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ABSTRACT

Federated Learning (FL) is a distributed learning process designed to protect user
privacy by avoiding the transmission of user data during communication while
training a model. Many techniques aim to enhance the performance of models
through knowledge distillation but lack data on the server side. To address this is-
sue, Generative Adversarial Networks (GANs) are commonly employed to gener-
ate data for model distillation. The GANs approach faces numerous challenges in
recent popular large-scale Transformer-based NLP tasks, such as structural mis-
matches in models, high computational complexity, and concerns regarding the
privacy of client-generated text. Prior research has sought to enhance the process
using auxiliary data to avoid the above issues, however, the selection of suitable
data tailored to diverse tasks remains a challenging endeavor. To address the chal-
lenges posed by GANs and auxiliary data, this work proposes a lightweight ap-
proach that samples from the embedding structure of Transformers and learns a
set of pseudo data for the distillation process, which draws inspiration from the
concept of soft prompts. This lightweight approach does not require GANs or
auxiliary data, incurs no communication overhead, and yields improved model
performance with relatively lower computational costs on the server side. Our ex-
periments yield superior results compared to methods that rely on auxiliary data
on complex NLP tasks such as the SuperGLUE Benchmark.

1 INTRODUCTION

Federated Learning (FL) is a privacy-preserving distributed learning technique that has gained sig-
nificant popularity. With the advancement of deep learning, the increasing demand for data by
models has raised concerns about data privacy. Presently, over 90 countries have established privacy
protection laws and policies (Li et al., 2021). FL finds applications in diverse fields such as Nat-
ural Language Processing (NLP) (Venkateswaran et al., 2022), Computer Vision (CV) (Lin et al.,
2020), Industrial Artificial Intelligence (IAI) (Hao et al., 2019), and Medical Informatics (Xu et al.,
2021). Leading AI companies like Google (Bonawitz et al., 2019), Apple (Paulik et al., 2021), and
Meta (Stojkovic et al., 2022) are actively developing this technology to safeguard user privacy.

FL typically involves multiple clients participating in the training of a shared model. Based on the
computational capabilities of participating clients, FL can be categorized into Cross-device (Karim-
ireddy et al., 2021), common among low-capacity clients like smartphones and wearable devices,
and Cross-silo (Huang et al., 2021), prevalent in large organizations, hospitals, and other entities
with substantial computational resources. Generally, FL is approached as an optimization problem,
although alternative paths involving knowledge distillation techniques also exist. This work focuses
on the non-iid and imbalance distillation issues within the Cross-silo scenario, with communication
limitations less pronounced in larger organizations.

Models like the Transformer (Vaswani et al., 2017), which combine pre-training tasks, have achieved
remarkable success in the field of NLP. Prominent Transformer models include BERT (Bidirectional
Encoder Representations from Transformers) (Devlin et al., 2018), T5 (Raffel et al., 2020), and GPT
(Generative Pre-trained Transformer)(Alec et al., 2018). Notably, OpenAI’s recently released Chat-
GPT (OpenAI, 2023) has garnered exceptional attention in intelligent question answering and text
generation. However, while FL’s major baselines often focus on simple image classification tasks,
there is limited in-depth research on Transformers under the FL paradigm. The distinctive struc-
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ture and training methodology of Transformers set them apart from conventional neural networks,
making conventional FL techniques unsuitable for their training processes.

Federated Learning can be conceptualized as a model ensemble process, which shares similarities
with the principles of knowledge distillation. The integration of knowledge distillation with FL (Sat-
tler et al., 2021; Lin et al., 2020) often seeks to enhance the overall performance of the global model.
However, applying knowledge distillation to FL necessitates overcoming the challenge of transmit-
ting data from clients to the server. Consequently, various GAN-based methods (Zhu et al., 2021;
Zhang et al., 2022) for generating synthetic data have emerged in the FL context, with GANs learn-
ing to produce pseudo-samples aligning with the client distributions, forming the foundation for
incorporating knowledge distillation techniques.
Challange of GANs However, crafting a GAN-based framework for text generation in the context
of Transformers is a challenging endeavor due to its inherent sparsity and complexity (Brophy et al.,
2023; Alvarez-Melis et al., 2022). GANs (Goodfellow et al., 2020) typically consist of a generator
and a discriminator engaged in an adversarial game.
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Figure 1: Creating an suitable and
privacy-preserving generator for
Transformers poses a formidable
and intricate challenge.

In frameworks like FedGEN (Zhu et al., 2021) and similar ap-
proaches, the traditional discriminator is replaced with client
models, thereby facilitating the generation of samples specific
to each client. However, FedGEN lacks a generalized ap-
proach, and there is no fixed paradigm for designing various
generator structures tailored to different tasks. Besides, de-
signing a deep generator that matches the depth of a Trans-
former model poses substantial computational and communi-
cation overhead.

