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1 Potential Negative Societal Impacts

Our work focuses on domain adaptation and attempts to properly handle the multiple objectives
optimization in it from a gradient-based perspective, which further enhance the performance of
adaptive models. This method exerts a positive influence on the society and the community, saves the
cost and time of data annotation, boosts the reusability of knowledge across domains, and greatly
improves the efficiency. However, this work suffers from some negative consequences, which is
worthy of further research and exploration. Specifically, more jobs of classification or target detection
for rare or variable conditions may be cancelled. Besides, we should be cautious of the result of the
failure of the system, which could render people believe that classification was unbiased. Still, it
might be not, which might be misleading, e.g., when using the system in an unlabeled domain.

2 Experimental Details

We evaluate our method on cross-domain image classification and semantic segmentation datasets.
For the former, we conduct experiments on Office-31, VisDA-2017 and Office-Home datasets. For
the latter, we conduct experiments on GTA5 and Cityscapes. We directly quote the results from
original papers if the experimental settings are the same. In addition, we report the average result of
three random experiments.

2.1 Experiment on image classification

Network architectures We adopt the ResNet-50 and ResNet-101 [7] model pre-trained on ImageNet
[9] as the backbone network for classification tasks, and replace the last fully connected layer with a
bottleneck layer to speed up the experiments [6, 14]. The architecture of classifier is simply a single
fully connected layers with random initialization attached to the bottleneck layer. And the domain
discriminator is composed of three fully connected layers, each followed by a BatchNormalize layer
and a Relu activation function. Admittedly, the choice for the classifier and discriminator is arbitrary
and better adaptation performance may be obtained if this part of the architecture is tuned.

Training details We fine-tune from ImageNet pre-trained models and train other layers from the
scratch with learning rate 10 times that of the feature generator layers. We adopt Stochastic Gradient
Descent optimizer (SGD) [1] with learning rate 0.003, momentum 0.9 and weight decay 1× 10−4.
Besides, we adopt the annealing procedure mentioned in [14] to schedule the learning rate. All
experiments run on a single NVIDIA RTX 3090 GPU for training.
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Table 1: Classification accuracy (%) on Office-31 (ResNet-50).
Method A:W D:W W:D A:D D:W W:A Avg
ResNet [7] 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DAN [13] 80.5 97.1 99.6 78.6 63.6 62.8 80.4
JADA [10] 90.5 97.5 100.0 88.2 70.9 70.6 86.1
BNM [4] 91.5 98.5 100.0 90.3 70.9 71.6 87.1
TAT [12] 92.5 99.3 100.0 93.2 73.1 72.1 88.4
GSP [19] 92.9 98.7 99.8 94.5 75.9 74.9 89.5
DANN [6] 82.0 96.9 99.1 79.7 68.2 67.4 82.2
+BSP [3] 93.0 98.0 100.0 90.0 71.9 73.0 87.7
+MCC [8] 95.6 98.6 99.3 93.8 74.0 75.0 89.4
+ParetoDA 95.5 ± 0.1 98.7 ± 0.3 100.0 ± 0.0 93.8 ±0.2 76.7±0.2 76.3 ±0.3 90.2
CDAN [14] 94.1 98.6 100.0 92.9 71.0 69.3 87.7
+BSP [3] 93.3 98.2 100.0 93.0 73.6 72.6 88.5
+MCC [8] 94.7 98.6 100.0 95.0 73.0 73.6 89.2
+ParetoDA 95.0 ± 0.2 98.9±0.1 100.0 ±0.0 95.4 ± 0.2 77.6 ± 0.3 75.7 ± 0.2 90.4
MDD [20] 93.5 98.4 100.0 94.5 74.6 72.2 88.9
+ParetoDA 95.4 ± 0.2 98.9 ± 0.2 100.0 ± 0.0 94.4 ± 0.3 76.2 ± 0.4 75.8 ± 0.2 90.1

