoder-only transformer. By explicitly modeling lagged dependencies, it adapts223

autoregressive language modeling techniques to temporal patterns, achieving strong performance on224

long-horizon forecasting tasks, though it is primarily designed for forecasting rather than broader225

time series applications.226

Chronos [1] adopts a probabilistic formulation by discretizing continuous time series into tokens227

and applying autoregressive sequence modeling. Released as a family of five models ranging from228

20M to 710M parameters, Chronos allows for flexible trade-offs between efficiency and accuracy.229

While forecasting remains central, its probabilistic generation framework also enables extensions to230

classification and anomaly detection via reinterpretation of generated trajectories.231

Moirai [13] introduces a scalable temporal foundation model with hierarchical attention tailored to232

long and irregular sequences. Through multi-resolution temporal representations, Moirai can capture233

dependencies across a wide range of timescales, making it effective not only for forecasting but also234

for classification and imputation tasks across domains such as healthcare and finance.235

TimesFM [4] builds a general-purpose forecaster trained on a large collection of public and pro-236

prietary datasets. With a transformer-based encoder and decoder backbone, it demonstrates strong237

zero-shot performance across diverse application domains, including finance, energy, and traffic.238

Beyond forecasting, TimesFM produces robust embeddings that transfer effectively to downstream239

classification and anomaly detection tasks, particularly in low-label regimes.240

MOMENT [14] proposes a universal time series foundation model that unifies forecasting with241

representation learning across multiple modalities. Combining large-scale pretraining with adaptive242

fine-tuning, MOMENT supports a broad suite of tasks, including forecasting, classification, anomaly243

detection, and imputation. Its architecture is explicitly designed for multimodality, enabling the244

integration of time series with contextual signals such as categorical features or text.245

In terms of training methodology, these models share the same underlying philosophy of large-246

scale pretraining on heterogeneous time series data, but diverge in their design choices. Lag-247

Llama, Chronos, and TimesFM employ transformer-based encoders with objectives such as next-step248

prediction and masked modeling; Chronos, in particular, leverages tokenization to enable language-249

model style autoregression. On the other hand, Moirai emphasizes architectural scalability, using250

hierarchical attention and multi-resolution sampling to pretrain on very long sequences. MOMENT251

combines forecasting objectives with contrastive pretraining, producing general-purpose temporal252

embeddings that are transferable across tasks.253

Overall, a diverse set of methodologies and architectural choices has been proposed to address time254

series downstream tasks ranging from forecasting to classification and anomaly detection. While these255

models demonstrate strong performance on widely used benchmark datasets, their evaluation remains256

confined mainly to controlled settings. In contrast, our work emphasizes real-world applications,257
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focusing on practical use cases that reflect the challenges and constraints encountered in industrial258

deployment scenarios, as detailed in the main paper.259

B Spectral Analysis260

To better understand why the time series foundation model MOMENT underperforms on our dataset,261

we analyze its dominant frequency components and compare them with those of the datasets used262

during pretraining. Figure 2 illustrates this comparison, focusing on the FordA and FaultDetectionA263

datasets from the UCR time series repository, which were part of MOMENT’s pretraining corpus.264

As shown in the figure, our dataset exhibits fundamentally different dominant frequencies compared265

to those observed during pretraining. This discrepancy suggests that MOMENT was not exposed to266

such frequency patterns before, which likely contributed to its poor generalization and performance.267

This analysis highlights the potential importance of frequency alignment in the generalization268

capability of time series foundation models. It also motivates the frequency-based hypothesis we269

explore further in Section 3.270

Figure 2: Analysis of the dominant frequencies in our dataset and the used dataset for pretraining
MOMENT (FordA and FaultDetectionA).

C Data Generation271

In the following section, and as a complement to Section 3, we provide additional details about the272

synthetic data generation process.273

As previously explained, we constructed seen and unseen synthetic datasets from a set of considered274

datasets that were used to pretrain the considered foundation model. Specifically, for a real sequence275

x(t), we compute its discrete Fourier transform (DFT) and retain the top-k dominant components,276

F{x(t)} → F (x) = {(fi, ai)}ki=1, (1)

where fi and ai denote dominant frequencies and amplitudes. Based on the previous frequency extrac-277

tion, synthetic signals are generated by recombining these components with controlled perturbations278

(additive Gaussian noise and bounded amplitude scaling). This yields:279

• Seen samples: dominant content constrained within dataset-level frequency bounds:280

fi ↑ [f low
sim , f high

sim ],

with only mild perturbations;281

• Unseen samples: at least one dominant component outside the empirical bounds,282

fj /↑ [f low
sim + ω, f high

sim + ω],

or taken from complementary/shifted bands (low-only, high-only, or randomized). For283

instance, if the dominant range is [0, 20] Hz, then the unseen dataset would be generated284

from [20 + ω, 40 + ω] with ω being drawn at random subject to the constraint that the285

out-of-band upper limit does not exceed the maximum frequency present in the original286

series.287
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We note that the dataset-wide frequency bounds [f low
sim , f high

sim ] are estimated from the distribution of288

dominant frequencies across the dataset (e.g., via quantile summaries or min/max).289

Based on the generated seen and unseen datasets, we generate a set of train/val/test splits for each290

dataset, obtained with a fixed 70/15/15 partition. Each split contains single-channel sequences of291

fixed length L (typically L = 512),292

X(s) ↑ RNs→1→L, s ↑ {train, val, test}. (2)