Moreover, if one were to employ Transformers directly for
generating client-side text sequences, privacy concerns arise.
Research has shown that machine learning models can memo-
rize data, allowing malicious actors to extract sensitive infor-
mation from the model’s behavior (Feldman & Zhang, 2020). As described in Guo et al. (2022),
privacy attacks on pre-trained generative models include embedded inversion attacks, which can
reverse engineer embedded code to infer the original sentences. Additionally, there are attribute
inference attacks (Song & Raghunathan, 2020), where words or sentences from the training context
exhibit more similarity scores compared to those from other contexts, thereby allowing inference
attacks on the presence of certain words in the data. There are also corpus inference attacks (Carlini
et al., 2021) and other attacks (Cai et al., 2021; Sundermeyer et al., 2012; Li et al., 2018) .
Our contributions In order to address the distillation challenge in FL, particularly in the con-
text of Transformer models, especially when auxiliary data is scarce, and drawing inspiration from
soft prompts, we propose a text-free approach that leverages diverse sampling from embeddings to
effectively enhance model performance. Specifically, we design three methods for sampling from
embeddings, with the core idea being to enhance distillation by sampling from embeddings and op-
timizing samples obtained through different objectives and their blends. This lightweight approach
does not require GANs or auxiliary data, incurs no communication overhead, and yields improved
model performance with relatively lower computational costs on the server side.

We conduct experiments on a variety of NLP understanding tasks from the SuperGLUE benchmark
in a cross-silo FL setting, using two typical downstream task models (with or without decoder struc-
tures). Our results demonstrate superior performance compared to solutions relying on auxiliary
data. Furthermore, our ablation experiments elucidate the unique advantages of models equipped
with embeddings over those without embeddings, showcasing the efficiency and quality of sampling
in embedding-enhanced models.

2 RELATED WORKS

Federated learning faces several fundamental challenges such as imbalanced, non-iid data distribu-
tion and communication constraints. To solve these issues, we summarize two main approaches from
previous works, namely the model optimization approach and the knowledge transfer approach.

Model optimization The model optimization approach, represented by neural network mod-
els, typically utilizes local optimization algorithms such as SGD and Adam on clients. The Fe-
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dAvg (McMahan et al., 2017) algorithm, proposed with the concept of federated learning, is one
of the most widely applied algorithms. Numerous studies have pointed out that the inconsistency
between local and global optimization directions hinders achieving desirable results (Li et al., 2022).
To address this issue, algorithms such as SCAFFOLD (Karimireddy et al., 2020) and FedOpt (Reddi
et al., 2020) have been introduced, which incorporate regularization and local gradient corrections.

Knowledge distillation The knowledge distillation approach was originally used for model com-
pression. FedDF (Lin et al., 2020) is the first algorithm to aggregate knowledge in FL using distil-
lation techniques. FedDF uses GAN for image tasks and auxiliary data for NLP tasks. Later, in the
domain of image generation tasks, the FedGEN (Zhu et al., 2021) algorithm employs GAN to learn
the local distribution and complement data on the server side. The FedFTG (Zhang et al., 2022) al-
gorithm utilizes GAN to learn difficult samples for the global model. Although these solutions have
achieved good performance on classical image classification datasets, the instability of adversarial
networks raises questions about their practical applicability. In the field of NLP, FedAUX (Sattler
et al., 2021) is developed to enhance data distillation by leveraging classifier weights. However,
the challenge of selecting appropriate auxiliary data for specific tasks still persists and knowledge
distillation for generative models lacks auxiliary distillation schemes. Another distillation approach
FedKD (Wu et al., 2022) involves distilling knowledge from a local large model to a global small
model, effectively reducing communication cost while maintaining excellent performance. Re-
cently, the distillation technique has evolved into the dataset condensation approach, which uses
distillation techniques to compress data, such DOSF (Zhou et al., 2020) and FedDM (Xiong et al.,
2022).

3 PRELIMINARIES

3.1 FEDERATED LEARNING

We consider the federated deep learning problem in cross-silo scenarios. There is a set of learning
tasks T = {T1, T2, · · · , TM}, and a dataset D = {(x, y)}, where data (x, y) is from a distribution
D and x ∈ X , y ∈ Y .To solve all of the tasks together, we aim to train a neural network as f(x,w),
and let ŷ = f(x, ω) represent the predicted label.The population loss of the training neural network
parameters ω is L(ω) = Ex∼D[l(f(x, ω), y)] . In the classification problems, we can take the loss
function as the cross-entropy (CE) between the network output distribution and true distribution.
For two discrete distributions P and Q with the same support Y , their cross-entropy is defined as
CE(P ||Q) = −

∑
y∈Y P (y) logQ(y).