Table 2: Accuracy(%) on Office-Home for unsupervised DA (ResNet-50).
Method Ar:Cl Ar:Pr Ar:Rw Cl:Ar Cl:Pr Cl:Rw Pr:Ar Pr:Cl Pr:Rw Rw:Ar Rw:Cl Rw:Pr Avg.
ResNet [7] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [13] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
TAT [12] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
TPN [16] 51.2 71.2 76.0 65.1 72.9 72.8 55.4 48.9 76.5 70.9 53.4 80.4 66.2
BNM [4] 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
MDD [20] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
GSP [19] 56.8 75.5 78.9 61.3 69.4 74.9 61.3 52.6 79.9 73.3 54.2 83.2 68.4
DANN [6] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
+BSP [3] 51.4 68.3 75.9 56.0 67.8 68.8 57.0 49.6 75.8 70.4 57.1 80.6 64.9
+MetaAlign [18] 48.6 69.5 76.0 58.1 65.7 68.3 54.9 44.4 75.3 68.5 50.8 80.1 63.3
+ParetoDA 55.2 ± 0.4 74.4 ± 0.3 79.0 ± 0.4 61.9 ± 0.6 72.4 ± 0.5 72.9 ± 0.3 62.1 ± 0.4 55.8 ± 0.5 81.1 ± 0.4 74.4 ± 0.6 61.1 ± 0.5 82.4 ± 0.4 69.4
CDAN [14] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
+BSP [3] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
+MetaAlign [18] 55.2 70.5 77.6 61.5 70.0 70.0 58.7 55.7 78.5 73.3 61.0 81.7 67.8
+ParetoDA 56.8 ± 0.3 75.9 ± 0.4 80.5 ± 0.2 64.4 ± 0.5 73.5 ± 0.3 73.7 ± 0.6 65.6 ± 0.4 55.2 ± 0.5 81.3 ± 0.2 75.2 ± 0.5 61.1 ± 0.4 83.9 ± 0.3 70.6

2.2 Experiment on semantic segmentation

Network architectures We leverage the DeepLab-v2 [2] framework with the pre-trained ResNet-101
model as the base feature extractor for segmentation task. To better capture the scene context, Atrous
Spatial Pyramid Pooling (ASPP) is used for classifier and applied on the conv5 feature outputs. We
fix the sampling rates as {6, 12, 18, 24} following [17] and modify the stride and dilation rate of the
last layers to produce denser feature maps with larger field-of-views.

Training details For evaluation metrics, we report pre-class intersection-over-union (IoU) and mean
IoU over all classes. We use the evaluation code released along with the Cityscapes dataset, which
calculates the PASCAL VOC intersection-over-union, i.e, IoU = TP

TP+FP+FN [5], where TP , FP ,
FN are the amount of true positive, false positive and false negative pixels, respectively, determined
over the whole test set.

3 Experimental Results with Error Bars

For the sake of objective, we run all the experiments multiple times with random seed. We report the
average results in the main body of paper for elegant, and show the complete results with error bars
in the form of mean±std below (Table. 1,2).
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4 Derivation and Proofs

4.1 Proof for Theorem 1

Proof. If LV al = 0, then its gradient is also a zero vector: ĝv = 0. This means J is empty. As a
result, I(J 6= ∅) = 0 and all the constraints of Eq. (6) becomes

(d∗)Tgj ≥ 0, ∀j ∈ {1, 2, 3}. (1)

Then d∗ becomes a descent direction.

On the other hand, we consider the case in that LV al > 0. Since γ∗ = (d∗)T ĝv , then γ∗ > 0 means
(d∗)T ĝv > 0. Whereas if γ∗ = (d∗)T ĝv = (Gw∗)T ĝv ≤ 0, since Gw∗ is the maximum of the
convex combination of the columns in G, it means that there is no gradient gj , j ∈ {1, 2, 3}, for
which gTj ĝv > 0. As a result, J is empty and I(J 6= ∅) = 0. This is similar to the case of LV al = 0.
So d∗ becomes a descent direction.

4.2 Derivations for Eq. (4)

Our derivations follow a standard Expectation-Maximization process. Eq. (3) is actually the E-step
to estimate the hidden variable, class label, on the target domain. The detailed derivation is in the
following.

p(y = k | z = d,x,θ,φc) =
p(y = k, z = d | x,θ,φc)

p(z = d | x,θ,φc)

=
p(y = k, z = d | x,θ,φc)∑
k′ p(y = k′, z = d | x,θ,φc)

=
p(z = d | y = k,x,θ,φc)p(y = k | x,θ,φc)∑
k′ p(z = d | y = k′,x,θ,φc)p(y = k′ | x,θ,φc)

=
p(z = d | x,vk)p(y = k | x,θ,φc)∑
k′ p(z = d | x,vk′)p(y = k′ | x,θ,φc)

= ρk|d.

And Eq. (4) is a part of the M-step.

For the M-step, we maximize the joint likelihood,

D∏
d=1

K∏
k=1

p(y = k, z = d | x,θ,φc)
I(y=k,z=d)

=

D∏
d=1

K∏
k=1

p(z = d | y = k,x,θ,φc)
I(z=d)p(y = k | x,θ,φc)

I(y=k)

=

D∏
d=1

K∏
k=1

p(z = d | x,vk)I(z=d)p(y = k | x,θ,φc)
I(y=k).

Then the log likelihood is

D∑
d=1

K∑
k=1

I(z = d)I(y = k) log[p(z = d | x,vk)p(y = k | x,θ,φc)].

