
Under review as a conference paper at ICLR 2024

A ADDITIONAL RESULTS

• More text-to-video generation result comparisons: https://t1-diffusion-model.
github.io/visual-comparisons-celebvt.html

• More non-face text-to-video generation results: https://t1-diffusion-model.
github.io/visual-comparisons-webvid.html

• More 3D viewpoints generation results: https://t1-diffusion-model.github.
io/visual-comparisons-shapenet_3dviewpoints.html

• More 3D voxel1 generation result comparisons: https://t1-diffusion-model.
github.io/visual-comparisons-shapenet_voxels.html

B ADDITIONAL SETTINGS

Model Details.

• In the interest of maintaining simplicity, we adhere to the methodology outlined by Dhariwal
et al. (Dhariwal & Nichol, 2021) and utilize a 256-dimensional frequency embedding to
encapsulate input denoising timesteps. This embedding is then refined through a two-layer
Multilayer Perceptron (MLP) with Swish (SiLU) activation functions.

• Our model aligns with the size configuration of DiT-XL (Peebles & Xie, 2022b), which
includes retaining the number of transformer blocks (i.e. 28), the hidden dimension size of
each transformer block (i.e., 1152), and the number of attention heads (i.e., 16).

• Our model derives text embeddings employing T5-XXL (Raffel et al., 2020), culminating in
a fixed length token sequence (i.e., 256) which matches the length of the noisy tokens. To
further process each text embedding token, our model compresses them via a single layer
MLP, which has a hidden dimension size identical to that of the transformer block.

Diffusion Process Details. Our model uses classifier-free guidance in the backward process with
a fixed scale of 8.5. To keep consistency with DiT-XL (Peebles & Xie, 2022a), we only applied
guidance to the first three channels of each denoised token.

3D Geometry Rendering Settings. Following the settings of pixelNeRF (Yu et al., 2021), we
render each car voxel into 128 random views for training models and testing. However, the original
setting puts camera far away from the objects and hence results in two many blank areas in the
rendered views. We empirically find that these blank areas hurts the diffusion model performance
since the noise becomes obvious in blank area and can be easily inferred by diffusion models, which
degrades the distribution modeling capability of diffusion models.

To overcome this, we first randomly fill the blank area with Gaussian noise N (0, 0.1) without
overlapping the 3D geometry. We then move the camera in the z-axis from 4.0 into 3.0, which is
closer to the object than the previous one. During testing, we use the same settings as pixelNeRF
and remove the noise according to the mask. For straightforward understand their difference, we
visualized their rendered results in Fig. 7.

(a) pixelNeRF Yu et al. (2021) rendering (b) ours rendering

Figure 7: Visual comparisons of different 3D geometry rendering settings.

1Note that the comparisons are conducted by rendering their generated voxel objects into 3D viewpoints and
then compare those results with ours.

14

https://t1-diffusion-model.github.io/visual-comparisons-celebvt.html
https://t1-diffusion-model.github.io/visual-comparisons-celebvt.html
https://t1-diffusion-model.github.io/visual-comparisons-webvid.html
https://t1-diffusion-model.github.io/visual-comparisons-webvid.html
https://t1-diffusion-model.github.io/visual-comparisons-shapenet_3dviewpoints.html
https://t1-diffusion-model.github.io/visual-comparisons-shapenet_3dviewpoints.html
https://t1-diffusion-model.github.io/visual-comparisons-shapenet_voxels.html
https://t1-diffusion-model.github.io/visual-comparisons-shapenet_voxels.html


Under review as a conference paper at ICLR 2024

Hyper-parameter CIFAR10 (Krizhevsky et al., 2009) CelebV-Text (Yu et al., 2023b) ShapeNet (Chang et al., 2015)

train res. 64⇥64 256⇥256⇥128 128⇥128⇥128
256⇥256⇥128 (upsampled)

eval res. 64⇥64 256⇥256⇥128 128⇥128⇥251
256⇥256⇥251

# dim coordinates 2 3 6
# dim signal 3 3 3

# freq pos. embed 10 10 10
# freq pos. embed t 64 64 64

#blocks 28 28 28
#block latents 1152 1152 1152

#self attention heads 16 16 16

batch size 128 128 128
lr 1e� 4 1e� 4 1e� 4

epochs 400 400 1200

Table 3: Hyperparameters and settings on different datasets.

C ADDITIONAL DATASET DETAILS

In the subsequent sections, we present the datasets utilized for conducting our experiments. We
empirically change the size settings of our model as shown in Tab 3.

• CelebV-Text (Yu et al., 2023b) Due to the unavailability of some videos in the released
dataset, we utilize the first 60,000 downloadable videos for training our model. For videos
that contain more than 128 frames, we uniformly select 128 frames. Conversely, for videos
with fewer than 128 frames, we move to the next video, following the order of their names,
until we identify a video that meets the required length of 128 frames.

• ShapeNet (Chang et al., 2015). The conventional methods in DPF (Zhuang et al., 2023)
and GEM (Du et al., 2021) generally involve training models on the ShapeNet dataset,
wherein each object is depicted as a voxel grid at a resolution of 643. However, our model
distinguishes itself by relying on view-level pairs, thereby adopting strategies utilized by
innovative view synthesis methods like pixelNeRF (Yu et al., 2021) and GeNVS (Chan et al.,
2023). To specify, we conduct training on the car classes of ShapeNet, which encompasses
2,458 cars, each demonstrated with 128 renderings randomly scattered across the surface of
a sphere.
Moreover, it’s worth noting that our model refrains from directly leveraging the text descrip-
tions of the car images. Instead, it conditions on the CLIP embedding (Radford et al., 2021)
of car images for linguistic guidance. This approach circumvents the potential accumulation
of errors that might occur during the text-to-image transformation process.

D ADDITIONAL EXPERIMENTAL DETAILS

Video Generation Metrics Settings. In video generation, we use FVD (Unterthiner et al., 2018)2

to evaluate the video spatial-temporal coherency, FID (Heusel et al., 2017)3 to evaluate the frame
quality, and CLIPSIM (Radford et al., 2021)4 to evaluate relevance between the generated video and
input text. As all metrics are sensitive to data scale during testing, we randomly select 2,048 videos
from the test data and generate results as the “real” and “fake” part in our metric experiments. For
FID, we uniformly sample 4 frames from each video and use a total of 8,192 images. For CLIPSIM,
we calculate the average score across all frames. We use the “openai/clip-vit-large-patch14” model
for extracting features in CLIPSIM calculation.

2FVD is implemented in https://github.com/sihyun-yu/DIGAN
3FID is implemented in https://github.com/toshas/torch-fidelity
4CLIPSIM is implemented in https://github.com/Lightning-AI/torchmetrics
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E VISUALIZATION

Figure 8: Intermediate results visualization of our multi-view generation. Here we show the predicted
clean image at different timesteps for highlighting the cross-view consistency of our model.
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