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ABSTRACT

Classical neural networks with random initialization famously behave as Gaussian
processes in the limit of many neurons, which allows one to completely charac-
terize their training and generalization behavior. No such general understanding
exists for quantum neural networks (QNNs), which—outside of certain special
cases—are known to not behave as Gaussian processes when randomly initial-
ized. We here prove that QNNs and their first two derivatives instead generally
form what we call Wishart processes, where certain algebraic properties of the
network determine the hyperparameters of the process. This Wishart process de-
scription allows us to, for the first time: give necessary and sufficient conditions
for a QNN architecture to have a Gaussian process limit; calculate the full gradi-
ent distribution, generalizing previously known barren plateau results; and calcu-
late the local minima distribution of algebraically constrained QNNs. Our unified
framework suggests a certain simple operational definition for the “trainability” of
a given QNN model using a newly introduced, experimentally accessible quantity
we call the degrees of freedom of the network architecture.

1 INTRODUCTION

1.1 MOTIVATION

One of the miracles of machine learning on classical computers is that simple, gradient-based opti-
mizers can efficiently find the minimum of extremely high-dimensional, nonconvex loss landscapes,
allowing for the efficient training of deep neural networks. Over the past decade this has been un-
derstood in more and more detail via random matrix theory. In particular, it is now known that the
loss landscapes of randomly initialized, wide neural networks are distributed as Gaussian processes
with covariance given by the so-called neural tangent kernel (NTK) (Neal, 1996; Choromanska
et al., 2015; Chaudhari, 2018; Lee et al., 2018). The NTK is completely determined by the neural
structure of the network, linking the asymptotic behavior of the network to architectural choices
made in its construction. This understanding of classical neural networks has been used to show that
wide neural networks train efficiently via gradient descent (Choromanska et al., 2015; Chaudhari,
2018; Jacot et al., 2018; Allen-Zhu et al., 2019). It also explains other emergent phenomena in deep
learning, such as the remarkably good generalization performance of neural networks beyond what
learning theory predicts (Jacot et al., 2018; Wei et al., 2022).

One might hope that a similar, universal story would exist for quantum neural networks (QNNs).
These are classes of neural networks where the associated loss function ℓ takes as input a quantum
state ρ ⪰ 0 ∈ CN×N with trace 1, conjugates ρ by a unitary operation Uθ ∈ U(N) parameterized
by θ ∈ Rp, and then takes the Frobenius inner product with the Hermitian O ∈ CN×N . That is,

ℓ (ρ;θ) = Tr
(
ρU †

θOUθ

)
. (1)

Such networks are defined by the choice of parameterization for Uθ (typically called the ansatz)
and the Hermitian O (here called the objective observable) (Peruzzo et al., 2014), and are known
to efficiently (on a quantum computer) perform learning tasks provably difficult using traditional
machine learning methods (Liu et al., 2021; Hastings & O’Donnell, 2022; Anschuetz et al., 2023b;
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Huang et al., 2024; Anschuetz & Gao, 2024). Unfortunately, it is known that QNNs generally do
not have a Gaussian process (or quantum neural tangent kernel (QNTK)) asymptotic limit (García-
Martín et al., 2023; Girardi & Palma, 2024). Indeed, it is not even obvious whether an equivalently
simple universal description exists due to QNN training dynamics differing completely in various
parameter regimes. For instance, the loss landscapes of generic shallow QNNs are known to be
described by so-called Wishart hypertoroidal random fields (WHRFs) and dominated by poor local
minima (Anschuetz, 2022; Anschuetz & Kiani, 2022); this is a far cry from the effectively convex
training landscapes of deep quantum networks which, in certain circumstances, can be shown to
have a Gaussian process limit (Liu et al., 2022; 2023; You et al., 2022; García-Martín et al., 2023;
Girardi & Palma, 2024; García-Martín et al., 2024). Unfortunately, these deep networks are still
untrainable in practice due to an exponential decay in their gradients known as the barren plateau
phenomenon (McClean et al., 2018), making estimating gradients on a quantum computer asymp-
totically intractable.1

The presence of barren plateaus or poor local minima in QNN loss landscapes paints a pessimistic
picture for the practical utility of generic QNNs. However, these negative results can be circum-
vented by considering structured QNNs, further complicating any unifying theory of the asymptotic
training behavior of QNNs. For instance, Uθ may be constrained to belong to some low-dimensional
Lie subgroup G of the full unitary group, and O in the generating algebra of G. This is known as
the Lie algebra-supported ansatz (LASA) setting, and has been shown to be capable of preventing
the barren plateau phenomenon from occurring (Fontana et al., 2024; Ragone et al., 2024). Though
many of the initial proposals for such structured networks have since been “dequantized” (Anschuetz
et al., 2023a; Goh et al., 2023; Cerezo et al., 2023)—i.e., efficient classical algorithms have been
found which simulate such networks—there still do exist unconditionally provable quantum advan-
tages in using such networks for certain learning tasks (Anschuetz et al., 2023b; Anschuetz & Gao,
2024). Though this is perhaps the most promising direction in QNN research, nothing concretely
is known about the loss landscapes of such networks beyond the variance of the loss function over
parameter space.

1.2 CONTRIBUTIONS

Fully understanding how the various phenomenologies of QNN loss landscapes are related is im-
portant if we ever hope to have as deep an understanding of QNNs as the neural tangent kernel has
enabled for classical neural networks. Motivated by this, we here for the first time prove a concise
asymptotic limit for the loss functions of effectively all QNNs with approximately uniformly ran-
dom initialization, and show that it unifies much of our previous understanding of QNN training
behavior. We then use this new asymptotic description to prove a variety of novel results on the
asymptotic training behavior of QNNs.

We achieve this by demonstrating that all QNNs have a natural algebraic structure described by
a Jordan subalgebra A of the complex Hermitian matrices HN (C) generated by

{
U †

θOUθ

}
θ

under the anticommutator {A,B} = AB + BA. The Jordan subalgebras of HN (C) have been
completely classified in the sense that they are expressible as a direct sum of subalgebras:

A ∼=
⊕
α

Aα, (2)

where for our purposes each Aα is isomorphic to the algebra of Nα × Nα Hermitian matrices
HNα (Fα) over a field Fα that is one of the reals R, complex numbers C, or quaternions H. This
allows us to show that the loss functions and first two derivatives of randomly initialized QNNs have
a concise asymptotic description in terms of Wishart-distributed random matrices over Fα:

Wα = XαX
†
α, (3)

where Xα is Nα × rα with i.i.d. standard Gaussian entries over Fα and rα is called the degrees of
freedom of Wα. We give an explicit expression for rα based on the structure of the network, and we
find that it dictates the asymptotic behavior of the loss landscape. We call this connection between
the algebraic structure of a given QNN and its asymptotic Wishart process description a Jordan

1Girardi & Palma (2024) also study instances which do not suffer from barren plateaus, but which only
achieve an asymptotically-vanishing improvement over random θ in the optimization of Eq. (1).
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Barren Plateaus Gaussian Processes (QNTK)
Reference Corollary 4

McClean et al. (2018) F = C
Cerezo et al. (2021) {Fα = C}α
Ragone et al. (2024) eiO ∈ Aut (A)

Reference Corollary 5
García-Martín et al. (2023) F = C, O Pauli

Girardi & Palma (2024) F = C, O 1-local
García-Martín et al. (2024) F = H, O Pauli

Local Minima
Reference Corollary 6

Anschuetz (2022) F = C
Anschuetz & Kiani (2022) {Fα = C}α, p < 2rα

You et al. (2022) p≫ r

Table 1: Previous quantum neural network loss landscape results. We summarize (a represen-
tative subset of) previous results in quantum neural network loss landscape theory, as described in
Sec. 1.1. We also state which limits of our Corollaries 4, 5, and 6 encompass these referenced re-
sults. Here, A is the Jordan algebra, Fα are the fields, and rα are the degrees of freedom parameters
as defined in the associated corollary statements; O is the objective observable; and p is the number
of trained parameters.

algebraic Wishart system (JAWS). We summarize in Table 1 how this JAWS description generalizes
previous models of QNN loss landscapes which only held in specific parameter regimes.

The JAWS framework allows us to prove many new, general properties of QNNs. First, we prove a
generalized barren plateau result for the variance of the loss function ℓ (ρ;θ) of a given QNN over
its initialization:

Varθ [ℓ (ρ;θ)] =
∑
α

Tr
(
(Oα)

2
)
Tr
(
(ρα)

2
)

dimR (Aut (Aα))
, (4)

where A =
⊕

αAα is the Jordan algebra associated with the QNN, dimR (Aut (Aα)) is the dimen-
sion of the automorphism group of Aα as a real manifold, and ·α denotes projection into Aα (see
Eq. (12) for a mathematical definition). This extends previously known barren plateau results proved
in the LASA framework (Fontana et al., 2024; Ragone et al., 2024) to the setting where neither ρ
nor O are elements of the algebra generating Aut (Aα). It also captures the gradient scaling in the
setting of so-called matchgate networks (Diaz et al., 2023), unifying barren plateau results beyond
just the LASA setting.

We are also able to calculate the asymptotic density of local minima at a loss value ℓ = z for a QNN
with associated Jordan algebra A =

⊕
αAα:

κ (z) =∗
α

fΓ (z; kα, sα) =

∫
∑

α zα=z

∏
α

dzα

Γ (kα) s
kα
α

zkα−1
α exp

(
−zα
sα

)
; (5)

i.e., we show that it is a convolution of gamma distributions fΓ with shape and scale parameters kα
and sα, respectively, which we calculate in Sec. 5.3. The kα and sα are such that κ (z) experiences
a phase transition: local minima of a network with p parameters are concentrated near the global
minimum if and only if the network is overparameterized, which occurs when (up to a constant):

p ≳ max
α

Tr (Oα)
2

Tr
(
(Oα)

2
) . (6)

This result generalizes previous studies of local minima in QNNs (Anschuetz, 2022; Anschuetz &
Kiani, 2022) to a setting where the variational ansatz may have some sort of algebraic structure.2

Finally, we prove the necessary and sufficient conditions for a class of QNNs to asymptotically
converge to a Gaussian process limit. Taken together, our results indicate that QNNs are efficiently
trainable asymptotically using problem-independent optimization algorithms if and only if Eq. (4)
is not exponentially vanishing with the problem size and Eq. (6) is satisfied.

2Anschuetz & Kiani (2022) consider local minima in local, shallow networks, where the Hilbert space can
be decomposed into a direct sum of Hilbert spaces associated with the light cones of local observables. Here,
we allow for general algebraic structures.
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2 PRELIMINARIES

2.1 QUANTUM NEURAL NETWORKS

We first review quantum neural networks (QNNs). These are defined by a parameterized unitary:

Uθ = gp+1

1∏
i=p

exp (−iθiAi) gi, (7)

often called an ansatz in the physics literature. Here, the Ai are complex HermitianN×N matrices
and the gi are N ×N unitary matrices. Generally, the gi and exp (−iθiAi) may be constrained to
belong to a path-connected Lie subgroup G of the unitary group U(N) to strengthen the inductive
bias of the network (Meyer et al., 2023). Such a constraint has also been used as a theoretical model
for shallow quantum networks, whereG is approximately the direct product×α

U(Nα) of unitaries
acting on local patches in the network (Anschuetz & Kiani, 2022).

Training such networks involves minimizing an empirical risk of the form:

f (θ) =
1

|R|
∑
ρ∈R

ℓ (ρ;θ) =
1

|R|
∑
ρ∈R

Tr
(
UθρU

†
θO
)
. (8)

Here, R can be thought of a data set comprising multiple input quantum states ρ—that is, ρ ⪰ 0 ∈
CN×N with trace 1—and O ∈ CN×N is Hermitian. When O and the algebra elements generating
Uθ can be expressed as a sum of O(poly log (N)) Pauli matrices, such a loss can be estimated in
O(poly log (N)) time on a quantum computer (Nielsen & Chuang, 2010b).

Our first main result is that all losses of the form of ℓ (ρ;θ) can be interpreted in terms of auto-
morphisms of Jordan algebras. In preparation for discussing this connection, we now review Jordan
algebras.

2.2 JORDAN ALGEBRAS

A Jordan algebra over the reals is formally a real vector space V with a commutative multiplication
operation ◦ acting on u, v ∈ V satisfying the Jordan identity:

u ◦ ((u ◦ u) ◦ v) = (u ◦ u) ◦ (u ◦ v) , (9)

which ensures the associativity of the power. A simple example is the Jordan algebra HN (C) of
N×N complex-valued Hermitian matrices with ◦ given by the anticommutator A◦B = AB+BA.

The Jordan subalgebras A of HN (C) have been completely classified (Koecher, 1999d) and are
known to have a semisimple decomposition:

A ∼=
⊕
α

Aα; (10)

that is, A is isomorphic to a direct sum of subalgebras Aα. For our purposes, each Aα is isomor-
phic to the algebra HNα (Fα) of Nα × Nα Hermitian matrices over a field Fα that is one of the
reals, complex numbers, or quaternions. We label these three cases with the integers βα = 1, 2, 4,
respectively, and call the representation of each of these algebras as Nα ×Nα matrices over Fα the
defining representation. We call the Aα the simple components of A and say that A is simple when
there is only a single Aα, i.e., when A ∼= HN (F) for some F.

The automorphism group Aut (A) of such a Jordan algebra A is also known: its path-connected
components are isomorphic to direct products of the classical Lie groups SO (Nα), SU (Nα), and
Sp (Nα), each a subgroup of the corresponding Aut (Aα) (Koecher, 1999b; Orlitzky, 2024). As
a Lie group, each Aut (Aα) has a well-defined dimension as a real manifold which we denote as
dimR (Aut (Aα)).

It is also known that the Frobenius inner product TrR
(
A†B

)
betweenA,B ∈ Aα in any representa-

tionR is always proportional to the Frobenius inner product in the defining representation (Koecher,
1999a). In particular, for any A,B ∈ Aα ⊆ A ⊆ HN (C), using Trα (·) to denote the trace in the
defining representation of Aα and Tr (·) to denote that of HN (C), we have:

Tr (AB) = Iα Trα (AB) (11)
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for some Iα > 0 that is independent of A,B. In what follows we will continue to use Tr (·) to
denote the trace in the defining representation of HN (C) and Trα (·) to denote that of Aα. More
details on Jordan algebras and some subtleties in their classification are provided in Appendix A.2.

Finally, we define the projection of an algebra element A ∈ A ∼=
⊕

αAα into one of the Aα;
to represent this, we use the notation Aα. Mathematically, letting Trα (·) denote the trace in the
defining representation of Aα and considering an orthonormal3 basis {Bα,i}i of Aα ⊆ A, we have:

Aα ≡
∑
i

Trα (Bα,iA)Bα,i. (12)

We use the same notation for the equivalent projection of a Lie group element g ∈ G =×α
Gα into

one of the Gα. Using {Bα,i}i to denote an orthonormal basis of the Lie algebra generating Gα, and

using the observation that g = exp
(∑

α,i cα,iBα,i

)
for some {cα,i ∈ R}α,i, we define:

gα ≡ exp

(∑
i

cα,iBα,i

)
. (13)

3 JORDAN ALGEBRAIC DESCRIPTIONS OF QUANTUM NEURAL NETWORKS

Recall the general form of a QNN loss function:

ℓ (ρ;θ) = Tr
(
ρU †

θOUθ

)
, (14)

where

Uθ = gp+1

1∏
i=p

exp (−iθiAi) gi (15)

generally may be such that the gi and exp (−iθiAi) belong to some path-connected Lie subgroup
G ⊆ U(N).

The U †
θOUθ generate under the anticommutator a Jordan subalgebra A of the N × N Hermitian

matrices HN (C). Due to this fact, as well as the classification results discussed in Sec. 2.2, we may
equivalently consider Eq. (14) in the following way:

1. O ∈ A ∼=
⊕

αHNα (Fα).
2. Uθ ∈ G =×α

Gα, where each Gα is isomorphic to a subgroup of Aut (Aα) that is one
of SO (Nα), SU (Nα), or Sp (Nα).

3. For Iα the proportionality constant of Eq. (11),

ℓ (ρ;θ) =
∑
α

Iα Trα

(
ραUα†

θ OαUα
θ

)
. (16)

We discuss the universality of this Jordan algebraic description in more detail in Appendix B.1.

