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ABSTRACT

Predicting temporal progress from visual trajectories is important for intelligent
robots that can learn, adapt, and improve. However, learning such progress estima-
tor, or temporal value function, across different tasks and domains requires both
a large amount of diverse data and methods which can scale and generalize. To
address these challenges, we present Generative Value Learning (GVL), a universal
value function estimator that leverages the world knowledge embedded in vision-
language models (VLMs) to predict task progress. Naively asking a VLM to predict
values for a video sequence performs poorly due to the strong temporal correlation
between successive frames. Instead, GVL poses value estimation as a temporal
ordering problem over shuffled video frames; this seemingly more challenging task
encourages VLMs to more fully exploit their underlying semantic and temporal
grounding capabilities to differentiate frames based on their perceived task progress,
consequently producing significantly better value predictions. Without any robot or
task specific training, GVL can in-context zero-shot and few-shot predict effective
values for more than 300 distinct real-world tasks across diverse robot platforms,
including challenging bimanual manipulation tasks. Furthermore, we demonstrate
that GVL permits flexible multi-modal in-context learning via examples from het-
erogeneous tasks and embodiments, such as human videos. The generality of GVL
enables various downstream applications pertinent to visuomotor policy learning,
including dataset filtering, success detection, and advantage-weighted regression –
all without any model training or finetuning.

1 INTRODUCTION

Predicting temporal progress from visual trajectories is an important task for embodied agents that
interact with the physical world. A robot capable of generalizable progress estimation can in principle
discern desirable and undesirable behaviors to learn visuomotor skills in new environments. This is
most often studied in reinforcement learning literature (Schaul et al., 2015), where progress estimation
is equivalent to universal value learning under specific choices of reward function. However, universal
value estimation comes with a number of key challenges: (1) broad generalization to new tasks
and scenes, (2) the ability to accurately estimate state in partially observed environments, and (3)
temporal consistency (i.e. satisfying the Bellman equation) over long horizons. Most existing methods
trained on relatively small amounts of vision-only data (Chen et al., 2021; Ma et al., 2022; Ahn
et al., 2022) lack the semantic, spatial, and temporal understanding needed to ground task progress
in the space-time manifold of video, preventing generalization. Moreover, they often reason over
single frames, inducing a high-degree of uncertainty in partially observed environments which in
turn can effect the consistency of predictions for poorly estimated states. However, these challenges
are not insurmountable: modern vision language models (VLMs) exhibit marked generalization and
reasoning capabilities, potentially making them useful for value estimation.

Though not often considered as candidates for value estimation, VLMs excel at its aforementioned
core challenges. First, state-of-the-art VLMs have exhibited strong spatial reasoning and temporal
understanding capabilities across various vision tasks (Nag et al., 2022; Chen et al., 2024; Hong et al.,
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Figure 1: GVL auto-regressively predicts task completion percentage over shuffled frames, enabling impressive
in-context value learning. GVL can effectively zero-shot and few-shot predict task progress on diverse and
challenging real-world tasks; these capabilities enable expansive set of downstream applications, including
dataset filtering, success detection, and policy learning.

2023; Gao et al., 2024), allowing them to generalize to novel scenarios. Second, large transformer-
based VLMs have the requisite context window (GeminiTeam et al., 2024) to reason over large
amounts of historical information to accurately estimate state from observation sequences when
predicting task progress. Finally, VLMs make predictions auto-regressively, meaning they commit
to their own outputs as inputs for subsequent predictions, imposing consistency constraints on long
generations. For example, a VLM is unlikely to estimate that a task is 50% completed if it already
has a 50% completion prediction in context. However, how exactly a VLM should be used to predict
values is unclear. Empirically, we find that simply placing a video in-context and prompting the
model to return progress predictions for each frame fails – our analysis suggests strong temporal
correlations between successive frames often cause VLMs to produce uninformative monotonic
values that disregard the actual quality of the trajectory and differences between frames (Section 4) –
and a different approach is needed.

To effectively leverage the broad knowledge of VLMs, we introduce Generative Value Learn-
ing (GVL), a universal value estimation method enabled by long-context VLMs, which crucially
operates over shuffled frames. At its core, GVL asks frozen state-of-the-art VLMs, such as
Gemini-1.5-Pro (GeminiTeam et al., 2024), to auto-regressively predict the completion percent-
age of a task specified in natural language for a sequence of shuffled input video frames; see Fig. 1.
Perhaps surprisingly we find that simply shuffling the frames of the input video effectively overcomes
the strong implicit temporal bias found in video, enabling VLMs to generate meaningful values.
While GVL is capable of generating values in a zero-shot manner, we find that the performance of
GVL scales with examples via multi-modal in-context learning. Providing more examples of visual
“unshuffling” in context increases performance, irrespective of the target embodiment. For example,
human videos can improve GVL’s performance on predicting robot task progress.

To facilitate large-scale value prediction evaluation, we additionally introduce a new evaluation
metric, Value-Order Correlation (VOC), measuring how well predicted values correlate with the
ground-truth timestep order in expert videos; as we will show, VOC is also a useful metric for
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measuring dataset and trajectory quality, which allows GVL to be used for applications beyond
value-based policy learning such as data quality estimation and success detection. We first evaluate
GVL’s value prediction quality with VOC on a large suite of real-world robotics datasets, spanning 51
datasets, 20 embodiments, and more than 300 tasks. This includes 50 datasets from Open-X (OXE)
dataset (Padalkar et al., 2023) in addition to our own bimanual manipulation dataset containing 250
challenging real-world tasks on an ALOHA platform (Zhao et al., 2023), which are considerably
longer horizon and more fine-grained than those in the OXE dataset. In aggregate, GVL exhibits
strong zero-shot value prediction capabilities with highly positive VOC scores on most datasets;
its performance further improves with various types of multi-modal in-context examples. Using
GVL, we demonstrate scalable foundation model supervision for robot learning at various data
abstraction levels. Specifically, GVL can help measure dataset quality in OXE. Second, it can be
used for success detection, enabling imitation learning on mixed-quality datasets. Finally, the raw
value estimates from GVL can be used for advantage-weighted regression for real-world offline
reinforcement learning (Peters & Schaal, 2007; Peng et al., 2019).

In summary, our contributions are

1. Generative Value Learning (GVL), a universal value prediction framework via VLM in-
context autoregressive value estimation on shuffled video frames.