For target domains where class labels are not available, we replace I(y = k) with the conditional
estimation ρk|d. Then we have the final log likelihood:

D∑
d=1

K∑
k=1

I(z = d)sk|d log[p(z = d | x,vk)p(y = k | x,θ,φc)],

where sk|d = I(y = k) is for the source domain, and sk|d = ρk|d is for the target domain.
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We decompose the final log likelihood as

D∑
d=1

K∑
k=1

I(z = d)sk|d log p(z = d | x,vk) +
D∑

d=1

K∑
k=1

I(z = d)sk|d log p(y = k | x,θ,φc)

=

K∑
k=1

D∑
d=1

sk|dI(z = d) log p(z = d | x,vk) +
D∑

d=1

I(z = d)

K∑
k=1

sk|d log p(y = k | x,θ,φc),

where the first term is Eq. (4) and learns domain discrimination for each class with a weighted loss
(the weight is sk|d), and the second term learns classification for each domain. For the source domain,
the class labels are hard. Whereas for the target domain, the class labels are soft.

4.3 Existence Guarantee for Pareto optimal solution

Similar as in [11], we provide a theoretical guarantee for the existence of a Pareto critical (also named
as local Pareto optimal in [15]) solution of our method, where a solution is called Pareto critical if no
other solution in its neighborhood can dominate this solution. Specifically, we show by Theorem 1
below that our method will optimize until the solution is Pareto critical and satisfies LV al = 0.

Theorem 1. Let θ̂ be the final output model parameters of our method. Letw∗ be the solution of the
problem in Eq. (6) based on θ̂, and d∗ = Gw∗ be the resulted update direction. We have:

• if θ̂ is not Pareto critical, then d∗ 6= 0 ∈ Rd;

• if θ̂ is Pareto critical, we further consider two cases:

– If LV al = 0, then d∗ = 0 ∈ Rd or (d∗)TG = 0 ∈ R3. In either case, the update is
meaningless and will halt.

– If LV al > 0, assuming the gradient of LT is consistent with the gradient of LV al, i.e.,
gT3 ĝv > 0, then d∗ 6= 0 ∈ Rd.
Note that the assumption that gT3 ĝv > 0 for a Pareto critical θ̂ is reasonable, because
when θ̂ is Pareto critical, the model is usually well-trained, and g3, ĝv are gradients
of the same loss on i.i.d sampled two datasets from the target domain. Then it is
reasonable to assume the gradients are consistent.

The proof of Theorem 1 is as following:

Proof.

• If θ̂ is not Pareto critical, we suppose d∗ = Gw∗ = 0 ∈ Rd, where w∗j > 0 for all j ∈
{1,2,3}. Since θ̂ is not Pareto critical, there exists a d′ 6= 0 ∈ Rd that satisfies (d′)Tgj > 0,
for some j ∈ {1,2,3}; and (d′)Tgi ≥ 0, for other i ∈ {1,2,3} and i 6= j. Since Gw∗ =
0, then w∗jgj = −

∑
i 6=j w

∗
i gi . Also, because (d′)Tgj > 0, then (d′)T (w∗jgj) > 0

and (d′)T (
∑

i6=j w
∗
i gi) < 0. However, (d′)T (

∑
i 6=j w

∗
i gi) < 0 is not possible because

(d′)Tgi ≥ 0, for i ∈ 1,2,3 and i 6= j and w∗i > 0 for all i ∈ 1,2,3, which generates a
contradiction for d∗ = 0 ∈ Rd.

• If θ̂ is Pareto critical, we consider two cases.

– If LV al = 0, then from Theorem 1 we know that d∗ becomes a descent direction, i.e.,
(d∗)Tgj ≥ 0, ∀j ∈ 1,2,3. Since θ̂ is Pareto critical, then there does not exist j ∈
1,2,3 such that (d∗)Tgj > 0. Then(d∗)Tgj = 0, ∀j ∈ 1,2,3. Thus, we either have
d∗ = 0 ∈ Rd or just (d∗)TG = 0 ∈ R3.

– Consider the second case, LV al > 0, then ĝv 6= 0 ∈ Rd. Given the assumption that
gT3 ĝv > 0, then g3 6= 0 ∈ Rd. Then w′ can be [0, 0, 1] and γ′ = (Gw′)T ĝv =
gT3 ĝv > 0. Therefore, the maximized γ∗ ≥ γ′ > 0, then from Theorem 1 we know
that (d∗)T ĝv > 0, which means d∗ 6= 0 ∈ Rd.
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In summary, we can obtain a Pareto critical solution with simple iterative gradient-based update rule
θt+1 = θt + ηd.
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