This description of QNN loss landscapes in terms of Jordan algebraic properties allows us to give
a simple way to classify various QNN architectures through the Nα, Fα, Iα, and Oα; we call this
collection of algebraic objects a Jordan algebraic Wishart system (JAWS). We will next tie this
classification to the asymptotic properties of the loss landscape through the use of Wishart random
matrices, justifying the use of “Wishart” in the nomenclature.

4 QUANTUM NEURAL NETWORKS ARE WISHART PROCESSES

Our main result is proving that the loss functions of wide QNNs—that is, as dim (A) → ∞—
form Wishart processes. Such processes can be written exactly in terms of the matrix elements of
Wishart-distributed positive semidefinite random matrices W , which are distributed as:

W = XX† (17)
3Orthonormal with respect to the Frobenius inner product in the defining representation of Aα.
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Figure 1: Loss and derivative densities. (a) The loss density when the quantum neural network
has a pure input (i.e., rank-1) and when it has a mixed input (i.e., of rank greater than 1). The dis-
tributions are centered at the mean eigenvalue of the objective observable. The mixed input density
also illustrates when the input is mixed when projected into any simple component of the Jordan al-
gebra associated with the network. (b) The gradient density conditioned on a nonzero loss function
value. The distribution is centered at zero. (c) The density of local minima when the quantum neu-
ral network is underparameterized, overparameterized, and when some simple components of the
associated Jordan algebra are underparameterized and some are overparameterized (mix of sectors).

for X a rectangular matrix with i.i.d. standard normal entries over a field F (assumed R if not
otherwise stated). The number of columns r of X is called the degrees of freedom of W in analogy
with the degrees of freedom of a χ2-distributed random variable; indeed, the diagonal entries of W
are (up to a constant scaling) i.i.d. χ2-distributed with βr degrees of freedom.

Our main result is as follows, stated informally here with a formal statement deferred to Ap-
pendix B.2:

Theorem 1 (Quantum neural networks are Wishart processes, informal). Consider a QNN with
associated JAWS as in Sec. 3, initialized approximately uniformly at random. Let ℓ∗ be the optimum
of the loss and oα the mean eigenvalue of Oα. Then, as dim (A) → ∞, there is a convergence in
joint distribution over ρ at any θ:

ℓ (ρ;θ)− ℓ∗ ⇝
∑
α

Iαoα
rα

Trα (ρ
αWα) . (18)

The Wα are each independent Wishart-distributed random matrices in the defining representation
of Aα with

rα =

 Trα (O
α)

2

Trα

(
(Oα)

2
)
 (19)

degrees of freedom, where ⌊·⌉ denotes rounding to the nearest integer.

An illustration of this distribution is provided in Figure 1(a). The proof follows by using the fact that
the marginal distributions of matrix elements of the ansatz are approximately Gaussian distributed;
this is made quantitative by bounding the errors in the associated joint characteristic functions over
the inputs ρ. This is enough to demonstrate convergence of ℓ (ρ;θ)− ℓ∗ to a convolution of Wishart
processes. We then prove a Welch–Satterthwaite-like result to demonstrate an asymptotic conver-
gence of this convolution to a Wishart process with degrees of freedom parameters given by Eq. (19).
The full proof is given in Appendix D. We there also prove a strengthened result—convergence
pointwise in the corresponding probability densities—under certain additional assumptions on the
initialization of the network.

We not only prove the convergence of the QNN loss function ℓ to that of a Wishart process, but
also ℓ, its gradient, and Hessian jointly. In doing so we are able to show that the loss landscape of
QNNs—not just the landscape at a single point in parameter space, or averaged over it—converges
to that of a Wishart process. We here only give an informal statement of the result in the special
case when each ρα is rank-1, but give the full distribution and formal statement in Appendix B.2
with proof in Appendix D. This distribution when conditioned on a nonzero value for the loss is
illustrated in Figure 1(b).
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Theorem 2 (Gradient distribution, informal). Consider the setting of Theorem 1. Assume each ρα

is rank-1 in its defining representation. Let σα be the standard deviation of the eigenvalues of Oα.
Then, as dim (A) → ∞, the joint distribution of ∂θiℓ (ρ;θ) conditioned on all ℓ (ρα;θ) = zα
asymptotically converges to the joint distribution of

ℓ̂i ≡
∑
α

2Iασα Trα (ρ
α)

Nα

√
βαzα
Iαoα

Gα,iχα,i. (20)

Here, the χα,i are independent χ-distributed random variables with max (2, βα) degrees of freedom
and the Gα,i are i.i.d. standard normal random variables.

We also give an expression for the Hessian distribution at critical points. We informally report the
result when each ρα is rank-1 and the spectrum of each Oα is sufficiently concentrated around its
mean; this latter condition is typical of sums of low-weight fermionic (Feng et al., 2019) and local
spin operators (Erdős & Schröder, 2014). The full distribution and formal statement is once again
given in Appendix B.2 with proof in Appendix D.
Theorem 3 (Hessian distribution, informal). Consider the setting of Theorem 2. Assume as well
that σα

oα
→ 0 for all α. Then, as dim (A) → ∞, the joint distribution of ∂θi∂θj ℓ (ρ;θ) (i ≥ j)

conditioned on all ℓ (ρα;θ) = zα and all ∂θiℓ (ρ
α;θ) = 0 asymptotically converges to the joint

distribution of

ℓ̂i,j ≡
∑
α

2Iασα Trα (ρ
α)

N2
α

√
zα
Iαoα

Gα,iχα,jWα,i,j . (21)

Here, the χα,i are independent χ-distributed random variables with max (2, βα) degrees of free-
dom and the Gα,i are i.i.d. standard normal random variables. The Wα are independent Wishart-
distributed random matrices with βαrα degrees of freedom.

Both of these derivative results follow by carefully considering the joint distribution of elements of
a Wishart-distributed random matrix via the use of the Bartlett decomposition of Wishart-distributed
matrices. Further simplifications follow by bounding the error in probability between various prod-
ucts of these marginal elements to simpler distributions.

5 NEW RESULTS IN LANDSCAPE THEORY FROM THE JAWS FRAMEWORK

With the full asymptotic distribution of QNN loss landscapes in hand, we are now able to prove
several novel results in QNN loss landscape theory.

5.1 BARREN PLATEAUS

The first implication of our results that we will discuss is the unification of barren plateau re-
sults (Fontana et al., 2024; Ragone et al., 2024) in the limit of large Jordan algebra dimension.

Corollary 4 (General expression for the loss function variance, informal). Let ℓ be as in Theorem 1.
The variance of the loss over the initialization is:

Varθ [ℓ (ρ;θ)] =
∑
α

Tr
(
(Oα)

2
)
Tr
(
(ρα)

2
)

dimR (Aut (Aα))
. (22)

This follows immediately from the variance of elements of Wishart-distributed random matrices; see
Appendix C.1 for an explicit calculation. Despite the simplicity of the proof (given Theorem 1), this
result generalizes Theorem 1 of Ragone et al. (2024), which only considered when either iO or iρ
was in the algebra generating Aut (Aα). However, our result holds for all variational ansatzes due
to our general Jordan algebraic formulation of QNNs. Intriguingly, Tr

(
(ρα)

2
)

can be thought of as
probing the generalized entanglement (Barnum et al., 2004) of ρ with respect to the Jordan algebraic
structure of A. That is, entanglement induces barren plateaus, as previously seen in a nonalgebraic
setting by Ortiz Marrero et al. (2021). A similar phenomenon was also previously noted by Ragone
et al. (2024) with respect to the Lie algebraic structure of LASAs.
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5.2 THE QUANTUM NEURAL TANGENT KERNEL

We now connect our results to the quantum neural tangent kernel (QNTK) literature (Liu et al.,
2022; 2023; You et al., 2022; García-Martín et al., 2023; Girardi & Palma, 2024; García-Martín
et al., 2024). The landmark result in this field is that, in certain settings, QNN loss functions are
asymptotically Gaussian processes. However, this same body of work has noted that such a Gaussian
process description cannot generally hold. For instance, if the objective observable O is rank-1 and
the algebra A associated with the QNN is the space of complex Hermitian matrices, it is known that
the loss is proportional to an exponentially-distributed random variable (Boixo et al., 2018).

Our results can be seen as a unifying model of neural network loss landscapes, including both
when convergence to a Gaussian process is achieved and when it is not. Recall that Theorem 1
demonstrated the asymptotic expression for the QNN loss at any θ (left implicit) to be:

ℓ̂ (ρ) =
∑
α

Iαoα
rα

Trα (ρ
αWα) . (23)

This correctly captures the exponential behavior when A is the space of complex Hermitian matrices
and rank (O) = r = 1. This is because the diagonal entries of such a complex Wishart matrix
are (up to a constant) χ2-distributed with two degrees of freedom each, which is identical to an
exponential distribution.

Indeed, our more general result can be used to exactly characterize when the loss functions of QNNs
asymptotically form Gaussian processes. First, we consider normalizing ℓ̂ by some N ≥ 1 such that
N ℓ̂ has nonvanishing variance asymptotically. Under this normalization, convergence to a Gaussian
process occurs when N ℓ̂ has higher-order cumulants asymptotically vanishing. In other words, using
κi (·) to denote the ith cumulant and R to denote the data set, this occurs when (see Appendix C.2
for an explicit calculation):

max
ρ∈R
i>2

κi

(
N ℓ̂ (ρ)

)
∼ max

ρ∈R
α

N 3I3αo
3
α Trα

(
(ρα)

3
)

r2α
= o (1) . (24)

We thus can state this pair of conditions as follows.

Corollary 5 (Exact conditions for convergence to a Gaussian process, informal). Let ℓ be as in
Theorem 1. N ℓ (ρ) is asymptotically a Gaussian process over ρ ∈ R if and only if Eq. (24) is
satisfied and N 2 Var [ℓ (ρ)] (as in Corollary 4) is nonvanishing for all ρ ∈ R.

When these conditions are met, the covariance is given by:

K (ρ,ρ′) = lim
N→∞

KN (ρ,ρ′)

= lim
N→∞

N 2
∑
α

βα Tr
(
(Oα)

2
)

2 dimR (Aut (Aα)) rα
IαE [Trα (ρ

α (Wα − rα)) Trα (ρ
′α (Wα − rα))] .

(25)

It is now easy to see why (for simple A) the r = 1 case does not converge to a Gaussian process: in
this setting N must be o (N) such that Eq. (24) is satisfied and higher-order cumulants vanish, but
for such a choice the variance is vanishing.

In Appendix C.2 we are also more explicit on the form of Eq. (25). We use known results for
the mixed cumulants of Wishart matrix elements to show that the covariance can be written as an
explicit, quadratic expression in ρα and ρ′α, depending only on A. We further show in Appendix C.2
that, when the ρ ∈ R can be mutually diagonalized,

KN (ρ,ρ′) = N 2
∑
α

Tr
(
(Oα)

2
)

dimR (Aut (Aα))
Tr (ραρ′α) . (26)

This form of the covariance can then be immediately fed into neural tangent kernel results to reason
about the training behavior (Neal, 1996; Choromanska et al., 2015; Chaudhari, 2018; Lee et al.,

8



Published as a conference paper at ICLR 2025

2018) and generalization ability (Jacot et al., 2018; Wei et al., 2022) of such networks. For instance,
by the results of Girardi & Palma (2024), this covariance suggests that gradient descent does not
reach the global minimum in time polynomial in the model size for unstructured QNNs. This is
discussed in more detail in Appendix C.2.

5.3 LOCAL MINIMA

We end by examining the distribution of local minima of the loss landscape. This has been done
previously in the more restricted setting where no structure is imposed on the ansatz or loss function
outside of locality (Anschuetz, 2022; Anschuetz & Kiani, 2022). In this section we consider a
general QNN with p trained parameters under the conditions of Theorem 3, as well as assume that
all

γα ≡ p

βαrα
(27)

are held constant as we take the asymptotic limit dim (A) → ∞. We call the γα the overparame-
terization ratios of a given QNN architecture, associated with the various simple components of the
Jordan algebra A in the JAWS description of the network.

We calculate the distribution of local minima using the Kac–Rice formula (Adler & Taylor, 2007),
which gives the expected density of local minima of a random field ℓ at a function value z. Anschuetz
(2022) demonstrated that the assumptions for the Kac–Rice formula are satisfied for variational loss
landscapes, and when rotationally invariant on the p-torus the formula takes the form:

E [Crt0 (z)] = (2π)
p E [det (Hz)1 {Hz ⪰ 0}]P [Gz = 0]P [ℓ = z] . (28)

Here, E [Crt0 (z)] is the expected density of local minima at a function value z, Gz is the gradient
conditioned on ℓ = z, and Hz is the Hessian conditioned on ℓ = z and G = 0. In a slight abuse of
notation, here P [·] denotes the probability density associated with the event ·.
We can evaluate this expression using Theorems 1, 2, and 3. To simplify the expression here, we
assume the addition of a regularization term of the form:

RL (θ) = L ∥θ −C∥22 (29)

to the loss; we also present here only the relative density rather than the total number of minima
at a loss function value z. The full expression counting local minima—both with and without the
regularization of Eq. (29)—are described in detail in Appendix C.3.
Corollary 6 (Density of local minima, informal). Consider the setting of Theorem 3 with an addi-
tional regularization term of the form of Eq. (29). The density of local minima at a loss function
value z > 0 is, to multiplicative leading order, given by the convolution over all α with γα < 1:

κ (z) = ∗
α:γα<1

fΓ

(
z

oα Tr (ρα)
;
βαrα
2

,
2

βαrα

)
. (30)

Here, fΓ (·; k, θ) denotes the gamma distribution with shape k and scale θ parameters:

fΓ (x; k, θ) =
1

Γ (k) θk
xk−1 exp

(
−x
θ

)
. (31)

Examples of this distribution are plotted in Figure 1(c), where we give a finite width to the den-
sity in the overparameterized regime—where all γα ≥ 1—to represent potential finite-size effects.
Intriguingly, the variance of this distribution when all γα < 1—the underparameterized regime—
corresponds to the variance of the loss function itself, i.e., as given in Corollary 4. However, due
to the exponential tails of the gamma distribution, even when there are no barren plateaus in the
loss landscape there is only an exponentially small fraction of local minima in the vicinity of the
global minimum in this regime. That is, both barren plateaus and poor local minima are potential
obstructions to efficient trainability that must be taken into account in the design of practical QNNs.

6 CONCLUSION

Taken together, our results show that the natural model for quantum neural networks is not one of
Gaussian processes obeying a quantum neural tangent kernel, but rather one of Wishart processes.
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This Wishart process model unifies all of the recent major thrusts in calculating properties of quan-
tum neural network loss landscapes. Indeed, our results allow us to propose a simple operational
definition for the “trainability” of quantum neural networks, which to date has been a term used
heuristically without any formal definition.4

Definition 7 (Trainability of quantum neural networks). Consider a QNN with p trained parameters
composed of N ×N unitary matrices. Let A ∼=

⊕
αAα be the corresponding Jordan algebra as in

Sec. 3. Define the degrees of freedom parameters:

rα ≡ Trα (O
α)

2

Trα

(
(Oα)

2
) . (32)

We say that the QNN is trainable if and only if, as N → ∞, the QNN satisfies:

1. Absence of barren plateaus (Corollary 4):

∑
α

Tr
(
(Oα)

2
)
Tr
(
(ρα)

2
)

dimR (Aut (Aα))
= Ω

(
poly (log (N))

−1
)
. (33)

2. Absence of poor local minima (Corollary 6):

p ≥ max
α

βαrα. (34)

Given knowledge of A, this yields a quantum algorithm for determining the asymptotic trainability
of a QNN architecture: one need only measure Tr

(
(Oα)

2
)

and Tr
(
(ρα)

2
)

on a quantum com-
puter. This can be done through the measurement of basis elements of A given copies of ρ and, for
the former, block encodings of O as prepared by the standard linear combination of unitaries sub-
routine (Childs & Wiebe, 2012). We provide explicit error bounds for this procedure in Appendix E.