2. An extensive evaluation on real-world datasets demonstrating GVL’s zero-shot scalability
and multi-modal in-context learning capabilities.

3. Demonstration that GVL can be used in downstream applications including dataset quality
estimation, success detection, and advantage-weighted regression for real-world control.

2 RELATED WORK

Reward and value foundation models. Several works have tried to learn transferable reward and
value functions from diverse data. Early works learned models using robot (Sermanet et al., 2016) or
even human videos with discriminators (Chen et al., 2021), contrastive learning (Baumli et al., 2023)
or offline RL (Ma et al., 2022; 2023a; Bhateja et al., 2023) to guide manipulation tasks. With the
advent of recent language and vision foundation models, several works have integrated them into vari-
ous robotic applications such as semantic planning (Ahn et al., 2022; Huang et al., 2023b; Singh et al.,
2023; Zhang et al., 2023; Ding et al., 2023), imitation learning (Brohan et al., 2023; Szot et al., 2023),
and symbolic programming (Tang et al., 2023; Liang et al., 2023; Singh et al., 2023; Wang et al., 2023;
Huang et al., 2023a; Liu et al., 2023; Silver et al., 2023; Ding et al., 2023; Lin et al., 2023; Xie et al.,
2023b). Most related to our work, LLMs and VLMs have been used as reward models. Kwon et al.
(2023b); Mahmoudieh et al. (2022) use language models to provide reward values for RL agents, while
Klissarov et al. (2023); Wang et al. (2024); Kwon et al. (2023b) use them to provide preference feed-
back. Ma et al. (2023b); Yu et al. (2023); Xie et al. (2023a) even have LLMs generate their code. These
works use only the language capabilities of foundation models. More recent works directly use VLMs
as zero-shot reward models (Rocamonde et al., 2023) or success detectors (Du et al., 2023; Guan
et al., 2024). Critically, in these works the VLM acts only as an (often sparse) reward function which
predicts success, and not a value function that predicts task progress. Though some works use chain-
of-thought prompting (Venuto et al., 2024) or active learning (Kwon et al., 2023a), they generally
do not make use of the autoregressive, long-context, or in-context learning capabilities of state-of-art
VLMs. As a consequence, they often evalaute reward prediction only on simple and simulated tasks.
To our knowledge, we are the first to demonstrate that VLMs are capable of generalizable per-frame
value estimation on real world tasks which can be used for downstream tasks like dataset selection.

In-context learning for robotics. In-context learning has been explored in the robot learning
literature, primarily focusing on action generation (Duan et al., 2017; Finn et al., 2017; Dasari &
Gupta, 2021; Xu et al., 2022; Di Palo & Johns, 2024; Liang et al., 2024; Fu et al., 2024). However,
all these prior works require explicit, and often extensive training, on their robot tasks in order to
realize in-context learning capabilities, and generalization is achieved only on narrow distribution of
tasks. In contrast, we demonstrate that visual value estimation already enjoys flexible multi-modal
in-context learning from pre-trained VLMs without any robot specific fine-tuning.
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3 GENERATIVE VALUE LEARNING

In this section, we introduce Generative Value Learning, GVL. At a high level, GVL frames value
estimation as an autoregressive next-token prediction problem in which a VLM is tasked with
outputting the task progress for a batch of shuffled trajectory frames.

Problem setup. We model robotics tasks as goal-conditioned partially observed Markov decision
processes (Puterman, 2014): M(ϕ) := (O,A,R, P, T, µ,G) with observation space O, action space
A, reward function R, transition function P , task horizon T , initial state distribution µ(o), and goal
space G that specifies the task semantically. Conditioned on a task g an agent π : O → A aims to
maximizes its value function, or the expected cumulative reward over the task horizon, V π(o1; g) =
Eµ,π,P [r(o1; g) + · · ·+ r(oT ; g)]. However, reward and value functions can be difficult to define for
robotics applications given their heterogeneity. Given this, a popular universal notion of value is task
progress (Sermanet et al., 2016; 2018; Eysenbach et al., 2020; Tian et al., 2020; Lee et al., 2021). This
kind of temporal value function maps an observation and goal specification to a real number between
0 and 1: V : O × G → [0, 1], where initial observations of the environment have value 0 and goal-
satisfying observations have value 1. Under this definition, an expert trajectory τ = (o1, . . . , oT ) ∼
πE , has value function V πE (ot; g) =

t
T . In this work, our goal is to obtain such a temporal value

function V that can predict such task progress v1, . . . vT for each frame of video o1, . . . , oT .

Though we seek to leverage priors imbued in large foundation models, as shown in Section 4
simply prompting a VLM with video frames fails to produce meaningful estimates. To make VLMs
amenable to value prediction, we propose three key components that comprise the GVL method: 1)
autoregressive value prediction, 2) input observation shuffling, and 3) in-context value learning.

1. Autoregressive value prediction. Traditionally, value functions V (·) : O → R are trained to be
self-consistent by enforcing the bellman equation

V π(ot) = R(ot) + Eπ,P [V (ot+1)] . (1)

When parameterizing a value function as a feed-forward neural network, this is typically done by
minimizing the mean-squared error of the equality above. As values for different observations
within the same trajectory are related via the bellman equation, the resulting value function remains
consistent even if we query it with only a single observation. VLMs on the other hand are not
inherently trained with any consistency objective. Thus, if we independently query a VLM with
different observations from the same trajectory it is likely to produce inconsistent values. Our insight
is that providing the entire trajectory as input instead of just a single observation offers VLMs greater
opportunity to generate self-consistent value estimates. Concretely, given a language description of
the task ltask we ask the VLM to auto-regressively generate values given the entire video as context:

vt = VLM(o1, . . . , oT ; v1, . . . , vt−1; ltask),∀t ∈ [2, T ]. (2)

We abbreviate this auto-regressive prediction process as v1, . . . , vT = VLM(o1, . . . , oT ; ltask). This
simple mechanism allows the VLM to attend to all previous predictions and frames when making
the next value prediction, enabling it to produce globally consistent estimates over long-horizon
sequences without needing to be trained like classical feed-forward value functions. Though this
design choice enables VLMs to produce consistent values, it doesn’t necessitate that the values are
meaningful. Naiv̈ely prompting a VLM in this manner tends to produce linear, monotonic value
functions for every single video, regardless of optimality.

