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Supplementary Material of
Frequency Matters: When Time Series Foundation
Models Fail Under Spectral Shift

A Related Work

Following the success of foundation models in computer vision and natural language processing
(NLP), and with the rise of time series as a valid modality within the broader context of deep learning,
a growing number of foundation models have been proposed to tackle time series. While different
downstream applications are possible, the majority of these models have focused on forecasting.
Some approaches, such as GPT4TS [18] and Time-LLM [8], adapt existing large language models by
“reprogramming” them for the temporal domain, freezing most layers while finetuning lightweight,
time series—specific modules. In contrast, a wave of recent work has introduced models trained
entirely from scratch on large-scale, heterogeneous time series corpora.

Lag-Llama [12] presents a general-purpose foundation model for univariate probabilistic forecast-
ing, built on a decoder-only transformer. By explicitly modeling lagged dependencies, it adapts
autoregressive language modeling techniques to temporal patterns, achieving strong performance on
long-horizon forecasting tasks, though it is primarily designed for forecasting rather than broader
time series applications.

Chronos [1] adopts a probabilistic formulation by discretizing continuous time series into tokens
and applying autoregressive sequence modeling. Released as a family of five models ranging from
20M to 710M parameters, Chronos allows for flexible trade-offs between efficiency and accuracy.
While forecasting remains central, its probabilistic generation framework also enables extensions to
classification and anomaly detection via reinterpretation of generated trajectories.

Moirai [[13] introduces a scalable temporal foundation model with hierarchical attention tailored to
long and irregular sequences. Through multi-resolution temporal representations, Moirai can capture
dependencies across a wide range of timescales, making it effective not only for forecasting but also
for classification and imputation tasks across domains such as healthcare and finance.

TimesFM [4] builds a general-purpose forecaster trained on a large collection of public and pro-
prietary datasets. With a transformer-based encoder and decoder backbone, it demonstrates strong
zero-shot performance across diverse application domains, including finance, energy, and traffic.
Beyond forecasting, TimesFM produces robust embeddings that transfer effectively to downstream
classification and anomaly detection tasks, particularly in low-label regimes.

MOMENT [14] proposes a universal time series foundation model that unifies forecasting with
representation learning across multiple modalities. Combining large-scale pretraining with adaptive
fine-tuning, MOMENT supports a broad suite of tasks, including forecasting, classification, anomaly
detection, and imputation. Its architecture is explicitly designed for multimodality, enabling the
integration of time series with contextual signals such as categorical features or text.

In terms of training methodology, these models share the same underlying philosophy of large-
scale pretraining on heterogeneous time series data, but diverge in their design choices. Lag-
Llama, Chronos, and TimesFM employ transformer-based encoders with objectives such as next-step
prediction and masked modeling; Chronos, in particular, leverages tokenization to enable language-
model style autoregression. On the other hand, Moirai emphasizes architectural scalability, using
hierarchical attention and multi-resolution sampling to pretrain on very long sequences. MOMENT
combines forecasting objectives with contrastive pretraining, producing general-purpose temporal
embeddings that are transferable across tasks.

Overall, a diverse set of methodologies and architectural choices has been proposed to address time
series downstream tasks ranging from forecasting to classification and anomaly detection. While these
models demonstrate strong performance on widely used benchmark datasets, their evaluation remains
confined mainly to controlled settings. In contrast, our work emphasizes real-world applications,
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focusing on practical use cases that reflect the challenges and constraints encountered in industrial
deployment scenarios, as detailed in the main paper.

B Spectral Analysis

To better understand why the time series foundation model MOMENT underperforms on our dataset,
we analyze its dominant frequency components and compare them with those of the datasets used
during pretraining. Figureillustrates this comparison, focusing on the FordA and FaultDetectionA
datasets from the UCR time series repository, which were part of MOMENT’s pretraining corpus.

As shown in the figure, our dataset exhibits fundamentally different dominant frequencies compared
to those observed during pretraining. This discrepancy suggests that MOMENT was not exposed to
such frequency patterns before, which likely contributed to its poor generalization and performance.

This analysis highlights the potential importance of frequency alignment in the generalization
capability of time series foundation models. It also motivates the frequency-based hypothesis we
explore further in Section[3]

Our Industrial (Players) Dataset FordA FaultDetectionA
0.6
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Figure 2: Analysis of the dominant frequencies in our dataset and the used dataset for pretraining
MOMENT (FordA and FaultDetectionA).

C Data Generation
In the following section, and as a complement to Section we provide additional details about the
synthetic data generation process.

As previously explained, we constructed seen and unseen synthetic datasets from a set of considered
datasets that were used to pretrain the considered foundation model. Specifically, for a real sequence
x(t), we compute its discrete Fourier transform (DFT) and retain the top-k dominant components,

Flz(t)} = F(x) = {(fi,a:) }y, (1

where f; and a; denote dominant frequencies and amplitudes. Based on the previous frequency extrac-
tion, synthetic signals are generated by recombining these components with controlled perturbations
(additive Gaussian noise and bounded amplitude scaling). This yields:

* Seen samples: dominant content constrained within dataset-level frequency bounds:

it high
fi € [ sior‘\f7fsiirgn ]7

with only mild perturbations;

Unseen samples: at least one dominant component outside the empirical bounds,

Fi & £ + 6, fam' + 0],
or taken from complementary/shifted bands (low-only, high-only, or randomized). For
instance, if the dominant range is [0, 20] Hz, then the unseen dataset would be generated
from [20 + 4, 40 + ¢] with ¢ being drawn at random subject to the constraint that the
out-of-band upper limit does not exceed the maximum frequency present in the original
series.
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We note that the dataset-wide frequency bounds [f12, f;iﬁh] are estimated from the distribution of

dominant frequencies across the dataset (e.g., via quantile summaries or min/max).