Practically, where does this leave quantum neural networks? For one, it seems unlikely that there
exists any computational quantum advantage during the training of QNNs outside of HHL-like
speedups (Harrow et al., 2009; Biamonte et al., 2017) and training algorithms that leverage some
existing knowledge of the data to be learned (Liu et al., 2021; Hastings & O’Donnell, 2022; Huang
et al., 2024). This is due to efficient classical simulation algorithms for quantum systems alge-
braically constrained to explore a low-dimensional subspace (Anschuetz et al., 2023a; Goh et al.,
2023), as is required for efficient trainability per Definition 7. This was noted in Cerezo et al. (2023)
for deep QNNs, where the authors postulated that deep QNNs exhibiting no barren plateaus are clas-
sically simulable (outside of certain special cases). Our results demonstrate a similar phenomenon
for shallow QNNs: poor local minima in polynomially-sized circuits can only be avoided when the
effective Hilbert space dimension grows at most polynomially quickly with the system size. This
leaves the space for a practical, superpolynomial quantum advantage when training with a problem-
agnostic algorithm such as gradient descent even narrower than previously believed: a veritable
Amity Island in a sea of negative results. One ray of hope is the known existence of polynomial
quantum advantages during inference in such a setting (Anschuetz et al., 2023b; Anschuetz & Gao,
2024). Intelligent warm-starting of the optimization procedure may be another way to circumvent
poor training (Puig-i-Valls et al., 2024), though more must be done to fully understand how pre-
cise warm-starting must be for training to be efficient. Given the exact asymptotic form of the loss
landscape we give here, such an analysis may be possible in the future.

Our work gives a unified understanding of quantum neural networks as Wishart processes. Great
strides have been made in the classical machine learning literature in understanding the training
dynamics (Choromanska et al., 2015; Chaudhari, 2018; Jacot et al., 2018; Allen-Zhu et al., 2019)
and generalization behavior (Jacot et al., 2018; Wei et al., 2022) of classical neural networks via their
connections to Gaussian processes, which unfortunately only port over in the specific settings where
the Wishart process itself approaches a Gaussian process. Our results encourage an understanding
of how specific properties of Wishart processes, not just Gaussian processes, influence the learning
behavior of quantum networks in order to more fully grasp how quantum neural networks learn.

4The concept of “efficient learning” has been previously studied (Gil-Fuster et al., 2024), but we give the
first operational definition in terms of the structural properties of a given QNN architecture.
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REPRODUCIBILITY STATEMENT

The main results discussed in Secs. 3 and 4 are formally stated—with an explicit listing of formal
assumptions—in Appendix B. Definitions and background necessary for these formal theorem and
assumption statements are laid out in Appendix A. Formal proofs of the main results are given
in Appendix D. Formal statements and proofs of the corollaries discussed in Sec. 5 are given in
Appendix C. A proof of the claim made in Sec. 6 that one can efficiently estimate the quantities
in Definition 7 using an LCU block encoding is given in Appendix E. A discussion of the settings
where our results do not hold due to a violation of our formal assumptions is given in Appendix F.
The remainder of the Appendices prove claims and helper lemmas used in Appendices B, C, and D.
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A PRELIMINARIES FOR FORMAL DISCUSSION OF RESULTS

We begin by reviewing concepts that we will use in proving our results. We also give a summary of
the notation we use throughout in Table 2.

A.1 QUANTUM NEURAL NETWORKS

We first review quantum neural networks (QNNs). These are defined by a parameterized ansatz

U (θ) =

1∏
i=p

exp (−iθiAi) , (35)

which belongs to some path-connected subgroup of the unitary group U(N). Though U (θ) can in
principle parameterize all of U(N), it is often taken to instead parameterize some path-connected
subgroup G ⊆ U(N). This might be due to enforcing some global structure on the model (Meyer
et al., 2023), or can be a model of the finiteness of the reverse light cones of shallow quantum
circuits (Anschuetz & Kiani, 2022).

Given a choice of ansatz, the goal of a QNN is to minimize an empirical risk of the form:

f (θ) =
1

|R|
∑
ρ∈R

ℓ (θ;ρ) =
1

|R|
∑
ρ∈R

Tr
(
U (θ)ρU (θ)

†
O
)
. (36)

Here, R can be thought of a data set comprising multiple input states ρ, and ℓ the loss function. His-
torically, when |R| = 1 QNNs have been referred to as variational quantum algorithms (VQAs) (Pe-
ruzzo et al., 2014) due to their connection to finding variational approximations to the ground states
of quantum Hamiltonians. There are known quantum-classical separations for the expressivity of
quantum neural networks even when taking into account the requirement that the training procedure
is efficient (Liu et al., 2021; Hastings & O’Donnell, 2022; Huang et al., 2024), though they require
very specific training algorithms that take advantage of the structure of the data.

There has been recent hope that, with enough ansatz structure, efficient training may follow just
via a simple application of gradient descent. This follows from the Lie algebra-supported ansatz
(LASA) literature, where it has been shown that if the generators iAi of the ansatz U as well as the
(scaled) objective observable iO belong to the same Lie algebra g—called the dynamical Lie alge-
bra (Larocca et al., 2022)—generatingG, gradients scale inversely with the dimension of g (Fontana
et al., 2024; Ragone et al., 2024). It is also conjectured that when dim (g) scales polynomially with
the system size there exist polynomial-depth ansatzes that do not have poor local minima, which
together with the large gradients would imply efficient trainability of these loss functions via gra-
dient descent. Conditioned on this conjecture there have been results demonstrating expressivity
separations in quantum machine learning where the QNN is efficiently trainable through a simple
application of gradient descent (Anschuetz et al., 2023b; Anschuetz & Gao, 2024).

Though the LASA framework gives sufficient conditions for loss functions to have large gradients,
it is known that they are not necessary. One example of this was demonstrated in Diaz et al. (2023),
where it was shown that parameterized matchgate circuits with an objective observable given by
constant-degree polynomials in Majorana fermions are efficiently trainable though they are not a
part of the LASA setting. We claim that both settings are special cases of a Jordan algebraic under-
standing of variational loss functions. In preparation of discussing this connection we now review
Jordan algebras.
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N0 Natural numbers including 0
N1 Natural numbers excluding 0
[n] Natural numbers from 1 through n

Hn (F) Jordan algebra of n× n Hermitian matrices over F
F Field, here one of R,C,H
β β = 1, 2, 4 when associated field F = R,C,H, respectively

dimF (·) Dimension of · as a vector space over F
N β (0, 1) Standard normal distribution over F (given by β)

Wβ
n (r,Σ)

β-Wishart distribution of n× n matrices with r degrees of freedom
and scale matrix Σ

⇝ Convergence in distribution
p−→ Convergence in probability
⊙ Hadamard product
Aα Simple components of semisimple Jordan algebra A
Gα Lie group isomorphic to a connected component of Aut (Aα)
gα Lie algebra generating Gα
·α Defining representation of the projection of · into Aα

Nα Dimension of vector space on which the defining representation of A acts
N Sum of Nα

Trα (·) Trace of · in the defining representation of Aα

Tr (·) Trace of · according to its representation in HN (C) ⊇ A
∥·∥op Operator norm of · ∈ Aα in its defining representation
∥·∥∗ Trace (nuclear) norm of · ∈ Aα in its defining representation
∥·∥F Frobenius norm of · ∈ Aα in its defining representation

O(poly (N)) O (Nκ) for some constant κ > 0
WLOG without loss of generality
w.h.p. with high probability

Table 2: Table of notation. Notation used in the presentation of our results are given in the left
column with corresponding meaning given in the right column. We also note here that exponents
written as decimals throughout our results are chosen somewhat arbitrarily, i.e., can be improved
by any sufficiently small constant ϵ > 0 in the exponent. Finally, we note that we will often forgo
writing “. . . a sequence of [ansatzes, loss functions, observables, QNNs, . . . ]. . . ” when describing
our asymptotic convergence results for brevity.

A.2 JORDAN ALGEBRAS

A Jordan algebra over the reals is formally a real vector space V with a commutative multiplication
operation ◦ acting on u, v ∈ V satisfying the Jordan identity:

u ◦ ((u ◦ u) ◦ v) = (u ◦ u) ◦ (u ◦ v) , (37)
which ensures the associativity of the power. A simple example of a Jordan algebra over the reals
is the real algebra HN (C) of N × N complex-valued Hermitian matrices with ◦ given by half the
anticommutator. In particular, for any finite-dimensional quantum system both O and the inputs ρ
in Eq. (36) belong to HN (C). We emphasize that though this algebra is typically written in terms
of complex matrices it is still a real Jordan algebra. This is because, for instance, i ̸∈ R multiplying
a Hermitian matrix is no longer Hermitian. In fact, the Jordan algebra of Hermitian matrices is
Euclidean (or formally real) as it satisfies the defining property (Koecher, 1999c):

∀A,B ∈ A, A ◦A+B ◦B = 0 ⇐⇒ A = B = 0. (38)
It is apparent that all subalgebras of a formally real algebra are also formally real.

The real vector space V with which a Jordan algebra is associated also has a natural linear transfor-
mation L (u):

L (u) v ≡ u ◦ v, (39)
which can be viewed as the Jordan algebraic analogue of the adjoint representation of Lie algebras.
This linear transformation gives rise to the canonical trace form:

τ (u, v) ≡ Tr (L (u ◦ v)) . (40)
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When τ is nonsingular we call the associated Jordan algebra A semisimple. As an example, for the
algebra HN (F) of Hermitian matrices over the field F, τ (u, v) is just the Frobenius inner product
between u and v. Just as is the case for semisimple Lie algebras, all symmetric bilinear forms on
a semisimple Jordan algebra are identical up to an overall scaling. Specifically, for any symmet-
ric bilinear form σ, there exists an element z in the center of A such that (Theorem 10, Koecher
(1999a)):

σ (u, v) = τ (z ◦ u, v) . (41)

For A = HN (C) in the defining representation the center is just real multiples of the identity matrix,
i.e., there exists a real I ≥ 0 such that:

Iσ (u, v) = τ (u, v) . (42)

We call I the index of σ in analogy with Fontana et al. (2024) for Lie algebras.

Though perhaps not as famous as the classification of compact Lie groups, the semisimple Euclidean
Jordan algebras have also been classified.

Theorem 8 (Classification of semisimple Euclidean Jordan algebras (Koecher, 1999d)). Any
semisimple Euclidean Jordan algebra is isomorphic to a direct sum of the simple Euclidean Jor-
dan algebras:

• LN forN ≥ 1: the spin factor, with vector space equal to RN and ◦ given by the operation

x ◦ y = (x · y, x1y + y1x) , (43)

where · denotes · with the first coordinate projected out;

• HN (R) for N ≥ 3: N ×N symmetric matrices over R, with ◦ half the anticommutator;

• HN (C) for N ≥ 3: N ×N Hermitian matrices over C, with ◦ half the anticommutator;

• HN (H) for N ≥ 3: N ×N Hermitian matrices over H, with ◦ half the anticommutator;

• H3 (O): 3× 3 Hermitian matrices over O, with ◦ half the anticommutator.

We use the term defining representation to speak of the described matrix representations of these
algebras. As the Hermitian octonion case is not an infinite family it is often called exceptional. We
here are interested in asymptotic sequences of Jordan algebras so we will not be considering the
exceptional case.

Every Jordan algebra A has associated with it an automorphism group Aut (A). As an example, for
HN (R) in the defining representation this is just given by the action of conjugation (under the usual
matrix multiplication) by orthogonal matrices. More generally, the nonexceptional simple cases
have automorphism groups (Orlitzky, 2024):

• Aut (LN ): left-action of {1} ×O(N − 1);

• Aut
(
HN (R)

)
: conjugation action of PO(N);

• Aut
(
HN (C)

)
: disjoint union of the conjugation action of PU (N), and the transpose

followed by the conjugation action of PU (N);

• Aut
(
HN (H)

)
: conjugation action of PSp (N).

We are here primarily interested in the connected component Aut1 (·) ⊆ Aut (·) containing the
identity transformation, so we will only concern ourselves with the path-connected automorphism
subgroups:

• SO (N − 1) ∼= Aut1 (LN ) ⊂ Aut (LN );

• SO (N) ∼= Aut1
(
HN (R)

)
⊆ Aut

(
HN (R)

)
;

• SU (N) ∼= Aut1
(
HN (C)

)
⊂ Aut

(
HN (C)

)
;

• Sp (N) ∼= Aut1
(
HN (H)

)
⊂ Aut

(
HN (H)

)
.
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Surprisingly, the automorphism groups of semisimple Jordan algebras are also classified. Given a
decomposition of a semisimple Euclidean Jordan algebra A into simple components:

A ∼=
⊕
α

Aα, (44)

the connected component of Aut1 (A) ⊆ Aut (A) containing the identity is isomorphic to the direct
product (Theorem 10, Koecher (1999b)):

Aut1 (A) ∼=×
α

Aut1 (Aα) . (45)

A.3 ϵ-APPROXIMATE t-DESIGNS OVER Aut1 (A)

In order to discuss the structure of the loss function in any detail we will need to consider some
choice of randomness over loss functions. To achieve this we will use ϵ-approximate t-designs
over Aut1 (A). Our use of these designs formalizes the notion of approximate “independence” or
“uniform initialization” of the ansatz with respect to the eigenbasis of a given objective observable,
as when ϵ→ 0 and t→ ∞ the ansatz is chosen in a completely group-invariant way over Aut1 (A).
By Eq. (45) these designs are (up to isomorphism) direct products of ϵ-approximate t-designs over
SO (N), SU (N), and Sp (N).

Before defining ϵ-approximate t-designs we define the Haar measure on compact Lie groups such
as Aut1 (A). This is the unique group-invariant normalized measure on these compact Lie groups.
Definition 9 (Haar measure onG (Haar, 1933)). LetG be a compact Lie group. The unique measure
satisfying: ∫

G

dµ = 1 (46)

as well as
dµ = d (gµ) (47)

for all g ∈ G is the Haar measure on G. The existence and uniqueness of this measure follows from
Haar (1933).

We now define ϵ-approximate t-designs. We will here use the “trace norm definition” out of conve-
nience, though all of the commonly used definitions are roughly equivalent (Harrow & Mehraban,
2023).
Definition 10 (ϵ-approximate t-designs over G). Let G be a compact Lie group with defining rep-
resentation over an N -dimensional space, and µ the Haar measure over G. A measure ν satisfying:∑

m

|EU∼µ [m (U)]− EU∼ν [m (U)]| ≤ ϵ, (48)

where the sum is over all degree-(t, t) monomials m (U) in the entries of U and U∗, is an ϵ-
approximate t-design over G.

A.4 WISHART MATRICES

Our main results will be given in terms of Wishart-distributed random matrices, so before proceed-
ing we give a brief review of this distribution. We will use Wβ

n (r,Σ) to denote the β-Wishart
distribution (Dubbs et al., 2013), where:

• β = 1, 2, 4 indicates it is over a field R,C,H, respectively;
• r ∈ N1 is the degrees of freedom parameter of the distribution;
• Σ ∈ Hn (R) is the symmetric, real-valued, positive-definite scale matrix parameter of the

distribution.

When we do not specify β we implicitly are referring to the usual Wishart distribution where β = 1.
The β-Wishart distribution is over positive semidefinite matrices of rank r, constructed by drawing
i.i.d. standard Gaussian entries over F:

Xi,j ∼ N β (0, 1) (49)

19



Published as a conference paper at ICLR 2025

Eigenvalue
De

ns
ity

1
= 1

Figure 2: Marčenko–Pastur distribution. The density of the Marčenko–Pastur distribution—the
asymptotic empirical eigenvalue distribution of normalized Wishart matrices—in the regime where
γ ≪ 1 and where γ = 1. At γ = 1 the associated Wishart matrix transitions from being full-rank to
being low-rank.

for i ∈ [n] and j ∈ [r], and considering the distribution of:

W =
√
ΣXX†

√
Σ. (50)

Here there exists the so-called Bartlett decomposition for W ∼ Wβ
n (r, In):

W ∼
√
ΣLL†

√
Σ, (51)

where L is lower-triangular. When r ≥ n, the the entries below the diagonal of L are i.i.d.
N β (0, 1)-distributed and the diagonal entries are i.i.d. distributed as (Rouault, 2007):

βL2
i,i ∼ χ2 (β (r − i+ 1)) , (52)

i.e., the Li,i are χ-distributed up to an overall scaling of β− 1
2 . When r < n, L is n × r with

first r rows as above and all other entries i.i.d. according to N β (0, 1) (Srivastava, 2003; Li & Xue,
2010; Yu et al., 2014). This completely characterizes the marginal distribution of the entries of any
W ∼ Wβ

n (r, In).