For the cross-silo scenario, there are K clients collectively working on the tasks. We abuse the
notation ‘clients’ in this paper to denote the local servers with an input dataset. For each client,
k ∈ [K], the data of it is from the distributionDk, and this client k could join in a subset of all tasks.
All clients collaborate to obtain a global model ω with objective

min
ω

K∑
k=1

Ex∼Dk
[l(f(x, ω), y)] . (1)

Knowledge Distillation For KD in federated learning, typically it needs a proxy dataset DP to
minimize the discrepancy between the outputs from the teacher model ωT and the student model ωS .
A representative choice is to use Kullback-Leibler (KL) divergence to measure such discrepancy, it
is defined as DKL(P ||Q) =

∑
y∈Y P (y) log(P (y)

Q(y) ).

Consider in the neural network, let f(·) be the logits outputs and σ(·) be the softmax function.
We can treat each client model ωk as a teacher, then the information is aggregated into the student
(global) model ω by:

argmin
ωS

Ex∼DP
[DKL(σ(

1

K

K∑
k=1

f(x, ωT ))||σ(f(x, ωS)))] . (2)
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3.2 TRANSFORMERS

The parameter ω of a Transformer model consists of three main components: the word embedding
layer ωemb, the encoder layers ωenc, and the optional decoder layers ωdec. These components are
followed by a task-specific head ωlm, which outputs the corresponding labels for the given task T .
The parameters except the embedding process are collectively referred to as the task parameters, we
denote them as ωf = {ωenc, ωdec, ωlm}.
Two approaches can be considered for downstream tasks. The first approach is the classic discrim-
inative Transformer. The final prediction probability of x is obtained directly from the output at
the [CLS] token position, which is embedded at the beginning of the input sentence. This can be
represented as:

P (y|x, ω) = σ(f(h(x;ωemb);ωf )) , (3)

where h(·) embeds x into space E , σ is the softmax function.

The second approach is the generative text-to-text model, which does not provide direct probabilities
for the labels corresponding to the task. Instead, it generates a series of words corresponding to the
task labels. The probability of the word sequence q1:L with input x can be factorized as follows:

P (q1:L|x, ω) =
L∏

l=1

P (ql|q1:L, x, ω) . (4)

Here, q1:L represents the actual words corresponding to the predicted label ŷ. Typically, greedy
search or beam search is used to determine the final word sequence q1:L.

Overall, to maintain consistency in the output format of the model, whether it is a discriminative or
generative model, the function for the discriminator of a Transformer-based model can be written
P (y|x, ω) = σ(f(h(x;ωemb), ωf )).

4 DIVERSITY RANDOMLY SAMPLE METHOD

This section will provide a more rational distillation objective and elucidate efficient methods for
sampling embeddings. The previous distillation method, such as FedDF, weights all outputs of neu-
ral networks to obtain the teacher distribution. In contrast, our approach aims to fully consider the
independent cross-silo by generating a new proxy dataset with both similar and different information
among all clients.

As for the distinctive architecture of the Transformer model, it is not possible to distill the discrete
embedding layer. Therefore, we directly obtain new embedding layer parameters of the student
model ωS as averaging ωemb

S = 1
K

∑K
k ωemb

k , and accomplish the distillation for other parameters
ωf
S with the objective

argmin
ωS

1

K

K∑
k=1

Eθ∼DS [DKL(σ(f(θ;ω
f
k ))||σ(f(θ;ω

f
S)))] . (5)

Here, θ represents pseudo-embedding samples extracted from the proxy dataset DS which will be
constructed later. We demonstrate that only adjusting the parameters ωf of the transformer on the
server side is already effective. For some models like T5, we can keep the embedding layers fixed
after the first time of training and not updated in the following stages to ensure the embedding layers
of all clients are the same.

To achieve this goal, we need to design a scheme that allows for comprehensive sampling within
the sample space of various client models. The simplest approach is to generate pseudo-samples by
introducing noise that follows the same distribution as the data and embedding. However, randomly
sampled noise may not necessarily lie within the sample space of client models. Inspired by (Ma
et al., 2020), we adjust the noise parameters to align with the objective function of client models,
thereby constructing effective pseudo-samples within the sample space of the clients.

4



Under review as a conference paper at ICLR 2024

𝜔𝑆

𝜔𝑆

Encoder

Decoder

Lo
gits

𝜔𝑆

Encoder

Decoder

Lo
gits

𝜔𝑘

Encoder

Decoder

Lo
gits

…

Sampled vector

𝜃𝑟𝑑 𝑘

Token vector

Token vector

…

Token vector

…

Optimizable vector

𝜃𝑡𝑟 𝑘

…

Optimizable vector

𝜃𝑎𝑑 𝑘

Random Sample

Common 
Embedding Layer

Clients Upload Local Model

Updated global model 

Random sampling initialization

𝜸
𝒕𝒓,𝜸

𝒂
𝒅

𝒌 ~
𝑫
𝒌

Gradient Backward

D
istillatio

n
 (Eq

 8
)

Gradient Backward

Gradient 
Backward

Gradient 
Backward

Decoder

Encoder

Lo
gits

Gradient Backward

Target  o
r A

d
versary Sam

p
lin

g (Eq
 6

 o
r 7

)