2. Input observation shuffling. Empirically we find that when presented a choronological sequence
of frames VLMs discover the short-cut solution of outputting monotonically increasing values, often
ignoring the task description or the actual quality of the trajectory. One hypothesis is that as VLMs
are trained on ordered video frames for captioning and question answering, the chronology itself is a
cue for downstream tasks unrelated to value prediction. As a consequence, model naiv̈e prompting
results in unfaithful low-quality value predictions. To break this temporal bias, we propose randomly
shuffling the input frames. In this manner, GVL forces the VLM to pay attention to each individual
frame and output faithful value predictions using all information provided in context. Concretely,
GVL prompts a VLM as:

v1̃, . . . , vT̃ = VLM(o1̃, . . . , oT̃ ; ltask, o1), where (1̃, . . . , T̃ ) = permute(1, . . . , T ). (3)

where the permute operator randomly shuffles the temporal indicies. Note however, that we cannot
shuffle every frame. If we do so, then the arrow of time in the original video can be ambiguous –
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i.e., in many cases, the reverse video is also physically plausible, making is the ground-truth order
impossible to predict. Thus, as in the above equation we condition the VLM on the first input frame
allow it to use the first observation as an anchor point for all other shuffled frames.

3. In-context value learning. While auto-regressive prediction and shuffling are enough to obtain
good performance, GVL can perform even better by leveraging the appealing properties of VLMs.
Notably, large models often exhibit in-context learning, where tasks can be learned by simply
providing examples (Brown, 2020). This enables flexible and versatile in context value learning, by
which GVL’s predictions can steadily improve by providing examples at test time without any model
fine-tuning. In particular, we can simply prepend shuffled videos and their ground-truth task progress
as in-context examples to boost the value prediction quality via few-shot learning:

v1̃, . . . , vT̃ = VLM (o1̃, . . . , oT̃ , ltask | permute ((o1, v1), (o2, v2), . . . , (oM , vM ))) (4)

As we show in Section 4, GVL benefits from flexible forms of in-context examples, including videos
from unrelated tasks and even humans. Though GVL zero-shot is already effective across a broad
range of tasks and robots, in-context learning can still realize substantial improvement on the most
difficult bimanual dexterous tasks.

4 EXPERIMENTS

We conduct large scale experiments assessing GVL’s value prediction generalization and in-context
learning capabilities. Specifically, we study the following questions:

1. Can GVL produce zero-shot value predictions for a broad range of tasks and embodiments?
2. Can GVL improve from in-context learning?
3. Can GVL be used for other downstream robot learning applications?

In all our experiments, we use Gemini-1.5-Pro (GeminiTeam et al., 2024) as the backbone
VLM for GVL; we ablate this model choice and find GVL effective with other VLMs as well. After
thorough study of GVL’s value prediction capabilities, we study several downstream applications
in visuomotor policy learning, aiming to improve data quality at dataset, trajectory, and individual
transition levels.

Evaluation metric. Our goal is to evaluate GVL value estimation at scale on as many robot datasets
as possible, holistically testing its generalization capabilities and understanding its limitations.
This makes it difficult to use traditional evaluation metrics for value functions, such as observing
downstream learned policy performance, as they require value functions that are specifically trained
or finetuned for individual tasks and embodiments. This quickly becomes very expensive for universal
value functions that are intended for use across a large set of diverse real-world tasks and robots,
many of which the practitioner may not have access to. Prior works on large-scale value learning
have resorted to visually observing the smoothness of the value curve on expert trajectories as a
qualitative “eye-test” for model generalization (Ma et al., 2022; 2023a; Karamcheti et al., 2023), but
such evaluation is conducted on only few selected videos. We formalize and scale up this intuitive
approach and introduce a lightweight, yet predictive method for evaluating value models: Value-Order
Correlation (VOC). This metric computes the rank correlation between the predicted values and the
chronological order of the input expert video:

VOC = rank-correlation (argsort(v1̃, . . . , vT̃ );arange(T )) ; (5)

VOC ranges from −1 to 1, where 1 indicates that the two orderings are perfectly aligned. Expert
quality demonstrations, by construction, have values that monotonically increase with time, and
thus a good value model should have high VOC scores when evaluated on expert videos. On the
other hand, fixing a good value model, low-quality trajectories should have low VOC scores. This
is because sub-optimal trajectories often contain high repetition of visually similar frames due to
the presence of redundant, re-attempt actions or poorly-placed cameras. As such, the values along
the trajectories should not be monotonic, resulting in low correlation with the ground-truth timestep
order. As we will show in our experiments, this value rank correlation metric has strong predictive
power for the quality of the values as well as downstream policy learning performance, validating its
usefulness as a standalone evaluation metric for value predictions.

5



Published as a conference paper at ICLR 2025

Figure 2: Zero-shot value predictions on OXE datasets. Left: GVL significantly outperforms LIV on datasets
with language goals. Right: GVL still outperforms LIV on datasets with image goals despite solving the more
difficult task of frame re-shuffling.

4.1 LARGE-SCALE REAL-WORLD EVALUATION

To study GVL’s zero-shot value prediction capability, we evaluate its VOC on two large expert
robotics datasets.

Open X-Embodiment dataset. First, we consider the Open X-Embodiment (OXE) dataset (Padalkar
et al., 2023). an aggregation of trajectory data from 50 standalone academic robot datasets that consists
of diverse tasks, robots, and camera viewpoints. For each of the 50 datasets, we randomly sample
20 trajectories and evaluate GVL zero-shot on each of the sampled trajectories. Note that not all
OXE datasets have language task annotations, so we use the last frame of the trajectory as the goal
specification when text annotation is not provided. To better contextualize GVL’s value prediction
quality, we compare to a state-of-the-art multi-modal value model LIV (Ma et al., 2023a), a contrastive
vision-language model (Radford et al., 2021) fine-tuned with value learning objective on human
videos for in-the-wild value estimation. LIV predicts the temporal value of an input observation by
computing its embedding distance to the embedding of the goal image or task description.