Our final results will be written in terms of real Wishart matrices W , i.e., those with β = 1. When
we analyze the asymptotic density of local minima of a JAWS it will turn out we will need to
consider the asymptotic spectrum of a real Wishart matrix, which we now discuss. When the scale
matrix Σ of W is the identity, as n, r → ∞ with n

r = γ held constant, the spectrum of r−1W is
known to almost surely converge weakly to a fixed distribution (Marčenko & Pastur, 1967). This
fixed distribution is the Marčenko–Pastur distribution, given by

dµγMP

dλ
=
(
1− γ−1

)
δ (λ)1 {γ ≥ 1}+

√
(γ+ − λ) (λ− γ−)

2πγλ
1 {γ− ≤ λ ≤ γ+} , (53)

where
γ± ≡ (1±√

γ)
2 (54)

and 1 is the indicator function. This distribution is illustrated in Figure 2.

A.5 CONVERGENCE OF RANDOM VARIABLES

We finally discuss in more detail the various of notions of convergence of random variables that we
use throughout our paper. Given a sequence of a set

(
XN
i

)
i

of real-valued random variables asN →
∞, we say

(
XN
i

)
i

weakly converges (or converges in distribution) to (X∞
i )i if the joint cumulative

distribution function FN of the XN
i converges to the joint cumulative distribution function F∞ of

the X∞
i at every point at which F∞ is continuous. That is,

lim
N→∞

FN (x) = F∞ (x) (55)
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for all points x at which F∞ is continuous. We denote this at the level of random variables with the
notation: (

XN
i

)
i
⇝ (X∞

i )i . (56)
One way to quantify the rate of this convergence is through the use of the Lévy–Prokhorov metric.
Letting pN and p∞ be the densities associated with FN and F∞, respectively, the Lévy–Prokhorov
metric is given by:

π
(
pN , p∞

)
= inf

{
ϵ > 0 | ∀A, FN (A) ≤ F∞ (Aϵ) + ϵ

}
, (57)

where here Aϵ is an ϵ-neighborhood in ∞-norm of A. π
(
pN , p∞

)
→ 0 if and only if

(
XN
i

)
i
⇝

(X∞
i )i.

Convergence in distribution is closely related to the pointwise convergence of probability densities.
Indeed, the latter implies the former by Scheffé’s theorem (Scheffé, 1947). The former implies the
latter if the pN are equicontinuous and uniformly bounded as N → ∞ (Boos, 1985).

We finally discuss convergence in probability. This is the statement that, for all ϵ > 0,

lim
N→∞

P
(∥∥XN −X∞∥∥

∞ > ϵ
)
= 0. (58)

We denote this convergence using the notation:(
XN
i

)
i

p−→ (X∞
i )i . (59)

One way to quantify convergence in probability is through the Ky Fan metric, which is given by:

α
(
pN , p∞

)
= inf

{
ϵ > 0 | P

(∥∥XN −X∞∥∥
∞ > ϵ

)
≤ ϵ
}
. (60)

α
(
pN , p∞

)
→ 0 if and only if

(
XN
i

)
i

p−→ (X∞
i )i. The Ky Fan metric upper bounds the Lévy–

Prokhorov metric (Strassen, 1965), consistent with the notion of convergence in probability implying
convergence in distribution.

We will in what follows often be loose with language and say two sequences of distributions con-
verge to one another at a rate K, either weakly or in probability, rather than state convergence to
a fixed distribution. This should be understood to mean that their distance in associated metric
asymptotically vanishes as K−1.

B FORMAL DISCUSSION OF THE MAIN RESULTS

B.1 THE JORDAN ALGEBRAIC STRUCTURE OF VARIATIONAL LOSS LANDSCAPES

With these preliminaries in place we can write the variational loss function given in Eq. (36) as the
canonical trace form on HN (C):

ℓ (θ;ρ) = τ (ρ, T (θ)O) , (61)

where here ρ,O ∈ HN (C), and T (θ) parameterizes some path-connected compact Lie group
T . Note that {T (θ)O}θ generates a Jordan subalgebra A ⊆ HN (C) such that O ∈ A and
T ⊆ Aut1 (A). As T (θ)O ∈ A for all θ, the trace form is zero for components of ρ orthogonal to
A. Because of this we will often also consider ρ an element of A in a slight abuse of notation.

We call a variational loss function of this form a Jordan algebra-supported ansatz (JASA), in
analogy with the term Lie-algebra supported ansatz (LASA) introduced in Fontana et al. (2024).
However, whereas variational loss functions are LASAs only if iO belongs to the dynamical Lie
algebra generating the ansatz, all variational loss functions are JASAs (up to assuming the path-
connectedness of T ). Indeed, in Appendix H we give a direct mapping from both LASAs and the
variational matchgate formalism of Diaz et al. (2023) to JASAs and show that a mapping in the other
direction is generally not possible.

We are often interested in the case where our variational loss landscape has some sort of structure,
i.e., when A ∼=

⊕
αAα ̸= HN (C). In Appendix G we demonstrate that in the context of examining

variational loss landscapes, the spin factor sectors (Aα = LNα
) effectively reduce to real symmetric

(Aα = HNα (R)) sectors. Because of this, we will from here on out focus on the case when Aα is
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the Jordan algebra of Hermitian matrices over a field, i.e., Aα
∼= HNα (Fα) for Fα = R,C,H. We

will also throughout use βα = 1, 2, 4 to label these three cases, respectively, as is commonly done
in the physics literature. We use Trα (·) to denote the trace of · in the defining representation of Aα

and Tr (·) to denote the trace of · according to its representation in HN (C) ⊇ A.

Recalling from Appendix A.2 the universality of the trace form and the direct product decomposition
of Aut1 (A), we can rewrite the loss function of Eq. (61) as:

ℓ (θ;ρ) =
∑
α

ℓα (θ;ρ) ≡
∑
α

Iατ
α (ρα, Tα (θ)Oα) , (62)

where here ·α is used to denote the component of · in Aα, τα is the canonical trace form on Aα, and
Iα > 0 is the constant due to Eq. (42).

We now give an explicit form for Tα (θ). Recall that elements of Aut1 (Aα) are, in the defining rep-
resentation of Aα, given by the conjugation action by elements of SO (Nα), SU (Nα), or Sp (Nα)
when Fα = R,C,H, respectively. We let Gα denote the corresponding Lie group and gα the asso-
ciated Lie algebra. We also denote G as the direct product over Gα, and g the corresponding Lie
algebra. Following the typical structure of variational quantum algorithms (Peruzzo et al., 2014) we
will assume Tα (θ) in the defining representation corresponds to conjugation by:

Uαg,h (θ) = gα†0

(
p∏
i=1

gαi exp (θiA
α
i ) g

α†
i

)
hα ∈ Gα (63)

for some gi, h ∈ G and Ai ∈ g, where ·α denotes the projection onto Gα or gα appropriately. With
this choice of ansatz it is also easy to see the derivatives of ℓ have algebraic interpretations. For
instance, at θ = 0, i ≥ j,

∂iℓ (θ;ρ) =
∑
α

Iατ
α
(
gα0 ρ

αgα†0 ,
[
gαi A

α
i g

α†
i , hαOαhα†

])
, (64)

∂i∂jℓ (θ;ρ) =
∑
α

Iατ
α
(
gα0 ρ

αgα†0 ,
[
gαj A

α
j g

α†
j ,
[
gαi A

α
i g

α†
i , hαOαhα†

]])
, (65)

where the commutator action of the automorphism group of a Jordan algebra is canonically defined
through its representation L defined in Eq. (39) (see Lemma 7 of Koecher (1999b)).

B.2 JORDAN ALGEBRAIC WISHART SYSTEMS

We have demonstrated that all variational loss landscapes are Jordan algebra-supported ansatzes
(JASAs). We are finally ready to discuss our main results, which give an explicit expression for
the loss landscape of a JASA when its ansatz takes the form of Eq. (63). To do this we first define
a Jordan algebraic Wishart system (JAWS), leaving for now ambiguous the connection to Wishart
matrices.
Definition 11 (Jordan algebraic Wishart system). Let O belong to a Jordan algebra A ⊆ HN (C)
and let T be a path-connected subspace T ⊆ Aut1 (A). Let

A ∼=
⊕
α

Aα (66)

be the decomposition of A into simple Euclidean components as in Theorem 8 with associated
decomposition T ∼=×α

Tα as in Eq. (45). Let Gαi ,Hα be independent distributions over Tα, and
A = {Ai}pi=1 elements of the Lie algebra of Aut1 (A). We call

J = (A, T ,G,H,A, O) (67)

a Jordan algebraic Wishart system (JAWS).

Every JAWS has associated with it a loss function as discussed in Appendix B.1. Using ·α to label
the projection of · into Aα in its defining representation, the associated loss function takes the form:

ℓ (θ;ρ) =
∑
α

ℓα (θ;ρ) =
∑
α

Iα Trα

(
ραUα (θ)OαUα (θ)

†
)
, (68)

22



Published as a conference paper at ICLR 2025

where Uα (θ) ∈ Gα for all θ and is of the form:

Uα (θ) ≡ gα†0

(
p∏
i=1

gαi exp (θiA
α
i ) g

α†
i

)
hα. (69)

Here, gαi is the defining representation of an element drawn from from the distribution Gαi , and hα
is similar for Hα.

Our main result is a concise, asymptotic description of ℓ (θ;ρ) when the ansatz is chosen “suffi-
ciently independently” from O (up to respecting the algebra A). More formally, the rate at which
ℓ (θ;ρ) converges to its asymptotic limit depends on the parameters defined by the following as-
sumption.

Assumption 12 (ϵ-approximate t-design of observable basis). Each Hα is an ϵ-approximate t-
design over Tα = Aut1 (Aα).

If there is a sense of geometric locality in the system, i.e., if the reverse lightcone of Oα is of the
form:

Uα (θ)OαUα (θ)
†
= Õα ⊗ I (70)

for some Õα acting on a space of dimension at most D ≡ exp
(
O
(
pd
))

for constant geometric
dimension d, one can explicitly enforce this with only a modest overhead in circuit depth. Indeed,
one may embed Aα into qubits and use the construction of Harrow & Mehraban (2023) to give
a d-dimensional random circuit of depth O(poly (t) p) that achieves this over Aut1

(
H2n (C)

)
⊃

Aut1 (Aα) for some n = O
(
pd
)

and ϵ = exp (−Ω (p)).

Given Assumption 12 we are able to prove our main result on the convergence of loss functions. We
are able to prove our convergence for any N -dependent overall normalization of the loss function
N , the only requirement being that central moments of sufficiently large (constant) order have a
finite limit as N → ∞. This is always true for N = 1 and, depending on the specific choice of
t-design, potentially holds for any N ≤ O

(
N1−δ) where δ > 0 is constant.

Theorem 13 (Loss function distribution). Let J be a JAWS satisfying Assumption 12 with loss
function ℓ (θ;ρ) for ρ ∈ R. Further assume that

Tr
(
(ρα)

2
)
= Ω

(
1

N0.999
α

)
. (71)

Fix θ. Assume N ≤ O
(
minαN

0.99
α

)
is such that there exists a constant k∗ such that the central

moments of order k > k∗ of (N ℓ (θ;ρ))ρ∈R are finite as all ϵ−1, t, Nα → ∞. We have the
convergence in joint distributions:

(N ℓ (θ;ρ))ρ∈R ⇝
(
N ℓ̂ (θ;ρ)

)
ρ∈R

(72)

as all ϵ−1, t, Nα → ∞, where

ℓ̂ (θ;ρ) ≡
∑
α

ℓ̂α (θ;ρ) ≡
∑
α

Iαo
α

rα
Trα (ρ

αW α) , (73)

oα is the arithmetic mean eigenvalue of Oα in the defining representation:

oα = N−1
α Trα (O

α) , (74)

and the W α are independent Wishart-distributed random matrices with βαrα degrees of freedom,
where

rα ≡
∥Oα∥2∗
∥Oα∥2F

. (75)

In particular, the distributions differ in Lévy–Prokhorov metric by

π = O

(
log log

(
N−tϵ−1

)
log (N−tϵ−1)

+
log (t)√

t
+
∑
α

√
N log (Nα)

N1.001
α

)
= o (1) . (76)
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In Appendix I we show that Eq. (71) can effectively be taken WLOG. This is because all ρα for
which this is not true are such that ℓα (θ;ρ) have asymptotically vanishing variance even when
rescaled by the potentially exponentially large N = O(N). This is why we do not take Eq. (71) as
a numbered Assumption. Examples of the loss density are illustrated in Figure 1(a).

We can strengthen the statement of weak convergence in Theorem 13 to one of pointwise con-
vergence of densities given equicontinuity and boundedness of the appropriately normalized loss
function density. Whether this is true depends on the specifics of the distributions G,H, particularly
whether the loss is equicontinuous and bounded at the same N =

√
rα scale as ℓ̂α. We give some

standard examples where this is true in Appendix K.

Corollary 14 (Convergence of loss function densities). Let J , ℓ, ℓ̂ be as in Theorem 13. Assume the
density of

(√
rαℓ

α (θ;ρ)
)
ρ∈R,α is equicontinuous and bounded as all ϵ−1, t, Nα → ∞. Then the

joint density of
(√
rαℓ

α (θ;ρ)
)
ρ∈R,α is pointwise equal to that of

(√
rαℓ̂

α (θ;ρ)
)
ρ∈R,α

up to an

additive error O(π).

As-written our result only gives the loss function distribution at a single point θ in parameter space.
However, any finite set Θ of points in parameter space can be considered by taking

ρ (θ) = Uα (θ)ρUα† (θ) (77)
to be elements in an augmented set of input states:

R′ = R×Θ. (78)
We can give a more concrete form for the parameter-dependence of the loss landscape by considering
the joint distribution of ℓ with its derivatives. We begin with the gradient. In order to consider the
joint distribution over what can potentially be many gradient components—a number growing with
the number of parameters p—we take the following additional assumption on the growth of t with p
so we are able to fully capture correlations between the derivatives.
Assumption 15 (Scaling of parameter space dimension with t-design). The number of trained pa-
rameters p satisfies:5

p2 ≤ o

(
min

(
log
(
ϵ−1
)

log log (ϵ−1)
,

√
t

log (t)

))
, (79)

where the Gαi are i.i.d. ϵ-approximate t-designs over Tα = Aut1 (Aα), and

p ≤ O
(
poly

(
min
α
Nα

))
. (80)

It is possible to weaken this assumption and instead assume that the Gαi are ϵ-approximate 2-designs

rather than t-designs, but this is at the expense of requiring N ≤ o
(
N

2
3

)
and only considering

jointly at most ∼ log (N) components of the gradient. We leave further details of this alternative
setting to Appendix J.

It will also be convenient for the rest of our discussion to consider a concrete set of Ai.
Assumption 16 (Concrete choice of Ai). For Fα = C,H, the Aα

i are rank-1. For Fα = R, the Aα
i

are rank-2.

The distinction between the cases Fα = C,H and Fα = R is due to there being no rank 1 operators
in the defining representation of so (Nα). This choice of Aα

i may seem unphysical due to their
nonlocality, but one can emulate the behavior of high-rank (e.g., Pauli) rotations by considering a
factor of Nα more layers pα in a given simple sector—each, for instance, performing a rotation
under each eigenvector of Aα

i —and then tying the associated parameters together. This breaks no
other assumptions as taking pα → Nαpα maintains Eq. (80).

We then have the following theorem. It is stated assuming only a single input ρ which is rank-1 when
projected to the defining representation of each simple sector to simplify the final result. However,
in Appendix D.3 we give a full, exact expression of the joint distribution in terms of Wishart matrix
elements for any choice of R ∋ ρ and independent of the scaling of Nα − rα.

5We here use a bound on p2 so that later we can reuse this assumption for the Hessian; at this stage we
really only need this bound for p.
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Theorem 17 (Gradient distribution). Consider the setting of Theorem 13, with the additional As-
sumptions 15 and 16. Assume σα

o

o is bounded—where σαo is the standard deviation of the eigenvalues
of Oα—and assume |R| = 1 with element ρ such that each ρα is rank-1 in its defining representa-
tion. We have the convergence in joint distributions:

(N ℓ (θ;ρ) ,N∂iℓ (θ;ρ))i∈[p] ⇝
(
N ℓ̂ (θ;ρ) ,N ℓ̂;i (θ;ρ)

)
i∈[p]

(81)

as all ϵ−1, t, Nα → ∞, where conditioned on

ℓ̂α (θ;ρ) = zα (82)

we have that

ℓ̂α;i|zα (θ;ρ) =
2Iασ

α
o Trα (ρ

α)

Nα

√
βαzα

Iαo
α χ

α
i G

α
i , (83)

where
ℓ̂;i (θ;ρ) |

{
ℓ̂α (θ,ρ) = zα

}
α
≡ ℓ̂;i|z (θ;ρ) ≡

∑
α

ℓ̂α;i|zα (θ;ρ) . (84)

Here, the χαi are independent χ-distributed random variables with max (2, βα) degrees of freedom
and the Gαi are i.i.d. standard normal random variables. In particular, the distributions differ in
Lévy–Prokhorov metric by

π′ = O

(
p log log

(
N−tϵ−1

)
log (N−tϵ−1)

+
p log (t)√

t
+
∑
α

√
N log (Nα)

N1.001
α

+
N 1

3 log (N)

N
5
12

)
= o (1) . (85)

This result is stronger than typical barren plateau results as it gives the full distributional form of
the gradient—even when conditioned on the loss contribution zα—rather than just its variance (Mc-
Clean et al., 2018; Larocca et al., 2022; Fontana et al., 2024; Ragone et al., 2024). The conditional
distribution as in Eq. (83) is illustrated in Figure 1(b).