Gradient 
Backward

Gradient Backward

…

Vector

Vector

Matric

𝝎

Encoder

Decoder

Lo
gits

Transformers Model

Input to next module

Loss function

Loss function

…

Optimizable vector

𝜽

Optimizable Parameters

𝝎𝑺

Encoder

Decoder

Lo
gits

Optimizable 
Transformers Model

Gradient Backward

Gradient of color-
corresponding loss function

𝜸𝒕𝒓, 𝜸𝒂𝒅
𝒌
~𝑫𝒌

Pseudo-label follow 𝑫𝒌

label distribution

Random sampling initialization

Figure 2: Logic flow of the Three Server-Side Sampling Methods in FedDRS. Following the upload
of the model by the client, the process proceeds from left to right as follows: In the first stage, the
forward phase (white arrows), samples three sets of initial sample parameters from the Embedding
layer. Two of these samples are then fed into the model of clients and the global model. The loss for
target sampling and adversarial sampling is computed (Eq 6 or 7). In the second stage, the backward
phase (shaded arrows), noise samples are updated based on the distinct sampling losses. In the third
stage, the distillation phase, the distributions derived from the three sets of samples are employed to
distill the global model within the client model (Eq 8). The entire adversarial sampling process is
iterated several times to obtain the most updated global model.

(1) Random sampling In intuition, the input data for training the parts of the encoder and decoder
is directly sourced from the embedding layer, so directly random sampling from the embedding
seems like a reasonable operation. In practice, we have found that this random sampling method
yields improvements in BERT models, but its effectiveness is limited in other models.

(2) Target sampling Randomly sampled data lacks purpose, making it challenging to guarantee
its quality. Inspired by soft prompts, pseudo-samples extracted from the embeddings layer are sub-
sequently optimized using the target loss to align with the distribution output by the teacher model
on γtr

k . That is, we construct a target loss function by the cross-entropy as

Ltar =

K∑
k

CE(σ(f(θtrk ;ωf
k )); γ

tr
k ) . (6)

Here, γtr
k represents a set of randomly generated pseudo-labels from distribution γk. Then, we will

use the gradient descent method to optimize it. During this optimization process, we can get the
pseudo samples.

(3) Adversary sampling In order to further enhance the quality of samples and increase the diver-
sity of pseudo samples, we drew inspiration from the concept of FedFTG. Our objective is to obtain
pseudo samples that exhibit correct γad

k labels on ωk while incurring a significant loss on ωS . A
sample that is correctly classified by the teacher model but misclassified by the student model can
be considered as high-quality for the student, and therefore, it is deemed worth learning from.

Ladv =

K∑
k

CE(σ(f(θadk ;ωf
k )); γ

ad
k )− λ · CE(σ(f(θadk ;ωf

S)); γ
ad
k ) . (7)

Here, the parameter λ controls the strength of the adversarial effect between the teachers (clients
model) and student (global model), γad

k represents a set of randomly generated pseudo-labels from
distribution γk. We can also use the gradient descent method to optimize this adversary loss function
and get the pseudo samples. 5
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Algorithm 1 FedDRS: Diversity Randomly Sample
Input: communication round T, client number K, the datasets of clients {D}Kk=1, parameters of

student ωS , adversary sampling iterations I and I∗, update steps η, η∗ and β.
Output: Global model parameters ωS .

1: for t = 1→ T do
2: St ← select active clients uniformly at random
3: for k ∈ St do
4: ωk ← ClientUpdate(ωS ; Dk, ς)
5: end for
6: ωS ← FedDRS({ω}k∈St

, I)
7: end for
8: ωS ← FedDRS({ω}Kk=1, I

∗) ▷ Post-processing
9: return ωS

10: FedDRS({ω}Mm=1, I):
11: ωS ← 1

M

∑M
m ωm

12: for i = 1→ I
13: sample a proxy dataset {θrd, θtr, θad}Mm=1, and pseudo labels {γtr, γad}Mm=1
14: θtrk ← θtrk − β∇θtr

k
Ltar

15: θadk ← θadk − β∇θad
k
Ladv

16: ωS ← ωS − η∗∇ωS
L({θrd, θtr, θad}Mm=1, ωS)

17: end for
18: return ωS

Distillation Combining the aforementioned three sampling methods at the aggregate level re-
sults in a diversified set of pseudo-embeddings Dp = {θrd, θtr, θad}Kk=1 and pseudo-labels
{γtr}Kk=1,{γad}Kk=1. This dataset can be employed to facilitate the distillation process for the en-
coder and decoder layers, bypassing the need for embedding layer distillation. The fine-tuning loss
function is as

L({θ}Kk=1, ωS) =

K∑
k

DKL(σ(f({θ}k;ωf
k ))||σ(f({θ}k;ω

f
S))) . (8)

Finally, starting with the model obtained after FedAvg, we fine-tune the model by minimizing the
loss function as Eq (8). By employing several iterations of adversary sampling methods, we are
able to gradually rectify the distributional discrepancies caused by FedAvg loss and enhance the
performance of the model.