For evaluation, we plot the histogram of all 1000 (50×20) Value Order Correlation (VOC) scores
in Fig. 2, split by goal modalities. Given that most OXE datasets contain human-collected expert
demonstrations, good value models should have high VOC scores; however, we acknowledge that
there are sub-optimal trajectories within OXE that can introduce noise in our results; in Fig. 10 in
Appendix F, we further evaluate the two methods on a subset of OXE datasets that is delegated to
be high-quality to corroborate Fig. 2. After we first establish GVL as an effective universal value
model. we will present how GVL can be used to detect low-quality data in Section 4.3. As shown
in Fig. 2, on both goal modalities, GVL consistently generates VOC scores that heavily skew to
the right, indicating that it is able to zero-shot recover the temporal structure hidden in the shuffled
demonstration videos, i.e., coherent value predictions. GVL’s performance is also markedly better
than LIV on language goals (Fig. 2 left). Here, LIV’s predictions are random, suggesting that its
embedding space does not contain sufficient knowledge for predicting dense values for arbitrary
unseen robot videos. On image goals, LIV’s prediction problem is arguably simpler because an
embedding space that simply captures image similarity can result in ascending values that correlate
with timesteps. Even then, GVL generates better quality value predictions as judged by slightly
higher VOCs (Fig. 2 right). In summary, GVL can indeed effectively utilize the world knowledge
afforded by the backbone VLM to achieve effective value predictions zero-shot for the breadth of
real-world robotic tasks and datasets.

Challenging bimanual datasets. OXE datasets primarily focus on simpler, short horizon single-arm
tasks. To further stress test GVL, we evaluate on a new diverse dataset of 250 distinct household
tabletop tasks on the bi-manual ALOHA systems (Zhao et al., 2023; Team et al., 2024a). This dataset
includes highly challenging, long-horizon skills, such as removing three gears sequentially from a
NIST board, folding a dress in eighth-fold, hanging a t-shirt on a cloth rack. See the bottom right
of Fig. 1 for representative ALOHA tasks. For each task, we evaluate on 2 human teleoperated
demonstrations to evaluate GVL and LIV zero-shot. The aggregate histogram over all 500 (250 × 2)
VOC scores is illustrated in Fig. 3. As shown, GVL is capable of generating value predictions that
are positively correlated on more than 60% of them with median VOCs of 0.12. This is promising,
but worse than the performance on the OXE datasets. GVL and LIV exhibit similar qualitative trends,
indicating that both methods now struggle with the complexity of this dataset. In the next section, we
extensively explore how to improve GVL on this dataset using in-context learning techniques.
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Figure 3: GVL scales up to 250 ALOHA bi-manual tasks and can improve with in-context examples.

(a) In-context examples from human videos

(b) Target prediction robot videos
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Figure 4: GVL benefits from cross-embodiment in-context learning capability: its value predictions can be
improved by examples from human videos.

4.2 MULTI-MODAL IN-CONTEXT VALUE LEARNING

As the diverse ALOHA dataset is significantly more challenging, we explore whether GVL can
benefit from in-context learning, where additional shuffled observation-value pairs are presented in
the VLM context window (Eq. 4).

Few-shot in-context learning. First, we collect an additional demonstration for each of the 250
tasks and use its shuffled value-observation pairs as context for one-shot GVL value prediction for
the same set of 500 evaluations. As seen in Fig. 3, with one in-context trajectory, GVL’s performance
substantially improves with 90% positive VOCs and a median VOC of 0.37. We further investigate
whether performance can improve with more in-context examples on a represented subset of 13 tasks
for which have more than 500 demonstrations; we refer to this subset as ALOHA-13. For these tasks,
we evaluate few-shot GVL on 500 distinct trajectories per task with up to 5 in-context examples. The
average VOCs over tasks and trajectories is shown in Fig. 3 (Right). We see that GVL demonstrates
appealing in-context scaling as the average score steadily improves as we increase the number
of in-context examples. Even with 5 in-context trajectories, meaning 150 total shuffled images,
GVL is able to utilize its full context and exhibit strong generalization. This result demonstrates
how state-of-art long-context-window VLMs, such as Gemini-1.5-Pro, can be re-purposed to
make for general-purpose value functions with impressive test-time improvement capability, quickly
mastering value predictions with minimal supervision.

Cross-embodiment in-context learning. Examples in-context are not limited to robot demonstra-
tions. One advantage of GVL is that it can still benefit from in-context learning even when the
demonstrations come from a different embodiment. Specifically, we record humans performing
the same tasks as the ALOHA robot demonstrations and then use these human demonstrations as
in-context examples for value prediction. As shown in Fig. 4, GVL with one cross-embodiment
in-context example can effectively improve over its zero-shot counterpart. In the Appendix, we also
show that GVL can similarly benefit from cross-task in-context learning. In conclusion, GVL presents
a versatile framework for in-context value learning that can scale up to even the most challenging
manipulation tasks.
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4.3 GVL APPLICATIONS

As GVL can generate high-quality value estimates, it can be applied to a number of downstream tasks
including dataset quality estimation, success detection, and weighted imitation learning.

Dataset Quality Estimation. Robotic action models are increasingly trained on large mixtures of
datasets (Padalkar et al., 2023; Team et al., 2024b; Kim et al., 2024) and selecting the right mixture
is critical for policy performance (Hejna et al., 2024). However, dataset mixing is often done in
an ad-hoc fashion by visual inspection (Team et al., 2024b). Having validated that GVL is an
effective zero-shot value model, we investigate whether we can in turn use GVL’s VOC scores to
determine dataset quality within OXE. To this end, for each OXE dataset in Fig. 2, we compute the
average correlation scores for its sampled trajectories and present the ranking of the average score
in Appendix C. In Table 1, we present a subset of selected representative large-scale datasets in
OXE. We see that datasets have large spread in their VOC scores, but these scores are interpretable
and match human intuitions. Specifically, datasets collected from human teleoperators with relative
fixed camera placements, such as RT-1 (Brohan et al., 2022), Dobb-E (Shafiullah et al., 2023), and
Bridge (Ebert et al., 2021; Walke et al., 2023), have high VOC scores, despite their diversity in
scenes and tasks. In contrast, datasets with autonomous data collection via scripted motions or motor
babbling, such as QT-OPT (Kalashnikov et al., 2018) and RoboNet (Dasari et al., 2019), contain high
number of suboptimal trajectories that do not exhibit smooth temporal structure to be re-shuffled.

Dataset Avg. VOC

RT-1 (Brohan et al., 2022) 0.74
Dobb-E (Shafiullah et al., 2023) 0.53
Bridge (Walke et al., 2023) 0.51
QT-OPT (Kalashnikov et al., 2018) 0.19
DROID (Khazatsky et al., 2024) -0.01
RoboNet (Dasari et al., 2019) -0.85

Table 1: Average GVL VOCs on selected OXE datasets.