Regression targets. Given the previously generated time series, we need to construct labels that293

could be used for the downstream task. In this perspective, each synthetic sample is paired with a294

continuous regression target derived directly from its generation metadata. Let Fused = {fj} denote295

the set of frequencies used in the synthesis. The scalar target is defined as the sum of frequencies:296

y =
∑

fj↑Fused

fj . (3)

We note that while the previous labeling operation provides a frequency-aware label, it does indeed297

naturally increase with spectral displacement and distinguishes between seen and unseen samples.298

Since such displacement can be used by the model to make the task easier, we use a normalization299

mechanism to optimize the labels and make them comparable in terms of scale:300

ỹ(s) =
y(s) ↓ µy

εy
, y = εy ỹ

(s) + µy, (4)

After this normalization operation, the labels for both seen and unseen datasets are within the same301

range, and therefore, we would expect the model to rather use temporal representations to extract the302

label.303

In Figure 3, we present an example of the generation, where given an original sample, we analyze its304

original spectrum to generate the seen and unseen datasets.305

Figure 3: Synthetic series from seen vs. unseen frequency bands. Top: time domain; Bottom: spectra.

D Additional Results - Classification306

To further illustrate our hypothesis beyond the regression task, we considered a classification task.307

Specifically, we bin adjacent frequency ranges (e.g., [0, 10] vs. [10, 20] Hz) and train a binary308
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classifier on top of the frozen encoder. The binning threshold is chosen as the median of the frequency309

ranges from the train split to ensure a balanced class distribution.310

Table 3: Classification performance of a frozen TSFM encoder (MOMENT-small) with a trainable
binary classifier on synthetic datasets.

Dataset Test Accuracy Test AUC
Seen (↭) Unseen (→) Seen (↭) Unseen (→)

FordA 0.837± 0.004 0.829± 0.001 0.926± 0.002 0.901± 0.001
FordB 0.826± 0.000 0.838± 0.002 0.903± 0.002 0.926± 0.001
ElectricDevices 0.785± 0.003 0.650± 0.003 0.890± 0.001 0.716± 0.002
SmallKitchenAppliances 0.708± 0.010 0.756± 0.041 0.833± 0.018 0.859± 0.007
FaultDetectionA 0.766± 0.003 0.651± 0.003 0.858± 0.000 0.707± 0.003
FaultDetectionB 0.444± 0.048 0.472± 0.096 0.519± 0.306 0.476± 0.190
ECG5000 0.809± 0.020 0.591± 0.028 0.898± 0.007 0.692± 0.007
SwedishLeaf 0.689± 0.020 0.600± 0.040 0.796± 0.021 0.643± 0.028

Table 3 provides the mean and corresponding standard deviation of the Test accuracy and the Test311

AUC. As previously seen in the regression task, the performance is high for ranges within the312

presumed pretraining spectrum but drops for out-of-range comparisons (e.g., [40, 50] vs. [50, 60] Hz),313

reinforcing the frequency-mismatch explanation.314

E Experimental Details315

In all experiments, we use linear probing: the MOMENT backbone (i.e., the patch embedder and316

transformer encoder) is frozen, and only the regression or classification head is trained. The model317

is optimized using the Adam optimizer (learning rate 10↓3) for 50 epochs, with a mean squared318

error loss (for regression) or binary cross-entropy loss (for classification). We use the same hidden319

dimensionality as the one from the pretrained chosen backbone, corresponding to the predefined320

MOMENT configurations. Model selection is performed based on validation MSE, and the best321

checkpoint is then evaluated on the test set. We report all metrics in Table 1.322

We use a combination of CPU, NVIDIA GPUs (L4 24GB, T4 16GB), and an Apple MPS device (M1323

MAX 32GB) to conduct the experiments in this paper. In the player engagement use case, we use324

CPU for the XGBoost model, a single GPU for TabNet, and PatchTST. We utilize distributed data325

parallelism with up to eight GPUs to accelerate the training process for the MOMENT model on the326

large mobile gaming dataset. In the frequency perspective experiments, we use a single GPU for327

regression experiments on the regression task and an Apple MPS device for the regression tasks.328

F Reflection on the Role of Frequencies in TSFM Pretraining329

In this work, we report an empirical observation about Time Series Foundation Models (TSFMs): a330

pretrained TSFM can underperform on domain-specific downstream tasks relative to models trained331

directly on in-domain time series. To probe this effect, we empirically evaluate how well a pretrained332

TSFM performs on synthetically generated time series whose dominant frequencies are varied. We333

observe a trend in frequency-alignment effect: the TSFM performs better on synthetic time series334

whose dominant frequencies overlap with those seen during pretraining than on synthetic time series335

samples from unseen or underrepresented frequency bands.336

Our results suggest that, beyond standard self-supervised objectives for times pretraining (e.g.,337

masked modeling, forecasting, and contrastive learning), the spectral composition of the pretraining338

data may also play a critical role in the model’s generalization and robustness. One might consider339

adding an auxiliary task during pretraining to predict the dominant frequency bands or adopting340

frequency-based data augmentation or sampling to expand frequency coverage. We hypothesize that341

frequency-aware pretraining strategies, combined with standard time series pretraining methods, may342

be a fruitful future direction for improving the performance of TSFMs in zero-shot/few-shot settings.343
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