We have placed the pseudocode for the timing of sampling and distillation in Algorithm 1, and we
summarize the detailed logic flow for sampling from Embeddings in Figure 2. As an expert in the
field of Federated Learning and Knowledge Distillation, I have overseen the integration of these
components to optimize model performance. During T rounds of communication, the server selects
a group of online trainable clients (often simulated using a random number in experiments). The
global model is then sent to the clients for updates. After one round of communication, we start with
an average parameter as the starting point for distillation. Through I rounds of sampling and fine-
tuning, we obtain the best model for that round. In the final round, we perform a post-processing
step by increasing the parameters I and the adversarial term λ, thereby enhancing the adversarial
strength to achieve the best performance in the last round.

5 EXPERIMENTS

In this section, we commence by conducting comparative baseline experiments on the effects of
FL with Cross-silo knowledge distillation on complex NLP understanding tasks SuperGLUE. Sub-
sequently, we proceed with ablation experiments to investigate the individual effects of various
sampling methods, parameters, and other components within the experimental setup.

5.1 DATASET

We considered various text classification tasks and chose the SuperGLUE benchmark to construct
our experimental environment, which is shown in Table 1. SuperGLUE represents challenging NLP
general tasks and is suitable for the properties of imbalance and non-iid in FL.
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Figure 3: Dirichlet Distribution of Tasks on Clients. The figure depicts the allocation of training
sets for various tasks in SuperGLUE, ranging from completely independent distributions to identical
distributions with respect to the parameter α, where α→ 0, 0.05, 0.5.

Hyperparameter settings In the experiment, the learning rate for the fixed update of the model
is set to η = 1e − 3 and fine-tuning learning rate η∗ = 1e − 5. The learning rate for adjusting
the sampling is set to β = 1e − 1, and the update is performed for 100 iterations. The size of a
batch pseudo samples θ is 64 × 64 × 768. As a conservative measure during communication, we
set adversary sampling iterations I = 1, I∗ = 3. In the cross-silo scenario, we assume an 80%
participation rate for all clients. The parameter λ controls the strength of the adversarial is always
set by 0.1. Each model is trained 5 times within the client, with an echo value of 5. In each training
iteration, 250 samples are randomly selected from the client for training. Adafactor is used for
updating all models. All tests were conducted with a fixed random seed of 42. Experiments ran on
machines with four 4090 GPUs and 512GB RAM.

Corpus Train/Dev(Test) Cut Train Task type

BoolQ 9427/3270 9427 QA
CB 250/57 250 NLI
COPA 400/100 400 QA
MultiRC 5100/953 963 QA
ReCoRD 101k/10k 9000 QA
RTE 2500/278 2500 NLI
WiC 6000/638 6000 WSD
WSC 554/104 554 coref.

Table 1: (Cutted) SuperGLUE Dataset (Wang
et al., 2019). To prevent a single task type from
dominating the allocation of all client cuts due
to excessively large data volumes in our experi-
ment settings, we appropriately trimmed the train-
ing data. QA is a question-and-answer task.

Data distribution We use the Dirichlet dis-
tribution with a parameter α to create varying
degrees of non-iid in our task dataset. In our
work, we define the scenario where the param-
eter α of the Dirichlet distribution approaches
zero. In this case, the distribution generates the
identity matrix, allocating all samples of each
category exclusively to a single client. As we
increase the Dirichlet alpha parameter to 0.05
and 0.5, the data becomes more independently
and identically distributed (i.i.d.), with a total
of twenty clients considered. The specific dis-
tributions of eight tasks with different alpha are
shown in Figure 3.

Baselines We conducted a rigorous compar-
ative analysis between the classical algorithm FedAvg and the latest knowledge distillation-based
algorithms FedDF, FedKD, and FedAUX. For FedDF and FedAUX, we utilized the BookCorpus
dataset as auxiliary data, extracting 16,000 random samples. The distillation process involved a step
size of 1e-5 and 1 epoch of fine-tuning. To ensure a fair comparison, FedKD employed two equally
sized RoBERTa models for local mutual distillation, without utilizing SVD during communication.
The differential privacy component was excluded from FedAUX. Two representative Transformers
were selected for the experiment: the classical RoBERTa (Liu et al., 2019) + MLP discriminative
model (encoder only) and the T5-base text-to-text generation model (with encoder and decoder
both). In the context of all SuperGLUE tasks, a model performs multiple tasks simultaneously. The
specific data processing methods and labeling approaches for the SuperGLUE dataset have been
detailed in Appendix A.