Interestingly, DROID (Khazatsky et al., 2024),
a recent large household manipulation dataset is
ranked very low, consistent with prior works
(Kim et al., 2024) that found that removing
DROID from large action model training im-
proved final performance. After inspecting tra-
jectories from DROID with a low VOC score
from GVL we found that many have poor cam-
era angles that do not capture robot motion or
have the arm or manipulated objects heavily oc-
cluded. These observations indicate that GVL VOC can be indicative of dataset quality. In Ap-
pendix G, we show that GVL dataset quality estimation can effectively be used to generate effective
co-training datasets from a raw, mixed-quality dataset such as DROID for real-world imitation
learning.

Method Accuracy Precision Recall

GVL-SD (Zero-Shot) 0.71 0.71 0.71

GVL-SD (One-Shot) 0.75 0.85 0.70

SuccessVQA (Du et al., 2023) 0.62 0.33 0.73
SuccessVQA-CoT 0.63 0.44 0.68

Table 2: Comparison of VLM success detectors.

Success detection and filtered imitation
learning. Next we consider more granular
intra-dataset quality control by investigating
how GVL can be used as a success detector
for trajectory filtering, enabling filtered imi-
tation learning on mixed quality datasets. As
discussed, good value models should return low
VOC scores on unsuccessful trajectories; in particular, it is difficult for GVL to re-shuffle frames
within sub-optimal trajectories which often contain irregular or repetitive behavior . Thus, we can
use GVL for success detection by filtering trajectories that have VOC scores below certain numerical
threshold; we refer to this procedure as GVL-SD. We evaluate GVL-SD on six simulated bimanual
dexterous manipulation tasks on the ALOHA system (see Fig. 7). Simulation is well-suited for this
experiment because we can naturally control for data quality and reproducibility. More specifically,
for each task, we construct a mixed quality dataset by rolling out a pre-trained policy of roughly 50%
success rate for 1000 episodes, mirroring real-world autonomous data collection settings with high
failure rate (Kalashnikov et al., 2018). We compare to SuccessVQA (Du et al., 2023), which poses
success detection as a Visual-Question Answering problem. To ensure that the same amount of infor-
mation is provided, we feed the full video sequence to the VLM; therefore, this baseline tests whether
the VLM is equipped with video understanding capability good enough for out-of-the-box success
detection. In addition, we consider SuccessVQA-CoT, which uses chain-of-thought prompting (Wei
et al., 2022) to encourage the VLM to output intermediate textual reasoning outputs before providing
the final success answer. Unless otherwise stated we use a VOC threshold of 0.5 for GVL-SD.

For all methods, we report the accuracy, precision, and recall in Table 2. GVL-SD consistently
outperforms or matches SuccessVQA on all classification metrics. In particular, SuccessVQA has

8



Published as a conference paper at ICLR 2025

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Value-Order Correlation

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

GVL VOC Histogram (ALOHA-SIM-6)

Success
Failure

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Value-Order Correlation

0

500

1000

1500

2000

Fr
eq

ue
nc

y

No Shuffling VOC Histogram (ALOHA-SIM-6)

Success
Failure

Figure 5: GVL for Success Detection. Left: GVL behaves qualitatively differently on successful and failed
trajectories. Right: GVL (No-Shuffling) loses discriminability on failure trajectories.
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Figure 6: Success-Filtered Imitation Learning on ALOHA Simulation Tasks. Left: Using GVL-SD for
success-filtered BC substantially outperforms SuccessVQA. Right: GVL-SD is not sensitive to the VOC
threshold for improving imitation learning.

low precision, indicating that the base VLM systematically biases towards outputting failure. Adding
one in-context demonstration further improves GVL’s performance across all metrics.

In Fig. 5 (Left), we also visualize the histogram of the VOC scores GVL produces on success and
failure trajectories. As expected, GVL on failure trajectories renders a uniform distribution when the
task is unsuccessful, indicating the model’s inability to uncover the original temporal order – success
and failure trajectories have distinct distributions over the correlation values indicating that GVL can
adequately separate them. Fig. 5 (Right) shows that the histograms without shuffling are largely the
same independent of success or failure. This shows that by forcing the VLM to perform the more
difficult prediction task over shuffled frames, GVL can elicit better zero-shot values.

Real-World ALOHA Tasks GVL + DP DP Avg. VOC

bowl-in-rack 7/10 6/10 0.57
banana-handover 7/10 5/10 0.73
close-laptop 9/10 6.5/10 0.59
open-drawer 4/10 6/10 0.09
remove-gears 4.67/10 7/10 0.19
pen-handover 1.5/10 0/10 0.43
fold-dress 7/10 7/10 0.66

Table 3: Real-World ALOHA Policy Learning Results. AWR
with GVL (One-Shot) outperforms imitation learning baselines
when the value predictions have high VOCs.

Now, we use the above success de-
tection methods for filtered imitation
learning; for all methods, we use Ac-
tion Chunking Transformer (ACT) as
the imitation learning algorithm (Zhao
et al., 2023); ACT hyperparameters
are tuned for ACT on the success-only
subset and are fixed for all methods.
Given the noisiness in model check-
points performance, we report the av-
erage success rate of the last 10 model
training checkpoints. Results for the
six simulation tasks are shown to the
right of Fig. 6, where GVL-SD’s improved success detection leads to better performance over Suc-
cessVQA. In fact, SuccessVQA often hurts performance, likely because of its low precision which
causes the policy to train on a high number of false positive (i.e. failure) trajectories. In Fig. 6
(Right) we show the effect of varying the VOC threshold in {−1.0, 0, 0.25, 0.5, 0.75} in comparison
to training on all the data with ACT; note that this is the same using the lowest threshold, −1.0 as
it is a lower bound on the VOC metric. As seen, GVL consistently outperforms ACT regardless of
threshold values; when the threshold value is too high, i.e., 0.75, we see a slight dip in performance
when the overall dataset size becomes too small.