Just as with the loss function, we can strengthen Theorem 17 to show pointwise convergence in
probability densities assuming equicontinuity of the original distribution.

Corollary 18 (Convergence of gradient densities). Let J , ℓ, ℓ̂ be as in Corollary 14. Assume the
density of

(√
rαℓ

α
;i (θ;ρ)

)
α

is equicontinuous and bounded for all zα ∈ R≥0 as all ϵ−1, t, Nα → ∞.

Then the joint density of
(√
rαℓ

α
;i (θ;ρ)

)
α

is pointwise equal to that of
(√

rαℓ̂
α
;i (θ;ρ)

)
α

up to an

additive error O(π′).

We now give our final result, which specifies the joint distribution of not only the loss and gradient
but also the Hessian at critical points. This is required to reason about the critical point distribution
of the loss landscape using the so-called Kac–Rice formula (Adler & Taylor, 2007) that we will
discuss in detail in Appendix C.3. We state our result assuming σo ≪ o for simplicity, giving as we
did for the gradient the full expression in terms of Wishart matrix elements in Appendix D.3.

Theorem 19 (Hessian distribution). Let J , ℓ, ℓ̂ be as in Theorem 17. Assume all σα
o

oα = o (1) as
Nα → ∞. We have the convergence in joint distributions:

(ℓ (θ;ρ) , ∂iℓ (θ;ρ) , ∂i∂jℓ (θ;ρ))ρ∈R,i≥j∈[p] ⇝
(
ℓ̂ (θ;ρ) , ℓ̂;i (θ;ρ) , ℓ̂;i,j (θ;ρ)

)
ρ∈R,i≥j∈[p]

(86)
as all ϵ−1, t, Nα → ∞, where conditioned on

ℓ̂α (θ;ρ) = zα (87)

and
ℓ̂α;i|zα (θ;ρ) = 0 (88)

we have that

ℓ̂α;i,j|zα,0 (θ;ρ) =
2Iασ

α
o Trα (ρ

α)

N2
α

√
zα

Iαoα
Gαi χ

α
j ⟨i|W α |j⟩ , (89)
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Figure 3: Relation between models for quantum variational loss landscapes. Our introduced
theory for the loss landscapes of quantum neural networks (QNNs) are Jordan algebraic Wishart
systems (JAWS), which relate the algebraic structure of a given QNN architecture to an asymptotic
random process description of the loss landscape. This JAWS description reduces to the previously-
studied Wishart hypertoroidal random fields (WHRFs) and quantum neural tangent kernel (QNTK)
in different settings, and also reproduces the loss function variance known for Lie algebra-supported
ansatzes (LASAs) and matchgate (MG) networks. Cartoons of the loss landscapes associated with
previously studied models are shown.

where

ℓ̂;i,j (θ;ρ) |
{
ℓ̂α (θ,ρ) = zα,

(
ℓ̂α;i (θ;ρ)

)
i∈[p]

= 0

}
α

≡ ℓ̂;i,j|z,0 (θ;ρ) ≡
∑
α

ℓ̂α;i,j|zα,0 (θ;ρ) .

(90)
Here, the Gαi are i.i.d. standard normal random variables, the χαi are independent χ-distributed
random variables with max (2, βα) degrees of freedom, and the W α are independent Wishart-
distributed random matrices with βαrα degrees of freedom. In particular, the distributions differ
in Lévy–Prokhorov metric by

π′′ = O

(
p2 log log

(
N−tϵ−1

)
log (N−tϵ−1)

+
p2 log (t)√

t
+
∑
α

N 1
3 log (Nα)

N
1
3
α

)
= o (1) . (91)

C FORMAL DISCUSSION OF THE CONSEQUENCES OF OUR RESULTS

Before proceeding with proofs of our results we examine their implications. These are summarized
in Figure 3.

C.1 BARREN PLATEAUS

The first implication of our results that we will discuss is the unification of barren plateau re-
sults (Fontana et al., 2024; Ragone et al., 2024) in the large Nα limit.

Corollary 20 (General expression for the loss function variance). Let ℓ be as in Theorem 13. The
variance is:

Var [ℓ (θ;ρ)] =
∑
α

Tr
(
(Oα)

2
)
Tr
(
(ρα)

2
)

dimR (gα)
+ O (π) . (92)

26



Published as a conference paper at ICLR 2025

Here, dimR (gα) is the dimension of the automorphism group of Aα and π is as in Eq. (76).6

Proof. Note that

dimR (gα) = (βα − 1)Nα +
βαNα (Nα − 1)

2
=
βαN

2
α

2
+ O (Nα) . (93)

Similarly,
(oα)

2

rα
=

∥Oα∥2F
N2
α

. (94)

By Eq. (42), we also have that
Iα ∥Oα∥2F = Tr

(
(Oα)

2
)
, (95)

with Tr (·) the trace on the fullN -dimensional Hilbert space. Using the fact that the diagonal entries
of βαW α are i.i.d. χ2-distributed with βαrα degrees of freedom (see Appendix A.4), we then have
from Theorem 13 that as Nα → ∞:

Var [ℓ (θ;ρ)] =
∑
α

Var
[
ℓ̂α (θ;ρ)

]
+O(π)

=
∑
α

2I2α (o
α)

2

βαrα
Trα

(
(ρα)

2
)
+O(π)

=
∑
α

2Iα (o
α)

2

βαrα
Tr
(
(ρα)

2
)
+O(π)

=
∑
α

Tr
(
(Oα)

2
)
Tr
(
(ρα)

2
)

dimR (gα)
+ O (π) .

(96)

This result immediately implies Theorem 1 of Ragone et al. (2024) in the case of Lie algebra-
supported ansatzes. However, our result holds for all variational ansatzes, i.e., it does not rely on
either iO or iρ being a member of the dynamical Lie algebra generating the ansatz.

In the language of Ragone et al. (2024), Tr
(
(ρα)

2
)

is the Aα-purity PAα
of O, and be thought of

as measuring the generalized entanglement (Barnum et al., 2004) of ρ with respect to the Jordan al-
gebraic structure of A. In this sense, this barren plateau result can also be thought of as generalizing
the entanglement-induceed barren plateaus previously studied by Ortiz Marrero et al. (2021).

C.2 THE QUANTUM NEURAL TANGENT KERNEL

We now connect our results to the quantum neural tangent kernel (QNTK) literature (Liu et al.,
2022; 2023; You et al., 2022; García-Martín et al., 2023; Girardi & Palma, 2024; García-Martín
et al., 2024). The landmark result in this field is that, under certain conditions on R, O, and A,
variational loss functions are asymptotically a Gaussian process when ϵ−1, t, N → ∞. However,
this same body of work has noted that such a Gaussian process description cannot generally be true:
for instance, if O is rank-1 and A is the space of complex Hermitian matrices, the loss should be
Porter–Thomas distributed as this reduces to a random circuit sampling setting (Boixo et al., 2018).

Our results can be seen as a unifying model of neural network loss landscapes, including both
when convergence to a Gaussian process is achieved and when it is not. Recall that Theorem 13
demonstrated that the asymptotic expression for the variational loss with objective observable O is
distributed as a Wishart process:

ℓ̂ (ρ) =
∑
α

Iαo
α

rα
Trα (ρ

αW α) , (97)

6Through careful examination of our proof this error is actually identically zero when t ≥ 2 and ϵ = 0 in
Assumption 12 as here we are only taking a second moment.
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even when rescaled by a quantity N exponentially large in the problem size. This correctly captures
the Porter–Thomas behavior when A is the space of complex Hermitian matrices and rank (O) =
r = 1. This is because the diagonal entries of a complex Wishart matrix are χ2-distributed with two
degrees of freedom each, which is identical to the exponential distribution.7

Indeed, our more general result can be used to exactly characterize when QNNs asymptotically
form Gaussian processes. This occurs when the loss is scaled by some N such that Eq. (97) has
nonvanishing variance yet the higher-order cumulants vanish. We compute the third-order cumulant:

κ3

(
N ℓ̂ (ρ)

)
= O

(
N 3

∑
α

I3α (o
α)

3

r2α
Trα

(
(ρα)

3
))

. (98)

We thus can state this pair of conditions formally as follows.

Corollary 21 (Exact conditions for convergence to a Gaussian process). Let J , ℓ be as in Theo-
rem 13. N ℓ (θ;ρ) is asymptotically a Gaussian process as ϵ−1, t, N → ∞ if and only if

N ≤ o

min
α

r
2
3
α

Iαo
α Trα

(
(ρα)

3
) 1

3

 (99)

and N 2 Var [ℓ (θ;ρ)] (with the variance as given in Corollary 20) is nonvanishing for all ρ ∈ R.

When these conditions are met, the covariance is given by:

K (ρ,ρ′) = lim
N→∞

KN (ρ,ρ′)

= lim
N→∞

N 2
∑
α

βα Tr
(
(Oα)

2
)

2 dimR (gα) rα
IαE [Trα (ρ

α (W α − rα)) Trα (ρ
′α (W α − rα))] .

(100)

It is now easy to see why (for simple A) the r = 1 case does not converge to a Gaussian process:
when r = 1 we may only choose a normalization N ≤ o (N) such that higher-order cumulants
vanish asymptotically, but then the variance vanishes asymptotically. In contrast, our results demon-
strate convergence to a Wishart process through any finite number of cumulants, not just the first
two.

We can also be more concrete on the form of K (ρ,ρ′). Indeed, we are able to show that each
algebraic sector Aα contributes to the covariance an explicit, quadratic expression in ρα and ρ′α,
depending only on the field Fα associated with its defining representation. In other words, whether
or not a given quantum neural network is asymptotically a Gaussian process just depends on how
SWAP tests of the inputs scale. As the expression is complicated we do not reproduce it here, instead
giving references to where it may be found for each of Fα = R,C,H.

Theorem 22 (K is quadratic in ρ,ρ′). K (ρ,ρ′) can be written as a closed-form, explicit function

of only the Tr (ρα), Tr (ρ′α), Tr
(
(ρα)

2
)

, Tr
(
(ρ′α)

2
)

, and Tr (ραρ′α).

Proof. By the Haar invariance of W α there are explicit formulas for covariances of the form of
K (ρ,ρ′) as degree-2 polynomials in ρ and ρ′. These formulas are given in:

1. Theorem 1 of Redelmeier (2011) when F = R;

2. Theorem 3.5 of Mingo & Speicher (2006) when F = C;

3. Sec. 5.3 of Redelmeier (2021) when F = H.

The result then follows by noting that Iα Trα (·α) = Tr (·α).
7It is also easy to check when r = 1 and the ansatz unitaries are Haar random that the assumptions we use

in proving our results hold for any N ≤ O(N).
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We give a simple example of the calculation of K when all inputs ρ0 can be mutually diagonalized.
By the unitary invariance of Wishart matrices we can assume WLOG that all inputs are diagonal.
Inputs are then completely parameterized by the eigenvalues x ∈ RNα

≥0 of the input states, where
∥x∥1 = 1. By the independence of diagonal entries of a Wishart matrix we then have that (when
N = 1):

KN (x,x′) = N 2
∑
α

βα Tr
(
(Oα)

2
)

2 dimR (gα) rα

N∑
i=1

xαi x
′α
i Var [⟨i|W α |i⟩] + o (1)

= N 2
∑
α

Tr
(
(Oα)

2
)

dimR (gα)
xα · x′α + o (1) ,

(101)

where in the final line we used similar simplifications as in Appendix C.1. Noting that xα · x′α is
just the overlap of ρα and ρ′α yields an equivalent formulation:

KN (ρ,ρ′) = N 2
∑
α

Tr
(
(Oα)

2
)

dimR (gα)
Tr (ραρ′α) + o (1) =

∑
α

O

(
N 2rα
N2
α

)
Tr (ραρ′α) + o (1) .

(102)
In particular, when A is simple, a N = Ω

(
N√
r

)
normalization is required for the network to

asymptotically form a Gaussian process over pure inputs.

While previous results have shown that Gaussian processes efficiently train, we argue that this may
paint an overly optimistic picture for generic QNNs. Focusing on the case where the ansatz is
an Θ(log (n))-depth, 2-dimensional circuit on n qubits, we have that the QNN forms a Gaussian
process when:

N = exp
(
Ω
(
log (n)

2
))

, (103)

i.e., at a normalization superpolynomial in n. Thus while it is known that such networks can achieve
a constant improvement in N ℓ̂ in time polynomial in n via gradient descent (Girardi & Palma, 2024),
this translates to a superpolynomially vanishing improvement in the loss function value when in the
physical normalization of N = 1. More generally, the covariance we here derive can be used with
results in the classical neural tangent kernel literature to reason about the training behavior (Neal,
1996; Choromanska et al., 2015; Chaudhari, 2018; Lee et al., 2018) and generalization ability (Jacot
et al., 2018; Wei et al., 2022) of this class of quantum neural networks, which we hope to analyze in
more detail in the future.

C.3 LOCAL MINIMA

We end by examining the distribution of local minima of the loss landscape. This has been done pre-
viously in the more restricted setting where no structure is imposed on the loss function (Anschuetz,
2022; Anschuetz & Kiani, 2022). In this section we assume the assumptions of Theorem 19 and that
as all ϵ−1, t, Nα → ∞,

γα ≡ pα
βαrα

(104)

is held constant. Here, pα is the number of Ai that are nontrivial on the simple component Aα

of A. γα is the so-called overparameterization ratio discussed in Anschuetz (2022); Anschuetz &
Kiani (2022). We also assume for the simplicity of our expressions that each simple sector is fully
controllable, i.e., that each ansatz generator Ai is only nontrivial on a single simple component of
A. In principle a more general expression could be written as well, though the gradient density
would be a convolution over complicated probability densities, and the Hessian distributed as a free
convolution of multiple Wishart matrices.

We calculate the distribution of local minima via the Kac–Rice formula (Adler & Taylor, 2007),
which gives the expected density of local minima of a function ℓ at a function value z. Anschuetz
(2022) demonstrated that the assumptions for the Kac–Rice formula are satisfied for variational loss
landscapes, and when rotationally invariant on the p-torus takes the form:

E [Crt0 (z)] = (2π)
p E [det (Hz)1 {Hz ⪰ 0}]P [Gz = 0]P [ℓ = z] . (105)
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Here, E [Crt0 (z)] is the expected density of local minima at a function value z, Gz is the gradient
conditioned on ℓ = z, and Hz is the Hessian conditioned on ℓ = z and G = 0. In a slight abuse of
notation, here P [·] denotes the probability density associated with the event ·.
We can evaluate this expression using Theorems 13, 17, and 19.

Corollary 23 (Density of local minima to multiplicative leading order). Let J , ℓ̂ be as in Corol-
lary 18 and Theorem 19. Assume each ansatz generator Ai is only nontrivial on a single simple
component of A, and further assume that ρα is rank-1 in its defining representation. Assume as well
that the overparameterization ratios:

γα ≡ pα
βαrα

(106)

remain fixed as N → ∞. Let µHα
z

be the empirical spectral measure of

H̃α
z ≡ N−1

α Sα ⊙W α, (107)

where (for i ≥ j) Sαi,j = |Gαi |χαj with random variables defined as in Theorem 19 and ⊙ denotes
the Hadamard product. Let λ∗z,α denote the infinimum of the support of µHα

z
. Then the expected

density of local minima of ℓ̂ at a loss function value z is:

E [Crt (z)] =∗
α

E [Crtα0 ] (z) , (108)

where

p−1 ln (E [Crtα0 (z)]) = ln

(
πmax (2, βα)

4
√
βα

)
+

1

2γα

(
1− z

Tr (ρα) oα
+ ln

(
z

Tr (ρα) oα

))
+ p−1 lnE

[
exp

(
p

∫
dµH̃α

z
(λ) ln (λ)

)
1
{
λ∗z,α ≥ 0

}]
+ o (1) .