5.2 MAIN EXPERIMENTAL ANALYSIS

The experimental results are shown in the table 2. For the RoBERTa-Base model, our algorithm
FedDRS utilizes a mixed sampling approach including all three sampling schemes, so-called Fed-
DRS(mixed). FedDRS(mixed) exhibits a maximum improvement of up to 2 points and becomes the
best algorithm in extremely unbalanced data distribution when α approaches 0. As the parameter
α increases and the data distribution becomes close to iid, our FedDRS(mixed) still keeps at the
top although the scores of baselines also increase. Overall, we conclude that FedDRS gets the best
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SuperGLUE Dirichlet

0 0.05 0.5

Model Algorithms C=8 C=20

RoBERTa-Base

FedDRS(mixed) 69.06±0.42 70.27±0.63 70.37±1.88
FedAUX 67.07±0.29 69.93±1.01 70.37±0.75
FedDF 66.55±1.25 67.11±0.96 69.40±0.78
FedAvg 64.24±0.95 67.68±1.71 69.65±1.07
FedKD(2xRoBERTa) 66.97±0.41 64.34±0.98 68.30±0.42

T5-Base
FedDRS(AdOnly) 72.95±0.95 70.82±0.85 72.50±0.51
FedDRS(PostOnly) 71.36±0.00 72.70±0.02 72.70±0.01
FedAvg 70.17±0.75 71.65±0.76 71.51±0.35

Table 2: SuperGLUE Dev Scores for FedDRS and baselines which presents the performance of two
type of Transformers on three different data distributions using various FL algorithms for the last
five rounds of communication, measured by the average score ± standard deviation.

scores in this imbalanced and non-iid scenario, and it does not need auxiliary data like FedAUX or
FedDF.

For the T5-base model, we take FedAvg as the only baseline. Because the lack of labeled auxiliary
data as the inputs of the decoder part, it is challenging to conduct experiments using FedAUX and
FedDF approaches. Due to the minor improvement that can be neglected in target sampling, we
only employed adversary sampling (AdOnly). For some cases such as α = 0.05, the satisfactory
performance of FedAvg achieving balanced updates and adversarial sampling did not improve effec-
tively, we opted to perform post-processing only (PostOnly) based on FedAvg. This approach can
not only enhance the model’s effectiveness but also reduce computational costs. The Experiment
results show that our algorithms also work best on T5-Base.

A series of experiments demonstrate that diversity sampling techniques are better for the non-iid
distribution. FedDRS(mixed) can compensate for missing distributions to a greater extent. Fed-
DRS(AdOnly) is a stable approach to enhancing model performance. Post-processing offers higher
flexibility and can further enhance model performance. By effectively combining multiple strategies,
it is possible to maximize model performance.

5.3 ABLATION STUDY

Sample Method Accuracy(%) Improvement(%)

FedAvg 34.95 -
+random sample 35.94 0.99
+target sample 35.54 0.59
+adversary sample 36.41 1.45

FedAvg+MixSample 38.25 3.30

Table 3: Accuracy of RoBERTa Improvement by Diversity
Sampling Methods in the Initial Communication

The effects of different sampling
methods We compared the effects
of three data generation schemes:
random sampling, target sampling,
and adversary target sampling, along-
side their combinations, on the per-
formance of FedAvg. By evaluating
the first communication round with α
approaches 0 and I = 1, we mea-
sured the improvements in model per-
formance obtained from each sam-
pling method. Each algorithm underwent 10 rounds of sampling and testing, with average scores
calculated. The testing process was controlled using a fixed random seed to eliminate random value
influences. Results in Table 3 showed improvements from each method. Combining the three meth-
ods produced diverse synthetic samples, and the hybrid algorithm yielded a performance enhance-
ment compared to the sum of the individual effects of the method. Thus, the mixed samples enhanced
the benefits of all three sampling techniques.

The performance of FedDRS on models without embeddings In order to verify the applicability
of FedDRS(PostOnly) to models lacking an Embedding layer, we conducted experiments under con-
ditions consistent with the TFF Benchmark (Reddi et al., 2020), with subsequent post-processing.
As indicated by the results in Table 4, the overall effect exhibits a marginal improvement with only
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PostOnly Method Accuracy RS TS AS TA RTA

CIFAR 100 (ResNet18) FedAvg 39.38 -0.07 ↓ 0.04 ↑ 0.09 ↑ 0.10 ↑ 0.04 ↑
FedOpt 54.42 -0.05 ↓ 0.00 0.02 ↑ 0.03 ↑ 0.02 ↑

EMNISTCR(CNN) FedAvg 84.61 0.00 0.00 0.00 0.00 0.00
FedOpt 84.88 0.00 0.00 0.00 0.00 0.00

Table 4: The enhancement effects of various sampling methods on top of other optimization tech-
niques, including RS (Random Sampling), TS (Target Sampling), AS (Adversary Sampling), TA
(TS&AS), and RTA (RS&TS&AS), are investigated.