Advantage-weighted regression for real-world visuomotor control. Finally, we illustrate how
GVL can assign importance weights to individual transitions within trajectories at a fine-grained
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level akin to offline reinforcement learning. For these experiments we use real-world demonstration
data collected by human teleoperation on bi-manual ALOHA robot setups. Unlike simulation, our
datasets only contain successful task executions but can be sub-optimal and multi-modal. Thus, we
directly utilize GVL’s values with advantage weighted regression (AWR) (Peters & Schaal, 2007;
Peng et al., 2019), in which we weight each individual transition by the estimated advantange, or
GVL value difference for that step:

L(θ) := −E [exp (τ · (vk+1 − vk)) · log πθ(ak | ok)] (6)

We use diffusion policy (DP) as the policy backbone (Chi et al., 2023) for each task, and compare
training diffusion policies with GVL (One-Shot) advantage weighting or lack thereof. We evaluate on
7 tasks with 10 trials per task and report success rate in Table 3. As can be seen, on a majority tasks,
GVL-DP outperforms DP and we see a clear correlation between improvement over DP and the VOC
score. That is, when the value predictions are of high quality as judged by VOC, policy learning
can benefit from GVL value weighting. On open-drawer and remove-gears, the top-down
view does not provide sufficient resolution to distinguish task progress (see Fig. 8), as a consequence,
the value predictions can be noisy, which can hurt policy learning. However, given the in-context
learning results, we believe that it is possible to improve policy learning even on difficult tasks with
non-ideal camera viewpoints.

4.4 ABLATIONS

Finally, we ablate key algorithmic design choices of GVL to validate their necessity. In the Appendix,
we additionally demonstrate that GVL’s performance is robust to the choice of backbone VLMs as
well as input camera viewpoint.

Is autoregressive value prediction necessary? We consider an ablation that simply asks the VLM
to predict values of input observations one by one without GVL’s autoregressive batch prediction
mechanism. This ablation, which we refer to as VLM (Single Frame), essentially poses value
estimation as a VQA problem. In Tab. 4, we compare this ablation to GVL on a subset of RT-1 dataset
as in Section 4.1; the average VOC for VLM (Single Frame) is a mere −0.08, a significant drop from
GVL’s 0.74 on RT-1 dataset. As seen, pre-trained VLMs by themselves are poor value estimators,
generating inconsistent values that are too noisy to be used in practice.

RT-1 dataset GVL Single Frame

VOC 0.74 -0.08

Table 4: Using VLMs to pre-
dict values frame-by-frame signif-
icantly underperforms GVL’s au-
toregressive mechanism.

Is input observation shuffling necessary? As discussed, we find
that removing shuffling collapses ICV’s predictions into generating
degenerate values; that is, regardless of the quality of the provided
trajectory, GVL tends to predict monotonically increasing values,
resulting in inflated VOC scores that cannot be used to discriminate
successful and failure trajectories.; see Fig. 5 (Right). To further
qualitatively illustrate this phenomenon, in Fig. 11 in the Appendix,
we overlay raw GVL value predictions with frame shuffling and
lackthereof to understand the spread of the value curves. We see that the overlay for original GVL
looks “messy”, suggesting that GVL outputs varied value curves that better capture the heterogeneity
of the queried video qualities. In contrast, without frame shuffling, GVL predictions indeed collapses
onto a few linear ascending patterns.

5 CONCLUSION

We have introduced Generative Value Learning (GVL), a universal value function via VLM autore-
gressive value prediction on shuffled video frames. GVL can zero-shot output dense and high-quality
value predictions for diverse and challenging real-world robotic tasks, spanning various robot embod-
iments and task categories. With few-shot learning from the same task, different task, or different
embodiment, GVL performance steadily improves. We have demonstrated several use cases of using
GVL to perform dataset, trajectory, and transition selection to improve downstream policy learning
performance and generalization. We believe that GVL takes an important step in using foundation
models supervision for robot learning.
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A LIMITATIONS AND FUTURE WORK

GVL is most suited for offline setting, in which full trajectories are available for inference. In
the online setting, GVL must re-query each new sub-trajectory from every new step; this may be
computationally expensive. Furthermore, we have not investigated whether pre-trained VLMs can be
fine-tuned to perform better value predictions. In addition, though we test on diverse camera view-
points, we have not yet investigated whether multi-view observations can improve value prediction
quality. In addition, our evaluation metric Value-Order Correlation is most suitable for a-periodic
tasks for which there exists a unique ordering of frames from an expert demonstration. Tasks such as
wiping or stirring may be hard to discern. Though these limitations present avenues for future work,
we believe GVL is a step towards improved in-the-wild value estimation.

B PROMPT

In this section, we provide the full prompt provided to the VLM for GVL predictions. The same
prompt is used for all OXE datasets.

You are an expert roboticist tasked to predict task completion
percentages for frames of a robot for the task of {
task_description}. The task completion percentages are
between 0 and 100, where 100 corresponds to full task
completion. We provide several examples of the robot
performing the task at various stages and their corresponding
task completion percentages. Note that these frames are in
random order, so please pay attention to the individual
frames when reasoning about task completion percentage.

Initial robot scene:

In the initial robot scene, the task completion percentage is 0.

Now, for the task of {task_description}, output the task
completion percentage for the following frames that are
presented in random order. For each frame, format your
response as follow: Frame {i}: Frame Description: {}, Task
Completion Percentages:{}%

Frame {i}:

C GVL OXE DATASET VOC BREAKDOWN

In this section, we provide the full list of average VOC score for each OXE dataset. In Table 5, we
provide the VOC scores for GVL with Gemini-1.5-Pro as the backbone VLM. In Table 6, we
provide the VOC scores for GVL with GPT-4o as the backbone VLM.

D SIMULATION TASKS

In Figure 7, we illustrate the six simulation tasks used for the success detection and filtered imitation
learning experiment. For each task, we use VR teleoperation to collect 500 trajectories for initial
policy training. After the policy converges, we rollout the last checkpoint for 1000 imtes, resulting in
naturally balanced mix-quality datasets of about half success and half failure trajectories.

E REAL-WORLD TASKS

In Fig. 8, we provide the top-down view of the 7 ALOHA tasks used for real-world policy learning
experiments.