(109)

Proof. We will first consider a single simple component Aα with pure ρα (and with α labels implicit
for clarity of notation), and describe in the end how a full distribution of local minima can be
determined from this via a convolution. From Corollary 14 it follows that the density of the loss is:8

P
[
ℓ̂ = z

]
=

(
βrz
2Io

) βr
2 −1

exp
(
−βrz

2Io

)
2Γ
(
βr
2

) . (110)

Similarly, using Corollary 18 and recalling that β is one of 1, 2, or 4, we can evaluate the density of
the gradient at zero:

P [Gz = 0] =

(
1√
2πσz

∫ ∞

0

dx
fχmax(2,β) (x)

x

)p
=

(
max (2, β)

4σz

)p
, (111)

where fχmax(2,β) is the density of a χ-distributed random variable with max (2, β) degrees of free-
dom and

σz =
2Iσo
N

√
βz

Io
. (112)

Finally, we consider the Hessian determinant. Recall Theorem 19 for the Hessian components,
which gives the Hessian as:

N

2Iσo

√
Io

z
Hz = N−1S̃ ⊙W , (113)

where S̃i,j = Giχj . We now claim that Hz can only be positive semidefinite if all Gi ≥ 0. To
see this, note that χiWi,i is always nonnegative. When Gi < 0, then, the (i, i) entry of S̃ ⊙ W
is negative and thus is not positive semidefinite. We therefore can consider |Gi| rather than Gi up

8Technically we need to consider the density of the loss rescaled by
√
N to achieve pointwise convergence

in densities, but the results are equivalent after rescaling z.
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to pulling out a factor of 2−p from the expectation. Putting everything together, to multiplicative
leading order as N → ∞,

p−1 ln (E [Crt0 (z)]) = ln

(
πmax (2, β)

4
√
β

)
+

1

2γ

(
1− z

Io
+ ln

( z
Io

))
+ p−1 lnE

[
exp

(
p

∫
dµH̃z

(λ) ln (λ)

)
1 {λ∗z ≥ 0}

]
+ o (1) .

(114)

This completes our proof for a single simple component Aα with pure ρα. To calculate the loss
landscape of a JAWS associated with a nonsimple Jordan algebra, note that:

P [ℓ = z] =∗
α

P [ℓα = zα] , (115)

where∗ denotes convolution. The relative weights of the various sectors introduced by Trα (ρ
α)

can be accounted for by taking:

Iα → Iα Trα (ρ
α) = Tr (ρα) . (116)

From Eq. (105) and our simplifying assumptions, then,

E [Crt0 (z)] =∗
α

E [Crtα0 ]Iα→Tr(ρα) (z) , (117)

where E [Crtα0 ] denotes Eq. (114) associated with the algebraic sector Aα.

While Corollary 23 is exact, it is obtuse almost to the point of obscurity, particularly due to the ex-
pectation over the Hessian. The obstruction to further simplification is the presence of the Hadamard
product between Sα and W in H̃α

z , which is difficult to handle analytically. To get around this, we
consider a slightly modified quantity where we condition both sides of Eq. (105) on the events:

|Gi| = χi. (118)

In effect this can be considered as a regularization scheme, where new parameters θ̃i are introduced
as Lagrange multipliers with associated derivatives:9

ℓ̃;i ≡ θ̃i + |Gi| − χi (119)

and we consider a sufficiently small neighborhood of θ̃i = 0. In this setting the nontrivial compo-
nents of H̃α

z take the much more manageable form:

H̃α
z = N−1

α

√
ΣαW α

√
Σα, (120)

where Σα is a diagonal matrix with entries i.i.d. χ2-distributed with max (2, βα) degrees of free-
dom. Analyzing the expected determinant of this random matrix leads us to prove the following.

Corollary 24 (Density of local minima to multiplicative leading order, regularized). Consider the
setting of Corollary 23 conditioned on |Gi| = χi such that H̃α

z is as in Eq. (120). Let µγMP be the
Marčenko–Pastur distribution with parameter γ. Then the expected density of local minima of ℓ̂ at
a loss function value z is:

E [Crt (z)] = ∗
α:γα<1

E [Crtα0 ] (z) , (121)

where:

p−1 ln (E [Crtα0 (z)]) = ln

(
πmax (2, βα)

2
√
βα

)
+

1

2γα

(
1− z

Tr (ρα) oα
+ ln

(
z

Tr (ρα) oα

))
+

max (2, βα)

2
− 1− γ+

∫
dµγαMP (λ) ln (λ) + o (1) .

(122)
9The Kac–Rice formula as stated in Adler & Taylor (2007) allows one to consider this modified gradient

jointly with the original loss.
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Proof. As in Corollary 23 we focus on a single simple component Aα. Σ is positive definite with
probability 1. As it is diagonal with i.i.d. χ2-distributed random variables each with max (2, β)
degrees of freedom,

exp

(
p

∫
dµΣ (λ) ln (λ)

)
= exp

(
p

(
max (2, β)

2
− 1− γ+ ln (2)

))
, (123)

where dµΣ is the empirical spectral distribution of Σ and γ is the Euler–Mascheroni constant. What
remains to be considered is the spectrum of

Dz ≡ Σ− 1
2 H̃zΣ

− 1
2 = N−1W =

(
βr

N

)
(βr)

−1
W . (124)

Recall that by assumption σo

o = o (1) so by, e.g., Lemma 25 (proved in Appendix D.1):

ln

(
βr

N

)
= o (1) . (125)

We need only focus on (βr)
−1

W , then. As discussed in Appendix A.4, this random matrix has
empirical eigenvalue spectrum weakly converging almost surely to the Marčenko–Pastur distribu-
tion with parameter γ. In principle, large deviations in this convergence—even if they occur with
exponentially small probability—can contribute corrections to the expected determinant due to its
exponential sensitivity on the eigenvalues of Dz . However, we show in Appendix L that these large
deviations are dominated in the expectation by the Marčenko–Pastur distribution. Noting that the
Marčenko–Pastur distribution with parameter γ has support at the origin if and only if γ > 1 and
taking convolutions over simple algebraic sectors as in the proof of Corollary 23 then yields the final
result.

Dropping multiplicatively subleading factors from Eq. (122), we effectively have demonstrated that
the density κα (z) of local minima for a given simple component Aα is asymptotically given by:

κα (z) = fΓ

(
z

Tr (ρα) oα
;
pα
2γα

,
2γα
pα

)
(126)

if γα < 1, and otherwise:
κα (z) = δ (z) . (127)

We here have used the expression for the density of the gamma distribution:

fΓ (x; k, θ) =
1

Γ (k) θk
xk−1 exp

(
−x
θ

)
. (128)

Convolving κα over many simple sectors thus yields the final density for z > 0:

κ (z) = ∗
α:γα<1

fΓ

(
z

oα Tr (ρα)
;
βαrα
2

,
2

βαrα

)
. (129)

This distribution is illustrated in Figure 1(C) for various parameter regimes. To multiplicative lead-
ing order in γ this agrees exactly with the asymptotic local minima distribution studied in Anschuetz
(2022); Anschuetz & Kiani (2022). See for instance Eq. (1) of Anschuetz (2022), which studies the
case A = HN (C); i.e., one takes βα → 2, rα → m, and z

Tr(ρα)oα
→ x to translate from our setting

to their setting.

We can simplify this expression even further by noting that, asymptotically, the convolution of many
gamma distributions is also gamma-distributed by the Welch–Satterthwaite equation (Satterthwaite,
1946; Welch, 1947). This yields:

κ (z) = fΓ (z; keff, θeff) , (130)
where

keff =

(∑
α:γα<1 o

α Tr (ρα)
)2

∑
α:γα<1

2(oα)2 Tr(ρα)2

βαrα

{Nα→∞}α−−−−−−−→ ℓ
2

u.p.

 ∑
α:γα<1

Tr
(
(Oα)

2
)
Tr
(
(ρα)

2
)

dimR (gα)

−1

, (131)

θeff =

∑
α:γα<1

2(oα)2 Tr(ρα)2

βαrα∑
α:γα<1 o

α Tr (ρα)

{Nα→∞}α−−−−−−−→ ℓ
−1

u.p.

∑
α:γα<1

Tr
(
(Oα)

2
)
Tr
(
(ρα)

2
)

dimR (gα)
. (132)
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Here,
ℓu.p. ≡

∑
α:γα<1

oα Tr (ρα) (133)

is the mean loss function value over the underparameterized sectors, and the limit in each line is due
to the identities (recalling that here we assume that ρα is rank-1 in its defining representation):

(oα)
2
Tr (ρα)

2
= I2α (o

α)
2
Trα

(
(ρα)

2
)
= Iα (o

α)
2
Tr
(
(ρα)

2
)
, (134)

Iα (o
α)

2
=

Iα
N2
α

Trα (O
α)

2
=
Iαrα
N2
α

Trα

(
(Oα)

2
)
=

rα
N2
α

Tr
(
(Oα)

2
)
, (135)

as well as the identities considered in Appendix C.1.

Intriguingly, the relevant features of this density in the underparameterized regime are controlled
by the Aα-purities of both O and ρ in the sectors in which they are underparameterized. This is
the same quantity which controls the variance of the loss function (see Appendix C.1). However,
even when there are no barren plateaus in the loss landscape—for instance, if the variance of the
loss function are polynomially vanishing in N—the density κ (z) may still have exponentially small
measure near z = 0 as the gamma distribution has exponential tails.

We reemphasize that our calculation of the local minima density was performed assuming the vari-
ance of the spectral distribution of each Oα (in units of the mean eigenvalue) asymptotically van-
ishes. This was also the setting studied in previous work on the local minima of QNNs (Anschuetz,
2022; Anschuetz & Kiani, 2022). This assumption allows us to dramatically simplify the Hessian to
the form given in Theorem 19. Though it holds for low-weight fermionic (Feng et al., 2019) and lo-
cal spin Hamiltonians (Erdős & Schröder, 2014), it does not hold for the Gaussian unitary ensemble
(GUE) or nonlocal spin systems; these systems are also known to have efficient quantum algorithms
that prepare their low-energy states, unlike their local cousins (Chen et al., 2024). We hope in the
future to analyze whether this property also has an impact on the behavior of local minima of QNNs.

We finally note an interesting connection between our results and algorithmic hardness. We here
only calculate the expected density of local minima at a given function value. If the second moment
of the local minima density is also sufficiently well-behaved, then it could be the case that the asymp-
totic density of local minima has a fixed distributional form; this is the case in (classical) spherical
spin glass models (Subag, 2017). The function value at which these local minima proliferate w.h.p.
is conjectured to also hold as a general (i.e., beyond gradient descent) algorithmic threshold, that is,
it is generically believed to be the function value at which better approximations to the ground state
become algorithmically intractable to find. This conjecture is known to be true for the specific case
of pure spherical spin glass models (Huang & Sellke, 2023). Studying second moments of quantum
spin glass local minima distributions may thus be a tractable avenue for studying the algorithmic
hardness of quantum problems.

D PROOFS OF THE MAIN RESULTS

D.1 PRELIMINARIES

We now give in full detail the proofs of the main results discussed in Appendix B.2. We begin by
giving definitions and notational conventions that we will use throughout our proofs. Recall that,
given a JAWS J = (

⊕
αAα, T ,G,H,A,O), we are interested in the joint distribution of the loss

ℓ (θ;ρ) and its first two derivatives over a set of input states ρ ∈ R, where:

ℓ (θ;ρ) =
∑
α

ℓα (θ;ρ) ≡
∑
α

Iα Trα
(
ραUα (θ)OαUα† (θ)

)
(136)

and

Uα (θ) ≡ gα†0

(
p∏
i=1

gαi exp (θiA
α
i ) g

α†
i

)
hα (137)

with gαi ,h
α ∈ Gα, and Aα

i ∈ gα. As previously discussed we will use ·α to denote the defining
representation of the projection of · into Aα. As each sector labeled by α is independent we will
here only consider a single α WLOG, with nonzero ρα and Oα. This will also allow us to remove
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the cumbersome notation of labeling all objects with the index α for the remainder of this section.
To further simplify the language, we will use the term “unitary” to refer to “orthogonal,” “unitary,”
or “hyperunitary” in the context of F = R,C,H, respectively, unless otherwise explicitly stated.
Similarly, we will later see that our results hold for any θ; we will thus leave the θ-dependence of ℓ
implicit from here on out to save on notation. In the following we will use |µ⟩ (i.e., Greek letters),
0 ≤ µ ≤ Nα − 1 to denote basis vectors in the vector space on which the defining representation of
HNα (Fα) acts. We will later use |i⟩ (i.e., Latin letters), 0 ≤ i ≤ p to denote vectors in the vector
space on which the defining representation of Hp+1 (Fα) acts.

We now detail our choice of Ai given Assumption 16. Assumption 16 has a nice interpretation as
taking the Ai to be low-rank (representations of) basis elements of the Cartan subalgebra h ⊆ g. Up
to the adjoint action ofG and an overall normalization (which can be absorbed into θi), then, we can
take WLOG:

Ai = |0⟩ ⟨1| − |1⟩ ⟨0| (138)

when F = R and
Ai = i |0⟩ ⟨0| (139)

when F = C. When F = H we will take a parameterization of the form:

exp (θiAi) = exp
(
iθ

(i)
i |0⟩ ⟨0|

)
exp

(
jθ

(j)
i |0⟩ ⟨0|

)
exp

(
kθ

(k)
i |0⟩ ⟨0|

)
; (140)

that is, we will assume we have full control over the quaternionic phase. We have chosen here for
the Ai to be i-independent for convenience, moving any i-dependence to the conjugating unitaries
of each layer gαi ∈ Gα.

Finally, before continuing we give a convenient relation between

r =
∥O∥2∗
∥O∥2F

(141)

and the standard deviation σo of the eigenvalues of O. This relation will be used to simplify some
of our later expressions.

Lemma 25 (r and σo relation). Let O be an N ×N Hermitian operator and r be as in Eq. (141).
Let σo be the standard deviation of the eigenvalues of O, and o the arithmetic mean. Then:√

N

r
− 1 =

σo
o
. (142)

Proof. Let oRMS be the root mean square of the eigenvalues of O. Then:√
N

r
− 1 =

√
N ∥O∥2F
∥O∥2∗

− 1

=

√
o2RMS

o2
− 1

=
σo
o
.

(143)

D.2 ASYMPTOTIC EXPRESSION FOR THE LOSS

We now proceed with the proofs of our main results. This subsection is devoted to a series of
reductions that will allow us to consider the hOh† as β-Wishart matrices up to a controlled error in
Lévy–Prokhorov metric, thus proving Theorem 13. Along the way we will also prove a reduction to
taking the gi to be Haar random, once again up to some bounded error in Lévy–Prokhorov metric.
In proving these results we will heavily rely on various lemmas on convergence in distribution given
in Appendix M.

34



Published as a conference paper at ICLR 2025

D.2.1 REDUCTION TO HAAR RANDOM h, gi

We first argue that, under Assumption 12, the h in Eq. (137) can be assumed to be Haar random over
G up to some bounded error in Lévy–Prokhorov metric. We also show that this remains true when
scaling by any choice ofN -dependent normalization N with the only requirement being that central
moments of large (constant) order have a well-defined, finite limit as N → ∞; for which maximal
choice of N this is true depends on the exact form of the ϵ-approximate t-design, but is always true
for N = 1. In the following we implicitly consider a sequence of objects as ϵ−1, t, N → ∞.
Lemma 26 (Weak convergence to Haar random h). Assume h forms an ϵ-approximate t-design.
Let Li, i ∈ [d] be multilinear functions of the form:

Li = Tr
(
MihOh†) , (144)

where the Mi have bounded operator norm and h ∼ H. Let L̃i be the same with h → h̃, where h̃
is Haar random. Assume anyN -dependent normalization N ≤ O(N), and assume that there exists
a constant k∗ such that all central moments of constant order k > k∗ of the NLi have a finite limit
as ϵ−1, t, N → ∞. Then the joint distribution of NLi differs from that of N L̃i by an error at most

π1 = O

(
d log log

(
N−tϵ−1

)
log (N−tϵ−1)

+
d log (t)√

t

)
(145)

in Lévy–Prokhorov metric as ϵ−1, t, N → ∞.