slight decreases. Random sampling often leads to reduced performance, but alternative sampling
strategies yield only minor enhancements. This experiment illustrates that FedDRS is better suited
for distillation with models that possess an embedding layer.
Choices of adversarial functions and suitable adversarial strength I In adversarial sampling,
we introduce an adversarial strength coefficient I and compare the magnitudes of three different
sampling strengths. Ultimately, we find that a strength of 0.1 can precisely yield a high-quality
sample with a certain level of adversarial strength. We also evaluate the effect of replacing CE with
KLD, as shown in the graph. The KLD curve abruptly decreases after a prolonged convergence,
failing to produce a consistently high-quality sample. Therefore, CE outperforms KLD in terms of
stability.
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(a) Adversarial Training Curve With CE
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(b) Adversarial Training Curve with KLD
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Figure 4: The quality curve (a,b) of samples obtained during sampling iterations varies with the
change in sampling iterations, and the KLD, as an adversarial term, fails to stably sample high-
quality data points. In general, using CE with I = 0.1 ensures both adversarial strength and sample
quality. (c) shows the dev score of the global model with communication times by using the balance
trick or not. The balance trick on different clients makes the dev score much higher.

Data balance trick It is worth noting that data is often highly imbalanced in a cross-silo setting.
Aggregating models with sample quantity as weights can lead to severe unfairness. In our experi-
ments, we employed a simple balancing trick by constraining the training of each client not to exceed
a certain threshold. For SuperGLUE, we controlled the number of training samples for each client
not to exceed the count of the client with the fewest samples at the current iteration.

6 CONCLUSION AND FUTURE WORK

To address the challenges of transformer distillation in Federated Learning involving GANs and
auxiliary text, we propose three methods for sampling from the embedding layer. Across various
complex tasks constructed within the FL-supergule framework, our approach outperforms methods
that utilize auxiliary data. This approach is lightweight, incurring no additional communication
overhead, and exhibits the most significant performance gains in non-iid scenarios. However, it is
worth noting that sampling from the model still raises privacy concerns. In our future work, we
intend to incorporate privacy-preserving measures, such as differential privacy, to ensure the privacy
of the pseudo-samples.
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Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMahan, et al. Towards
federated learning at scale: System design. Proceedings of machine learning and systems, 1:
374–388, 2019.

Eoin Brophy, Zhengwei Wang, Qi She, and Tomás Ward. Generative adversarial networks in time
series: A systematic literature review. ACM Computing Surveys, 55(10):1–31, 2023.

Zhipeng Cai, Zuobin Xiong, Honghui Xu, Peng Wang, Wei Li, and Yi Pan. Generative adversarial
networks: A survey toward private and secure applications. ACM Computing Surveys (CSUR), 54
(6):1–38, 2021.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

V. Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long
tail via influence estimation. arXiv: Learning, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Shangwei Guo, Chunlong Xie, Jiwei Li, L. Lyu, and Tianwei Zhang. Threats to pre-trained language
models: Survey and taxonomy. ArXiv, abs/2202.06862, 2022.

Meng Hao, Hongwei Li, Xizhao Luo, Guowen Xu, Haomiao Yang, and Sen Liu. Efficient and
privacy-enhanced federated learning for industrial artificial intelligence. IEEE Transactions on
Industrial Informatics, 16(10):6532–6542, 2019.

Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong Zhang.
Personalized cross-silo federated learning on non-iid data. In Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 7865–7873, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Breaking the centralized barrier for cross-device federated
learning. Advances in Neural Information Processing Systems, 34:28663–28676, 2021.

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He.
A survey on federated learning systems: vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering, 2021.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An
experimental study. In 2022 IEEE 38th International Conference on Data Engineering (ICDE),
pp. 965–978. IEEE, 2022.

Yitong Li, Timothy Baldwin, and Trevor Cohn. Towards robust and privacy-preserving text repre-
sentations. arXiv preprint arXiv:1805.06093, 2018.

10



Under review as a conference paper at ICLR 2024

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363,
2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Xinyin Ma, Yongliang Shen, Gongfan Fang, Chen Chen, Chenghao Jia, and Weiming Lu. Ad-
versarial self-supervised data-free distillation for text classification. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6182–6192,
2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

OpenAI. Gpt-4 technical report, 2023.

Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris Kluivers, Rogier van Dalen,
Chi Wai Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al. Federated evalua-
tion and tuning for on-device personalization: System design & applications. arXiv preprint
arXiv:2102.08503, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
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A APPENDIX

A.1 PREPROCESSED EXAMPLES

In this section, we proposed our preprocessed examples of each task in the SuperGLUE dataset.

A.1.1 BOOLQ

Original Input

Question: science begins with the premise that knowledge should first be acquired through
observation
Passage: A priori and a posteriori – These terms are used with respect to reasoning (epis-
temology) to distinguish “necessary conclusions from first premises” (i.e., what must come
before sense observation) from “conclusions based on sense observation” (which must follow
it). Thus, the two kinds of knowledge, justification, or argument, may be glossed:

Processed Input

boolq question: science begins with the premise that knowledge should first be acquired
through observation. passage: A priori and a posteriori These terms are used with respect
to reasoning epistemology to distinguish necessary conclusions from first premises ie what
must come before sense observation from conclusions based on sense observation which must
follow it Thus the two kinds of knowledge justification or argument may be glossed

Original Target: 0

Processed Target: Yes

A.1.2 WIC

Original Input

Word: place
Sentence1: Do you want to come over to my place later?
Sentence2: A political system with no place for the less prominent groups.