17



Published as a conference paper at ICLR 2025

Dataset VOC Score
utokyo pr2 opening fridge converted externally to rlds 0.8095
utokyo xarm bimanual converted externally to rlds 0.7955
utokyo xarm pick and place converted externally to rlds 0.7880
fractal20220817 data 0.7385
maniskill dataset converted externally to rlds 0.7260
berkeley autolab ur5 0.7185
nyu door opening surprising effectiveness 0.6685
utokyo pr2 tabletop manipulation converted externally to rlds 0.5875
utaustin mutex 0.5810
iamlab cmu pickup insert converted externally to rlds 0.5585
fmb 0.5555
ucsd kitchen dataset converted externally to rlds 0.5295
dobbe 0.5295
toto 0.5270
bridge 0.5145
austin sirius dataset converted externally to rlds 0.5100
asu table top converted externally to rlds 0.5055
berkeley rpt converted externally to rlds 0.4835
berkeley cable routing 0.4470
usc cloth sim converted externally to rlds 0.4410
jaco play 0.4205
bc z 0.4065
viola 0.4035
berkeley mvp converted externally to rlds 0.3900
roboturk 0.3545
austin buds dataset converted externally to rlds 0.3415
stanford hydra dataset converted externally to rlds 0.3325
tokyo u lsmo converted externally to rlds 0.3140
berkeley fanuc manipulation 0.2685
cmu stretch 0.2625
ucsd pick and place dataset converted externally to rlds 0.2410
kuka 0.1915
dlr sara pour converted externally to rlds 0.1600
taco play 0.0945
dlr edan shared control converted externally to rlds 0.0855
droid -0.0060
stanford robocook converted externally to rlds -0.0690
imperialcollege sawyer wrist cam -0.1225
kaist nonprehensile converted externally to rlds -0.1310
austin sailor dataset converted externally to rlds -0.1715
cmu play fusion -0.3445
stanford kuka multimodal dataset converted externally to rlds -0.3770
stanford mask vit converted externally to rlds -0.4505
nyu franka play dataset converted externally to rlds -0.4555
uiuc d3field -0.7025
cmu franka exploration dataset converted externally to rlds -0.7395
columbia cairlab pusht real -0.7625
robo net -0.8485
dlr sara grid clamp converted externally to rlds -1.0000

Table 5: GVL (Gemini-1.5-Pro) OXE Dataset VOC Scores
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Dataset VOC Score
nyu door opening surprising effectiveness 0.883
utokyo pr2 opening fridge converted externally to rlds 0.864
berkeley mvp converted externally to rlds 0.8285
utaustin mutex 0.813
fractal20220817 data 0.803
utokyo xarm pick and place converted externally to rlds 0.7665
berkeley autolab ur5 0.755
utokyo xarm bimanual converted externally to rlds 0.749
utokyo pr2 tabletop manipulation converted externally to rlds 0.734
austin sirius dataset converted externally to rlds 0.7235
toto 0.713
dlr edan shared control converted externally to rlds 0.6595
bridge 0.6445
berkeley fanuc manipulation 0.6295
berkeley rpt converted externally to rlds 0.6235
ucsd kitchen dataset converted externally to rlds 0.603
roboturk 0.57
jaco play 0.5615
iamlab cmu pickup insert converted externally to rlds 0.557
uiuc d3field 0.5395
usc cloth sim converted externally to rlds 0.5355
asu table top converted externally to rlds 0.5025
maniskill dataset converted externally to rlds 0.499
kaist nonprehensile converted externally to rlds 0.492
viola 0.4605
austin buds dataset converted externally to rlds 0.454
cmu play fusion 0.4235
tokyo u lsmo converted externally to rlds 0.3875
austin sailor dataset converted externally to rlds 0.3015
ucsd pick and place dataset converted externally to rlds 0.2675
berkeley cable routing 0.255
dlr sara pour converted externally to rlds 0.252
imperialcollege sawyer wrist cam 0.239
robo net 0.237
stanford hydra dataset converted externally to rlds 0.205
cmu stretch 0.1895
bc z 0.176
nyu franka play dataset converted externally to rlds 0.1735
stanford robocook converted externally to rlds 0.16
kuka 0.132
stanford mask vit converted externally to rlds -0.173
stanford kuka multimodal dataset converted externally to rlds -0.1785
columbia cairlab pusht real -0.1815
cmu franka exploration dataset converted externally to rlds -0.2075
taco play -0.2705
eth agent affordances -0.279
dlr sara grid clamp converted externally to rlds -1

Table 6: GVL (GPT-4o) OXE Dataset VOC Scores
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(a) single insertion (b) double insertion (c) mug on plate

(d) bowl on rack (e) plate on rack (f) glass on rack

Figure 7: Simulated task setups of dexterous manipulation on the ALOHA robot.

(a) banana-handover (b) bowl-in-rack (c) close-laptop

(d) fold-dress (e) open-drawer (f) pen-handover (g) remove-gears

Figure 8: Real-world experiment setups for dexterous manipulation on the ALOHA robot.

F GVL VISUALIZATION

In this section, we visualize several raw GVL predictions on our ALOHA datasets. Samples are
chosen from diverse camera viewpoints for which we evaluated GVL. The visualizations are in Fig. 9.
As shown, on diverse viewpoints, GVL remains effective for diverse tasks. We do observe that GVL
sometimes would predict “spike” values that are not consistent with the rest of the predictions. We
hypothesize that this could be due to partial observability of the task at that particular timestep as
well as inherent stochasticity in the shuffling order; we leave to future work for a more systematic
investigation of these types of errors.

G ADDITIONAL RESULTS

In this section, we present additional results and analysis.

GVL and LIV comparison on a subset of high-quality OXE datasets. Given that not all OXE
datasets are necessarily demonstration data most suitable for being used for VOC-based evaluation,
we have delegate a few datasets to be of “high-quality” to use VOC as a metric and re-create the
original results as in Fig. 2. To this end, we have selected RT-1 (Brohan et al., 2023), Bridge (Ebert
et al., 2021; Walke et al., 2023),DOBBE (Shafiullah et al., 2023), and BC-Z (Jang et al., 2022)
datasets because these datasets have successfully been used in prior works for large-scale imitation
learning and include diverse tasks and camera viewpoints. The results are illustrated in Fig. 10. As
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(a) fold dress from the top-down view.

(b) pen handover from the table view.

(c) close laptop from the right wrist camera.

(d) remove gears from the left wrist camera.

Figure 9: Example GVL predictions on diverse ALOHA tasks.
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Figure 10: On a subset of high-quality OXE datasets, GVL consistently outperforms LIV, mirroring the
comprehensive OXE results in Fig. 2.

seen, on this subset of high-quality and diverse OXE datasets, GVL consistently generates highly
positive VOCs; in contrast, LIV generates VOCs close to a uniform distribution, indicating that it
struggles to accurately predict language-conditioned task progress on unseen robot videos.