Proof. As the Li − E [Li] are bounded random variables, there exists some constant C > 0 such
that:

E

[∏
i∈sk

(Li − E [Li])

]
≤
(
C
√
k
)k

(146)

for all index multisets sk of cardinality k. By the given assumption on N a similar bound also holds
for central moments of the NLi of sufficiently high order. The bound N = O(N) ensures that this
central moment bound also holds true for the N L̃i by sub-Gaussianity (Meckes, 2019; Vershynin,
2018), and also ensures that the µ of Corollary 38 is subleading to Eq. (145). The conditions of
Corollary 38 are then satisfied and the final result yielded.

By incurring this error in Lévy–Prokhorov metric we now can assume that the h (given Assump-
tion 12) are Haar random when considering just the distribution of the loss (so d = 1 in Lemma 26).
When considering the loss, gradient, and Hessian jointly, the addition of Assumption 15 means that
we can assume that both the h and the gi are Haar random. We note, however, that up to requiring a
worse bound on N (i.e., N ≤ o

(
N

2
3

)
) the gi being drawn from an ϵ-approximate 2-design suffices.

This argument is given in detail in Appendix J.

When the h and gi are reduced to being drawn i.i.d. from the Haar distribution it is apparent that
the joint distribution of the loss with its first two derivatives is invariant under translations of the
parameters. This justifies us fixing θ = 0 in the sequel.

D.2.2 REDUCTION TO GAUSSIAN h, gi

We now show that certain marginal distributions of the the entries of
√
Nh,

√
Ngi can be ap-

proximated as random Gaussian matrices over F up to a small error in Ky Fan metric whenever
N ≤ O(N). This will allow us to replace

√
Nh,

√
Ngi with random matrices with i.i.d. Gaussian

entries, simplifying our results further.
Lemma 27 (Convergence in probability of Haar marginals to Gaussian matrices). Let Li, i ∈ [d] be
uniformly bounded multilinear functions of the form:

Li = Tr
(
Mihρh

†) , (147)

where there exists some D such that
1

Tr (ρ2)
≤ D = o

(
N

log (N)

)
. (148)
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Assume as well that d ≤ O(poly (N)) and the Mi are independent from the h. Let L̃i be the
same, where now the h are random matrices G with i.i.d. standard Gaussian entries over F. For
sufficiently large N , the joint distribution of NLi differs from the joint distribution of N

N L̃i by an
error in Ky Fan metric of at most:

α3 = O

(√
ND log (N)

N
+

N
D

)
= o (1) (149)

for all N ≤ O(N). Alternatively, if rank (ρ) ≤ D,

α3 = O

(√
ND log (N)

N

)
= o (1) . (150)

Proof. We assume ρ has trace norm 1 by absorbing Tr (ρ) into Mi. We first argue that if the
high-purity condition is assumed then ρ has an approximation to small error in trace norm that is
low-rank. To see this, let ri be the eigenvalues of ρ in non-increasing order. If

Nα∑
i=D+1

ri ≥
1

D + 1
(151)

then it must be that ρ has low purity, i.e.,

Tr
(
ρ2
)
≤ D + 1

(D + 1)
2 =

1

D + 1
<

1

D
, (152)

breaking our assumption on the purities of the inputs (Eq. (148)). Thus,

Nα∑
i=D+1

ri <
1

D + 1
. (153)

In particular, ρ has a rank-D approximation that agrees up to an O
(

1
D

)
additive error in trace

distance.

Consider now the low-rank case. Let

δ ≡ D ln (N)

N
. (154)

δ < 1
4 for sufficiently large N by the assumed scaling of D. Following the proof of Corollary 1.1 in

Jiang (2010), then, for sufficiently large N and t > 10
√

Nδ
N ,

P

max
i∈[N ]
j∈[D]

∣∣∣√Nhi,j −Gi,j

∣∣∣ ≥√N

N
t

 = exp
(
−Ω

(
log (N)

3
2

))
+ exp

(
−Ω

(
N2

ND

))
. (155)

The right-hand side decays superpolynomially with N whenever N ≤ O(N). This implies the

error in Ky Fan metric is dominated by the cutoff at t = Θ

(√
Nδ
N

)
. This in conjunction with the

error from the initial low-rank approximation yields the final result.

We will mostly be concerned with the specific case whenD = N0.999, yielding for N ≤ O
(
N0.99

)
:

α3 = O

(√
N log (N)

N1.001

)
= o (1) . (156)
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D.2.3 REDUCTION TO SEMI-ISOTROPIC O

We end with a reduction to a more convenient form for the spectrum of O. Let |µ⟩ be the eigenbasis
of O. Consider the Hermitian Õ:

Õ ≡ k

r−1∑
µ=0

|µ⟩ ⟨µ| , (157)

where

r ≡
∥O∥2∗
∥O∥2F

(158)

is assumed to be an integer and (for o the mean eigenvalue of o)

k ≡
∥O∥∗
r

=
No

r
. (159)

By construction

Tr (O) = Tr
(
Õ
)
, (160)

Tr
(
O2
)
= Tr

(
Õ2
)
. (161)

We claim that replacing O with Õ incurs only a vanishingly small error in Ky Fan metric. Intuitively
this follows from the Welch–Satterthwaite approximation of a weighted sum of Wishart random
matrices as a single Wishart random matrix (Khuri et al., 1994). We formally state this as the
following lemma.
Lemma 28 (Reduction to semi-isotropic O). Let Li, i ∈ [d] be of the form:

Li = Tr
(
MiX

(
O − Õ

)
X†
)
, (162)

where
√
NX has i.i.d. standard Gaussian entries over F, Mi is independent from X with bounded

trace norm, and d = O(poly (N)). Let L̃i be the same multilinear functions, where instead of O
one has Õ as defined in Eq. (157). The joint distribution of NLi over X differs from 0 by an error
at most

α4 = O

(
N∆ log

(
dN
N∆

)
N

)
(163)

in Ky Fan metric, where

∆ ≡ 1− o

∥O∥op
− σ2

o

∥O∥op o
. (164)

Here, oi is the ith eigenvalue of O in non-increasing order, σo the standard deviation of the eigen-
values of O, and o the mean.

Proof. O and Õ can be assumed to be diagonal WLOG as X is unitarily invariant. Therefore,
X
(
O − Õ

)
X† can be written as a weighted sum of standard β-Wishart matrices each with a

single degree of freedom:

X
(
O − Õ

)
X† =

1

N

N∑
i=1

(oi − õi) |xi⟩ ⟨xi| , (165)

where |xi⟩ is the (unnormalized) ith column of
√
NX and oi, õi are the eigenvalues of O, Õ, re-

spectively, in nonincreasing order. Note that for any normalized |µ⟩, |⟨xi|µ⟩| is gamma-distributed.
Thus, from a generalization of Bernstein’s inequality (see, e.g., Theorem 2.8.1 of Vershynin (2018)),
for any |µ⟩,

P

[∣∣∣∣∣ 1N
N∑
i=1

(oi − õi) |⟨xi|µ⟩|2
∣∣∣∣∣ ≥ ϵ

]

≤ 2 exp

(
−cN min

(
ϵ

maxi |oi − õi|
,

ϵ2

1
N

∑N
i=1 (oi − õi)

2

)) (166)
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for some constant c > 0. Due to the equality of traces of O and Õ we calculate:

1

N

N∑
i=1

(oi − õi)
2
=

1

N
Tr

((
O − Õ

)2)
=

2

N

(
Tr
(
O2
)
− Tr

(
OÕ

))
≤ 2

N

(
Tr
(
O2
)
− Tr (O) k + kor+1

)
=

2

r
oor+1

= O
(or+1

N

)
.

(167)

Furthermore,
max
i

|oi − õi| = O(o1 − k) + O (or+1)

= O

(
o1 − o− σ2

o

o
+ or+1

)
= O

(
1− o

∥O∥op
− σ2

o

∥O∥op o

)
.

(168)

The desired convergence follows by the union bound and taking ϵ→ ϵ
N .

We now claim these suffice to prove Theorem 13.

Proof of Theorem 13. For X with i.i.d. standard Gaussian entries over F and Õ as in Lemma 28,
k−1XÕX† is β-Wishart-distributed with r degrees of freedom. The result then follows from Lem-
mas 26, 27, and 28 applied in sequence, with a final error in Lévy–Prokhorov metric of:

π = π1 + α3 + α4 = O

(
log log

(
N−tϵ−1

)
log (N−tϵ−1)

+
log (t)√

t
+

√
N log (N)

N1.001

)
. (169)

D.3 ASYMPTOTIC EXPRESSIONS FOR THE FIRST TWO DERIVATIVES

We will now move on and construct an explicit asymptotic expression for the first two derivatives of
the loss function. As previously mentioned, we need only consider θ = 0 by Lemma 26. Here we
have that the first derivatives are distributed as:

∂iℓ = I Tr
(
ρ
[
giAig

†
i ,hOh†

])
. (170)

The second derivatives are of the form (for i ≥ j):

∂i∂jℓ = I Tr
(
ρ
[
gjAjg

†
j

[
giAig

†
i ,hOh†

]])
. (171)

Furthermore, using the lemmas from Appendix D.2, up to a cost:

π1 + α3 + α4 = O

(
d log log

(
N−tϵ−1

)
log (N−tϵ−1)

+
d log (t)√

t
+

√
N log (N)

N

)
(172)

in Lévy–Prokhorov metric—where d is either p or p2—we may reduce to considering:

ℓ̂ =
I

N
Tr
(
ρX†

0OX0

)
, (173)

ℓ̂;i =
I

N2
Tr
(
ρX†

0

[
XiAiX

†
i ,O

]
X0

)
, (174)

ℓ̂;i,j =
I

N3
Tr
(
ρX†

0

[
XjAjX

†
j ,
[
XiAiX

†
i ,O

]]
X0

)
, (175)

where:
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1. X0 is an N × rank (ρ) random matrix with i.i.d. standard Gaussian entries over F, and the
Xi are N × p or N × 2p (depending on the rank of the Ai) random matrices with i.i.d.
standard Gaussian entries over F.

2. The initial states ρ are of rank at most O
(
N0.999

)
.

Note that these quantities depend only onM = O(rank (ρ)) rows of X0 and either 1 (F = C,H) or
2 (F = R) rows of Xi. We can therefore further simplify this by collecting all of the relevant rows
of X0,Xi into a single X of dimensions N × (p+M) (or N × (2p+M) when F = R), writing
these expressions as:10

ℓ̂ =
Io

r
Tr
(
ρX†ÕX

)
, (176)

ℓ̂;i =
Io

rN
Tr
(
ρX†

[
X |i⟩ ⟨i|X†, Õ

]
X
)
, (177)

ℓ̂;i,j =
Io

rN2
Tr
(
ρX†

[
X |j⟩ ⟨j|X†,

[
X |i⟩ ⟨i|X†, Õ

]]
X
)
. (178)

Here, we took another error of α4 in Lévy–Prokhorov metric to change O to

Õ =

r−1∑
µ=0

|µ⟩ ⟨µ| (179)

as in Eq. (157). Though this expression for the full distribution is unwieldy, it completely character-
izes the joint distribution of the loss and first two derivatives in terms of a single Gaussian random
matrix X . To simplify further we will assume ρ is a single state which is rank-1 when projected
into the simple sector we are considering, taken WLOG to be |0⟩ ⟨0|. We will also assume in the
following that σo

o is asymptotically bounded.

Details of further simplifications vary depending on whether F is algebraically closed or not (i.e.,
whether or not we are working in R). We will thus consider the two cases separately.

D.3.1 F = C,H

When F = C,H, we are considering the joint distribution of:

ℓ̂ =
Io

r
Tr
(
|0⟩ ⟨0|X†ÕX

)
, (180)

ℓ̂;i =
iIo

rN
Tr
(
|0⟩ ⟨0|X†

[
X |i⟩ ⟨i|X†, Õ

]
X
)
, (181)

ℓ̂;i,j = − Io

rN2
Tr
(
|0⟩ ⟨0|X†

[
X |j⟩ ⟨j|X†,

[
X |i⟩ ⟨i|X†, Õ

]]
X
)
, (182)

where now X is a N × (p+ 1) random matrix with i.i.d. standard Gaussian entries over F. Here,
when F = H, “i” should be taken to mean one of i, j, k, depending on which parameter of Eq. (140)
the derivative is being taken with respect to. We take the two contributions of quaternionic phase
to be equal in the second derivative expression as, by the anticommutivity of quaternions, this ex-
pression is otherwise identically zero. In particular, this abuse of notation will not change any of the
following analysis unless specifically stated otherwise.

Recall that

Õ =

r−1∑
µ=0

|µ⟩ ⟨µ| . (183)

Let C be the complement of Õ, i.e.,

C =

N−1∑
µ=r

|µ⟩ ⟨µ| . (184)

10We have slightly abused notation here; the |i⟩ , |j⟩ here are taken to be orthogonal to the nonzero eigenvec-
tors of ρ.
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In particular, C and Õ sum to the identity:

C + Õ = IN . (185)

Furthermore,

W ≡ X†ÕX, (186)

V ≡ X†CX, (187)

are each β-Wishart-distributed matrices; the former with r degrees of freedom, and the latter with
N−r. The independence of W and V can be checked from the associated Bartlett decompositions.
We thus have that the distribution we are interested in is the joint distribution of:

ℓ̂ =
Io

r
⟨0|W |0⟩ , (188)

ℓ̂;i =
2Io

rN
Re
{
i ⟨0|W |i⟩ ⟨i|X†X |0⟩

}
=

2Io

rN
Re {i ⟨0|W |i⟩ ⟨i|V |0⟩} , (189)

and:

ℓ̂;i,j =− Io

rN2
⟨0|X† [X |j⟩ ⟨j|X†,

[
X |i⟩ ⟨i|X†,O

]]
X |0⟩

=− Io

rN2
⟨0|X†X |j⟩ ⟨j|X†X |i⟩ ⟨i|X†OX |0⟩

− Io

rN2
⟨0|X†OX |i⟩ ⟨i|X†X |j⟩ ⟨j|X†X |0⟩

+
Io

rN2
⟨0|X†X |i⟩ ⟨i|X†OX |j⟩ ⟨j|X†X |0⟩

+
Io

rN2
⟨0|X†X |j⟩ ⟨j|X†OX |i⟩ ⟨i|X†X |0⟩

=− Io

rN2
⟨0| (W + V ) |j⟩ ⟨j| (W + V ) |i⟩ ⟨i|W |0⟩

− Io

rN2
⟨0|W |i⟩ ⟨i| (W + V ) |j⟩ ⟨j| (W + V ) |0⟩

+
Io

rN2
⟨0| (W + V ) |i⟩ ⟨i|W |j⟩ ⟨j| (W + V ) |0⟩

+
Io

rN2
⟨0| (W + V ) |j⟩ ⟨j|W |i⟩ ⟨i| (W + V ) |0⟩ .

(190)

We can simplify the expression for the second derivative by grouping terms by their order in W .
Note first that all terms cubic in matrix elements of W sum to zero. For the quadratic terms, note
that for the outer two terms:

− ⟨0|V |j⟩ ⟨j|W |i⟩ ⟨i|W |0⟩ − ⟨0|W |j⟩ ⟨j|V |i⟩ ⟨i|W |0⟩
+ ⟨0|V |j⟩ ⟨j|W |i⟩ ⟨i|W |0⟩+ ⟨0|W |j⟩ ⟨j|W |i⟩ ⟨i|V |0⟩

=− ⟨0|W |j⟩ ⟨j|V |i⟩ ⟨i|W |0⟩+ ⟨0|W |j⟩ ⟨j|W |i⟩ ⟨i|V |0⟩ ,
(191)

and for the inner two terms:

− ⟨0|W |i⟩ ⟨i|V |j⟩ ⟨j|W |0⟩ − ⟨0|W |i⟩ ⟨i|W |j⟩ ⟨j|V |0⟩
+ ⟨0|V |i⟩ ⟨i|W |j⟩ ⟨j|W |0⟩+ ⟨0|W |i⟩ ⟨i|W |j⟩ ⟨j|V |0⟩

=− ⟨0|W |i⟩ ⟨i|V |j⟩ ⟨j|W |0⟩+ ⟨0|V |i⟩ ⟨i|W |j⟩ ⟨j|W |0⟩ .
(192)

We can then combine terms (along with the terms linear in W ) to see that:

ℓ̂;i,j =
2Io

rN2
Re {⟨0|V |i⟩ ⟨i|W |j⟩ ⟨j| (W + V ) |0⟩}

− 2Io

rN2
Re {⟨0|W |i⟩ ⟨i|V |j⟩ ⟨j| (W + V ) |0⟩} .