Processed Input

wic word: place. sentence1: Do you want to come over to my place later. sentence2: A political
system with no place for the less prominent groups

Original Target: 0

Processed Target: Mismatch
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A.1.3 WSC

Original Input
Text: Mark told Pete many lies about himself, which Pete included in his book. He should have
been more skeptical.
span1_text: Mark
span2_text: He

Processed Input
wsc: Mark told Pete many lies about himself which Pete included in his book * He * should
have been more skeptical

Original Target: 0
Processed Target: Difference

A.1.4 CB

Original Input
Premise: It was a complex language. Not written down but handed down. One might say it was
peeled down.
Hypothesis: the language was peeled down

Processed Input
cb hypothesis: the language was peeled down. premise: It was a complex language Not written
down but handed down One might say it was peeled down

Original Target: 0
Processed Target: Entailment

A.1.5 RTE

Original Input
Premise: No Weapons of Mass Destruction Found in Iraq Yet.
Hypothesis: Weapons of Mass Destruction Found in Iraq.

Processed Input
rte hypothesis: Weapons of Mass Destruction Found in Iraq. premise: No Weapons of Mass
Destruction Found in Iraq Yet

Original Target: 0
Processed Target: Not_entailment

A.1.6 RECORD

Original Input
Passage: The harrowing stories of women and children locked up for so-called ’moral crimes’
in Afghanistan’s notorious female prison have been revealed after cameras were allowed inside.
... Crimes include leaving their husbands or refusing an arrange marriage 62 children live there
and share cells with their mothers and five others
Query: The baby she gave birth to is her husbands and he has even offered to have the courts
set her free if she returns, but @placeholder has refused
Entities: ’Mariam’, ’Badam Bagh’, ’Nuria’, ’Afghanistan’

Processed Input
record answer: Mariam. query: The baby she gave birth to is her husbands and he has even
offered to have the courts set her free if she returns but @placeholder has refused. passage: The
harrowing stories of women and children locked up for socalled moral crimes in Afghanistans
notorious female prison have been revealed after cameras were allowed inside ... Crimes in-
clude leaving their husbands or refusing an arrange marriage 62 children live there and share
cells with their mothers and five others

13



Under review as a conference paper at ICLR 2024

record answer: Badam Bagh. query: The baby she gave birth to is her husbands and he has
even offered to have the courts set her free if she returns but @placeholder has refused. pas-
sage: The harrowing stories of women and children locked up for socalled moral crimes in
Afghanistans notorious female prison have been revealed after cameras were allowed inside ...
Crimes include leaving their husbands or refusing an arrange marriage 62 children live there
and share cells with their mothers and five others
record answer: Nuria. query: The baby she gave birth to is her husbands and he has even of-
fered to have the courts set her free if she returns but @placeholder has refused. passage: The
harrowing stories of women and children locked up for socalled moral crimes in Afghanistans
notorious female prison have been revealed after cameras were allowed inside ... Crimes in-
clude leaving their husbands or refusing an arrange marriage 62 children live there and share
cells with their mothers and five others
record answer: Afghanistan. query: The baby she gave birth to is her husbands and he has even
offered to have the courts set her free if she returns but @placeholder has refused. passage: The
harrowing stories of women and children locked up for socalled moral crimes in Afghanistans
notorious female prison have been revealed after cameras were allowed inside ... Crimes in-
clude leaving their husbands or refusing an arrange marriage 62 children live there and share
cells with their mothers and five others

Original Target: Nuria
Processed Target: ’Wrong’,’Wrong’,’Correct’,’Wrong’

A.1.7 COPA

Original Input
Premise: My body cast a shadow over the grass.
Choice1: The sun was rising.
Choice2: The grass was cut.
Question: Cause

Processed Input
copa choice1: The sun was rising. choice2: The grass was cut. premise: My body cast a
shadow over the grass. question: cause

Original Target: 0
Processed Target: Choice_one

A.1.8 MULTIRC

Original Input
Paragraph: While this process moved along, diplomacy continued its rounds. Direct pressure
on the Taliban had proved unsuccessful. ... The U.S. effort continued.
Question: What did the high-level effort to persuade Pakistan include?
Answer: Children, Gerd, or Dorian Popa

Processed Input
multirc question: What did the highlevel effort to persuade Pakistan include? answer: Children
Gerd or Dorian Popa. paragraph: While this process moved along diplomacy continued its
rounds Direct pressure on the Taliban had proved unsuccessful ...The US effort continued

Original Target: 0
Processed Target: False
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