GVL’s qualitative behavior on task failure and repetition. In our supplementary material submis-
sion, we have included two videos in which repetition or failure is present. As shown, in both cases,
when the robot gripper pulls back from the object of task interest, GVL’s task progress estimates
decrease, and when the gripper recovers and makes progress again, GVL’s estimates increase. These
results demonstrate GVL’s ability to accurately estimate values in videos when repetition is present.

GVL and No-Shuffling ablation qualitative comparison. As shown in Fig. 11, GVL generates
value predictions that are varied over time; in contrast, without frame shuffling, the predictions all
collapses onto a few monotonic patterns.
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Figure 11: GVL without shuffling produces uninformative monotonic values regardless of trajectory quality.

DROID co-training dataset filtering results. We use GVL to filter a subset of random demonstra-
tions from the DROID dataset (Khazatsky et al., 2024). We first use GVL to construct VOC scores
for each of the two external cameras for 1243 demonstrations. Then, we filter the demonstrations
according to the average VOC score across both camera images. As policies trained on DROID do
not perform well zero-shot, we follow prior works (Khazatsky et al., 2024; Hejna et al., 2024) and
co-train policies with a handful of in-domain demonstrations to asses the quality of the filtered data.
We include 15 demonstrations for each of three different tasks: 1) “Purple Bowl”, where the robot
places a purple bowl in a dish rack, 2) “Blue Pot” where the robot places a blue pot in the dish rack,
and 3) a more challenging “Bowl Flip”, where the robot has to first flip over a large bowl, and then
place it in the dish rack upside down. We train Diffusion policies (Chi et al., 2023) with a data mixture
comprised of 60% demonstrations from DROID, filtered according to different methods, and 40% 15
in-domain demonstrations for each task. Full results can be found in Table 7. Similar to Khazatsky
et al. (2024), we find that co-training with more data helps performance. GVL notably attains the
same performance training with only 947 demonstrations as training on the entire subset of 1243
demonstrations. However, training on a random subset of 947 demonstrations incurs a performance
hit – reducing average success rate from 20/40 to only 7/40. All policies generally struggle more
with the harder flipping task, especially with the blue bowl.
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Method # Demos Purple Bowl Blue Pot Flip Bowl - Orange Flip Bowl - Blue Total
All Data 1243 9/10 6/10 4/10 1/10 20/40
Random Subset 947 2/10 2/10 2/10 1/10 7/40
GVL, VOC 0.0 947 10/10 6/10 3/10 1/10 20/40

Table 7: Policy Learning results using GVL to filter the droid dataset.
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Figure 12: Success-Filtered Imitation Learning on ALOHA Tasks. Left: Using GVL-SD for success-filtered
BC substantially outperforms SuccessVQA. Right: GVL-SD is not sensitive to the VOC threshold for improving
imitation learning.

Zero-Shot Aloha Sim Results. In Fig. 12 we include results for GVL-SD zero-shot instead of one-
shot. The results are qualitatively similar, where GVL-SD consistently outperforms SuccessVQA,
and different VOC threshold values all provide performance gain.

Different VLM backbone. We additionally consider GPT-4o as the backbone VLM to better
understand GVL’s performance in relation to the backbone VLM model. For evaluation, we plot
the histogram of all 1000 (50×20) Value Order Correlation (VOC) scores across all trajectories in
Figure 13. As shown, GVL, independent of the backbone models, consistently generates VOC scores
that heavily skews to the right, indicating that it is able to zero-shot recover the temporal structure
hidden in the shuffled demonstration videos, i.e., coherent value predictions.

Figure 13: GVL has comparable performances with different backbone VLMs; the main difference is in the
backbone model’s refusal rate and conforming to the response template, which is reflected in the tall bar at −1.0.

Cross-task in-context learning. We investigate whether examples from other tasks can also unlock
GVL’s in-context learning capability. On the previous ALOHA-13 tasks, we randomly pair up tasks,
where we draw one demonstration from one task as the one-shot in-context example for another. Then,
we compare VOCs with the original same-task one-shot setup. The results are shown in Figure 14.
We see that providing examples from a different task is still beneficial, though the improvement is not
as much as same-task examples. This is to be expected as intra-task examples still provide clue on the
output format as well as a generic notion of task progress, but such information is not specific to the
target task. That said, cross-task ICL enables the flexibility of enabling foundation model guidance
on a task without any task-specific prior.

Does GVL work on different camera viewpoints? On our ALOHA setup, we collected all demon-
strations using four camera viewpoints. Besides the top-down view reported in the main experiment
above, we test whether GVL remains performant when using alternative viewpoints, especially
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Figure 14: GVL demonstrates cross-task in-context learning capability: its value predictions can be improved by
value examples from different tasks.
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Figure 15: GVL works better on more in-distribution table view, but one-shot improvement benefits all camera
views.

gripper views that are likely more out-of-distribution with respect to the natural images used for
VLM training. The aggregate zero-shot and one-shot results are shown in Figure 15. As seen, on
average, GVL zero-shot works best on the Table viewpoint. This is not surprising, as images taken
with the front facing table camera are arguably visually closer to naturally captured images used for
VLM training. Yet, with in-context examples, GVL consistently improves on all camera viewpoints.
In practice, this means that GVL is robust to camera viewpoints – even when a camera viewpoint is
determined to be sub-optimal post-hoc, practitioners can make up for that by simply providing few
in-context examples.

Does GVL pay attention to the task specification? To validate that GVL is not merely recovering
the temporal coherence in the shuffled input video but actively tracking visual progress according to
the task language command, we compute the VOC scores for every combination of task input video
and language description in the ALOHA-13 split. The heatmap visualization of the average VOC for
every pairing is illustrated in Fig. 16 and Fig. 17 for GVL and the no shuffling ablation. On 9 out of
13 tasks, GVL achieves the highest VOC when the input video and the task description matches; in
many unmatched cases, the model simply refuses to output value predictions, stating that the frames
and the language description are not related. In contrast, when we do not shuffle the input frames, the
quality dramatically drops.
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Figure 16: GVL VOC for video and language description pairs. Shuffling enables GVL to pay attention to the
language task description in order to faithfully predict observation values.
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Figure 17: No-shuffling ablation VOC for video and language description pairs. Removing shuffling makes
VLM output high VOCs independent of task descriptions.
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