Based on the generated seen and unseen datasets, we generate a set of train/val/test splits for each
dataset, obtained with a fixed 70/15/15 partition. Each split contains single-channel sequences of
fixed length L (typically L = 512),

X(s) GRNS><1XL, (2)

s € {train, val, test}.

Regression targets. Given the previously generated time series, we need to construct labels that
could be used for the downstream task. In this perspective, each synthetic sample is paired with a
continuous regression target derived directly from its generation metadata. Let Fysea = {f;} denote
the set of frequencies used in the synthesis. The scalar target is defined as the sum of frequencies:

v=>_ 1 3)

£ €Fused

‘We note that while the previous labeling operation provides a frequency-aware label, it does indeed
naturally increase with spectral displacement and distinguishes between seen and unseen samples.
Since such displacement can be used by the model to make the task easier, we use a normalization
mechanism to optimize the labels and make them comparable in terms of scale:

y(s) — Hy
Oy

7= @)

s yzayg(s)+ﬂya

After this normalization operation, the labels for both seen and unseen datasets are within the same
range, and therefore, we would expect the model to rather use temporal representations to extract the
label.

In Figure we present an example of the generation, where given an original sample, we analyze its
original spectrum to generate the seen and unseen datasets.
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Figure 3: Synthetic series from seen vs. unseen frequency bands. Top: time domain; Bottom: spectra.
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D Additional Results - Classification

To further illustrate our hypothesis beyond the regression task, we considered a classification task.
Specifically, we bin adjacent frequency ranges (e.g., [0,10] vs. [10,20] Hz) and train a binary
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classifier on top of the frozen encoder. The binning threshold is chosen as the median of the frequency
ranges from the train split to ensure a balanced class distribution.

Table 3: Classification performance of a frozen TSFM encoder (MOMENT-small) with a trainable
binary classifier on synthetic datasets.

Dataset Test Accuracy Test AUC
Seen (v') Unseen (X) Seen (v') Unseen (X)

FordA 0.837 £0.004 0.829 +£0.001 | 0.926 +0.002 0.901 + 0.001
FordB 0.826 £ 0.000 0.838 +0.002 | 0.903 +0.002 0.926 + 0.001
ElectricDevices 0.785 4+ 0.003  0.650 £ 0.003 | 0.890 £ 0.001 0.716 + 0.002
SmallKitchenAppliances | 0.708 +0.010 0.756 +0.041 | 0.833 £0.018  0.859 £ 0.007
FaultDetectionA 0.766 £ 0.003  0.651 +0.003 | 0.858 +0.000 0.707 £ 0.003
FaultDetectionB 0.444 £0.048 0.4724+0.096 | 0.519+0.306 0.476 £ 0.190
ECGS5000 0.809 +£0.020  0.591 £0.028 | 0.898 £ 0.007  0.692 + 0.007
SwedishLeaf 0.689 £0.020 0.600 £ 0.040 | 0.796 +0.021  0.643 £ 0.028

Table provides the mean and corresponding standard deviation of the Test accuracy and the Test
AUC. As previously seen in the regression task, the performance is high for ranges within the
presumed pretraining spectrum but drops for out-of-range comparisons (e.g., [40, 50] vs. [50, 60] Hz),
reinforcing the frequency-mismatch explanation.

E Experimental Details

In all experiments, we use linear probing: the MOMENT backbone (i.e., the patch embedder and
transformer encoder) is frozen, and only the regression or classification head is trained. The model
is optimized using the Adam optimizer (learning rate 10~%) for 50 epochs, with a mean squared
error loss (for regression) or binary cross-entropy loss (for classification). We use the same hidden
dimensionality as the one from the pretrained chosen backbone, corresponding to the predefined
MOMENT configurations. Model selection is performed based on validation MSE, and the best
checkpoint is then evaluated on the test set. We report all metrics in TableE]

We use a combination of CPU, NVIDIA GPUs (L4 24GB, T4 16GB), and an Apple MPS device (M1
MAX 32GB) to conduct the experiments in this paper. In the player engagement use case, we use
CPU for the XGBoost model, a single GPU for TabNet, and PatchTST. We utilize distributed data
parallelism with up to eight GPUs to accelerate the training process for the MOMENT model on the
large mobile gaming dataset. In the frequency perspective experiments, we use a single GPU for
regression experiments on the regression task and an Apple MPS device for the regression tasks.

F Reflection on the Role of Frequencies in TSFM Pretraining

In this work, we report an empirical observation about Time Series Foundation Models (TSFMs): a
pretrained TSFM can underperform on domain-specific downstream tasks relative to models trained
directly on in-domain time series. To probe this effect, we empirically evaluate how well a pretrained
TSFM performs on synthetically generated time series whose dominant frequencies are varied. We
observe a trend in frequency-alignment effect: the TSFM performs better on synthetic time series
whose dominant frequencies overlap with those seen during pretraining than on synthetic time series
samples from unseen or underrepresented frequency bands.

Our results suggest that, beyond standard self-supervised objectives for times pretraining (e.g.,
masked modeling, forecasting, and contrastive learning), the spectral composition of the pretraining
data may also play a critical role in the model’s generalization and robustness. One might consider
adding an auxiliary task during pretraining to predict the dominant frequency bands or adopting
frequency-based data augmentation or sampling to expand frequency coverage. We hypothesize that
frequency-aware pretraining strategies, combined with standard time series pretraining methods, may
be a fruitful future direction for improving the performance of TSFMs in zero-shot/few-shot settings.
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