(193)
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We can simplify the Hessian even further if we assume that σo

o = o (1) by dropping terms that are
w.h.p. subleading in σo

o . In particular, consider the following terms:
1

rN
Re {⟨0|V |i⟩ ⟨i|W |j⟩ ⟨j|V |0⟩}

≤ N − r

N

∣∣∣∣ 1√
N − r

⟨0|V |i⟩
∣∣∣∣ ∣∣∣∣1r ⟨i|W |j⟩

∣∣∣∣ ∣∣∣∣ 1√
N − r

⟨j|V |0⟩
∣∣∣∣ , (194)

1

rN
Re {⟨0|W |i⟩ ⟨i|V |j⟩ ⟨j|W |0⟩}

≤ N − r

N

∣∣∣∣ 1√
r
⟨0|W |i⟩

∣∣∣∣ ∣∣∣∣ 1

N − r
⟨i|V |j⟩

∣∣∣∣ ∣∣∣∣ 1√
r
⟨j|W |0⟩

∣∣∣∣ , (195)

1

rN
Re {⟨0|W |i⟩ ⟨i|V |j⟩ ⟨j|V |0⟩}

≤ (N − r)
3
2

√
rN

∣∣∣∣ 1√
r
⟨0|W |i⟩

∣∣∣∣ ∣∣∣∣ 1

N − r
⟨i|V |j⟩

∣∣∣∣ ∣∣∣∣ 1√
N − r

⟨j|V |0⟩
∣∣∣∣ . (196)

Recall that the diagonal elements of a β-Wishart matrix are χ2-distributed with βr degrees of free-
dom (see Appendix A.4) and thus have exponential tails. In Lemma 43—proven in Appendix N—
we prove that the off-diagonal elements also have exponential tails. In particular, all three of these
terms are of the form κR1R2R3, where 0 < κ < 1 is some overall prefactor and the Ri are random
variables obeying tail bounds of the form:

P [Ri ≥ 1 + t] ≤ K exp
(
−Cmin

(
t, t2

))
(197)

for some universal constants C,K > 0. We thus have by the union bound:

P
[
κR1R2R3 ≥

(
κ

1
3 + t

)3]
≤ P

[
κmax (R1, R2, R3)

3 ≥
(
κ

1
3 + t

)3]
≤ 3max

(
P
[
κ

1
3R1 ≥ κ

1
3 + t

]
,P
[
κ

1
3R2 ≥ κ

1
3 + t

]
,P
[
κ

1
3R3 ≥ κ

1
3 + t

])
≤ 3K exp

(
−Cmin

(
κ−

1
3 t, κ−

2
3 t2
))

.

(198)

Taking into account the p2 matrix elements via the union bound, these terms thus converge to 0 in
Ky Fan metric at a rate Ω

(
κ

1
3 log

(
κ−

1
3 p
))

. We can similarly use Lemma 41 to justify replacing

W with a low-rank perturbation W̃ , which differs only in the removal of the first column of its
Bartlett factor LW . Altogether, we have that we can take up to an order

α5 = O

N 1
3 (N − r)

1
3 log

(
p2N

2
3

N
1
3 (N−r)

1
3

)
N

2
3

 ≤ O

N 1
3σ

2
3
o log

(
p2N

1
3 o

2
3

N
1
3 σ

2
3
o

)
N

1
3 o

2
3

 (199)

error in Ky Fan metric:

ℓ̂;i,j =
2Io

rN2
Re
{
⟨0|V |i⟩ ⟨i| W̃ |j⟩ ⟨j|W |0⟩

}
. (200)

At this point it is instructive to consider this joint distribution in terms of the marginal distributions
of elements in the Bartlett decompositions of W and V . Let NW,i,j be the i.i.d. standard normally
distributed random variables over F in the off-diagonal elements of LW (with the convention i < j),
and similarly for NV,i,j and the Bartlett factor LV of V . Furthermore, let β− 1

2χW,i be the i.i.d. χ-
distributed random variables along the diagonal of LW , and similarly for β− 1

2χV,i and LV .

We first condition on ℓ̂ = z. From Eq. (188) this is equivalent to conditioning on χW,0 =
√

βr
Io z.

Conditioned on this event, the first derivative is distributed as:

ℓ̂;i|z =
2Iβo

rN

√
r

Io
zχV,0 Re

{
iN∗

W,0,iNV,0,i
}
. (201)

41



Published as a conference paper at ICLR 2025

Similarly, the second derivative conditioned on this event is distributed as:

ℓ̂;i,j|z =
2Iβo

rN2

√
r

Io
zχV,0 Re

{
N∗
V,0,i ⟨i| W̃ |j⟩NW,0,j

}
. (202)

Note that W̃ is independent fromNW,0,i exactly due to the removal of the first column of the Bartlett
factor of W .

We will next simplify further using the fact that χV,0 concentrates around its mean, in particular
using the χ-distribution tail bound (for N − r > 0, some universal constant C > 0, and bounded t):

P

[
1

(N − r)
1
4

∣∣∣χ−
√
β (N − r)

∣∣∣ ≥ t

]
≤ 2 exp

(
−C

√
N − rmin

(
t, t2

))
(203)

which follows from Lemma 42, proved in Appendix N. Just as we accounted for α5, up to an order

α6 = O

N 1
3 r

1
6 (N − r)

1
12 log

(
p2N

2
3

N
1
3 r

1
6 (N−r)

1
12

)
N

2
3

 ≤ O

N 1
3σ

1
6
o log

(
p2N

5
12 o

1
6

N
1
3 σ

1
6
o

)
N

5
12 o

1
6

 (204)

error in Ky Fan metric,

ℓ̂;i|z =
2Iβo

N

√
β

Io

(
N

r
− 1

)
zRe

{
iN∗

W,0,iNV,0,i
}
, (205)

ℓ̂;i,j|z =
2Iβo

N2

√
β

Io

(
N

r
− 1

)
zRe

{
N∗
V,0,i ⟨i| W̃ |j⟩NW,0,j

}
. (206)

Using Lemma 25 we can simplify this further as:

ℓ̂;i|z =
2Iβσo
N

√
βz

Io
Re
{
iN∗

W,0,iNV,0,i
}
, (207)

ℓ̂;i,j|z =
2Iβσo
N2

√
βz

Io
Re
{
N∗
V,0,i ⟨i| W̃ |j⟩NW,0,j

}
. (208)

We can simplify this even further by realizing that the distribution of NV,0,i is invariant under mul-
tiplication by an overall phase, i.e., it is circularly symmetric. We can thus absorb the argument
of N∗

W,0,i into NV,0,i; we simultaneously conjugate W̃ by unitary operators corresponding to this
phase, so we need only consider the joint distribution of:

ℓ̂;i|z =
2Iβσo
N

√
z

Io
χiRe {iNV,0,i} , (209)

ℓ̂;i,j|z =
2Iβσo
N2

√
z

Io
χj ⟨i|Re

{
N∗
V,0,iW̃

}
|j⟩ , (210)

where here the χi are i.i.d. χ-distributed random variables with β degrees of freedom given by:

χi ≡
√
β |NW,0,i| . (211)

Noting
√
βRe {iNV,0,i} is distributed as a standard normal random variable proves Theorem 17 for

sectors with F = C,H, with accumulated error in Lévy–Prokhorov distance:

π′ = π1+α3+2α4+α6 = O

(
p log log

(
N−tϵ−1

)
log (N−tϵ−1)

+
p log (t)√

t
+

√
N log (N)

N1.001
+

N 1
3 log (N)

N
5
12

)
.

(212)

We finally consider the second derivative conditioned on both ℓ̂ = z and all ℓ̂;i|z = 0 (for z > 0).
Note that the χ distribution density is zero at 0. In particular, this conditioning is equivalent to
conditioning on Re {iNV,0,i} = 0. Furthermore, when F = H, recall that “i” could be any one
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of i, j, k due to Eq. (140). In particular, this is conditioning on all nonreal components of NV,0,i
equaling zero. Taking this all together yields:

ℓ̂;i,j|z,0 =
2Iβσo
N2

√
z

Io
χj Re

{
N∗
V,0,i

}
⟨i|Re

{
W̃
}
|j⟩ . (213)

As the real parts of complex or symplectic Wishart matrices are real Wishart with a factor of β more
degrees of freedom and rescaled by a factor of β−1, and similarly the real parts of standard complex
or symplectic Gaussian random variables are standard real Gaussian random variables rescaled by a
factor of β− 1

2 , we can more conveniently rewrite this as

ℓ̂;i,j|z,0 =
2Iσo
N2

√
z

Iβo
N̂iχj ⟨i| Ŵ |j⟩ , (214)

where now Ŵ is a real Wishart matrix with βr degrees of freedom and the N̂i are i.i.d. standard
normal random variables. This proves Theorem 19 for sectors with F = C,H, with accumulated
error in Lévy–Prokhorov distance:

π′′ = π1+α3+2α4+α5+α6 = O

(
p2 log log

(
N−tϵ−1

)
log (N−tϵ−1)

+
p2 log (t)√

t
+

N 1
3 log (N)

N
1
3

)
. (215)

D.3.2 F = R

We now consider when F = R, where we are interested in the joint distribution of:

ℓ̂ =
Io

r
Tr
(
ρX⊺ÕX

)
, (216)

ℓ̂;i =
Io

rN
Tr
(
ρX⊺

[
X (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)X⊺, Õ

]
X
)
, (217)

ℓ̂;i,j =
Io

rN2
Tr
(
ρX⊺

[
X (|2j⟩ ⟨2j + 1| − |2j + 1⟩ ⟨2j|)X⊺,[
X (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)X⊺, Õ

] ]
X
)
,

(218)

where now X is a N × (2p+ 1) random matrix with i.i.d. standard Gaussian entries over R. As the
commutator of symmetric matrices is antisymmetric, and taking note of the identity:

Tr (A [B,C]) = Tr ([C,A]B) , (219)

we can rewrite this as:

ℓ̂ =
Io

r
Tr
(
ρX⊺ÕX

)
, (220)

ℓ̂;i =
2Io

rN
Tr
(
ρX⊺

[
X |2i⟩ ⟨2i+ 1|X⊺, Õ

]
X
)
, (221)

ℓ̂;i,j =
2Io

rN2
Tr
(
ρX⊺

[
X |2j⟩ ⟨2j + 1|X⊺,

[
X (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)X⊺, Õ

]]
X
)
.

(222)

Recall that

Õ =

r−1∑
µ=0

|µ⟩ ⟨µ| . (223)

Let C be the complement of Õ, i.e.,

C =

N−1∑
µ=r

|µ⟩ ⟨µ| . (224)

In particular, C and Õ sum to the identity:

C + Õ = IN . (225)
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Furthermore,

W ≡ X⊺ÕX, (226)
V ≡ X⊺CX, (227)

are each Wishart-distributed matrices; the former with r degrees of freedom, and the latter with
N−r. The independence of W and V can be checked from the associated Bartlett decompositions.
We thus have that the distribution we are interested in is the joint distribution of:

ℓ̂ =
Io

r
⟨0|W |0⟩ , (228)

ℓ̂;i =
2Io

rN
⟨0| (X⊺X |2i⟩ ⟨2i+ 1|W −W |2i⟩ ⟨2i+ 1|X⊺X) |0⟩

= −2Io

rN
⟨0|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)V |0⟩ ,

(229)

and:

ℓ̂;i,j =
2Io

rN2
⟨0|X⊺ [X |2j⟩ ⟨2j + 1|X⊺, [X (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)X⊺,O]]X |0⟩

=
2Io

rN2
⟨0|X⊺X |2j⟩ ⟨2j + 1|X⊺X (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)X⊺OX |0⟩

+
2Io

rN2
⟨0|X⊺OX (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)X⊺X |2j⟩ ⟨2j + 1|X⊺X |0⟩

− 2Io

rN2
⟨0|X⊺X (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)X⊺OX |2j⟩ ⟨2j + 1|X⊺X |0⟩

− 2Io

rN2
⟨0|X⊺X |2j⟩ ⟨2j + 1|X⊺OX (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)X⊺X |0⟩

=
2Io

rN2
⟨0| (W + V ) |2j⟩ ⟨2j + 1| (W + V ) (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |0⟩

+
2Io

rN2
⟨0|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|) (W + V ) |2j⟩ ⟨2j + 1| (W + V ) |0⟩

− 2Io

rN2
⟨0| (W + V ) (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |2j⟩ ⟨2j + 1| (W + V ) |0⟩

− 2Io

rN2
⟨0| (W + V ) |2j⟩ ⟨2j + 1|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|) (W + V ) |0⟩ .

(230)

We can simplify the expression for the second derivative by grouping terms by their order in W .
Note first that all terms cubic in matrix elements of W sum to zero. For the quadratic terms, note
that for the outer two terms:

+ ⟨0|V |2j⟩ ⟨2j + 1|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |0⟩
+ ⟨0|W |2j⟩ ⟨2j + 1|V (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |0⟩
− ⟨0|V |2j⟩ ⟨2j + 1|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |0⟩
− ⟨0|W |2j⟩ ⟨2j + 1|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)V |0⟩

=+ ⟨0|W |2j⟩ ⟨2j + 1|V (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |0⟩
− ⟨0|W |2j⟩ ⟨2j + 1|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)V |0⟩ ,

(231)

and for the inner two terms:

+ ⟨0|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)V |2j⟩ ⟨2j + 1|W |0⟩
+ ⟨0|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |2j⟩ ⟨2j + 1|V |0⟩
− ⟨0|V (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |2j⟩ ⟨2j + 1|W |0⟩
− ⟨0|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |2j⟩ ⟨2j + 1|V |0⟩

=+ ⟨0|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)V |2j⟩ ⟨2j + 1|W |0⟩
− ⟨0|V (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |2j⟩ ⟨2j + 1|W |0⟩ .

(232)

44



Published as a conference paper at ICLR 2025

We can, in turn, combine these terms to obtain:
+ ⟨0|W |2j⟩ ⟨2j + 1|V (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |0⟩
− ⟨0|W |2j⟩ ⟨2j + 1|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)V |0⟩
+ ⟨0|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)V |2j⟩ ⟨2j + 1|W |0⟩
− ⟨0|V (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |2j⟩ ⟨2j + 1|W |0⟩

=+ ⟨0|W |2j⟩ ⟨2j + 1|V (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |0⟩
− ⟨0|W |2j⟩ ⟨2j + 1|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)V |0⟩
− ⟨0|W |2j + 1⟩ ⟨2j|V (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |0⟩
+ ⟨0|W |2j + 1⟩ ⟨2j|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)V |0⟩

=+ ⟨0|W (|2j⟩ ⟨2j + 1| − |2j + 1⟩ ⟨2j|)V (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W |0⟩
− ⟨0|W (|2j⟩ ⟨2j + 1| − |2j + 1⟩ ⟨2j|)W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)V |0⟩ .

(233)

We can then combine terms with those linear in W to see that:

ℓ̂;i,j =
2Io

rN2
⟨0|W (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)V (|2j⟩ ⟨2j + 1| − |2j + 1⟩ ⟨2j|) (W + V ) |0⟩

− 2Io

rN2
⟨0|V (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|)W (|2j⟩ ⟨2j + 1| − |2j + 1⟩ ⟨2j|) (W + V ) |0⟩ .

(234)

We now use two lemmas—proved in Appendix N—that will simplify the form of our answer by al-
lowing us to justify the dropping of terms that are subleading w.h.p. In particular, we use Lemma 43
followed by Lemma 41 just as we did in Eqs. (194), (195), and (196). By the same logic, we have
that we can take up to an order

α5 = O

N 1
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1
3 log
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p2N
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3

N
1
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1
3

)
N

2
3

 ≤ O

N 1
3σ

2
3
o log

(
p2N

1
3 o

2
3

N
1
3 σ

2
3
o

)
N

1
3 o

2
3

 (235)

error in Ky Fan metric:

ℓ̂;i,j = − 2Io

rN2
⟨0|V (|2i⟩ ⟨2i+ 1| − |2i+ 1⟩ ⟨2i|) W̃ (|2j⟩ ⟨2j + 1| − |2j + 1⟩ ⟨2j|)W |0⟩ ,

(236)
where W̃ is as W , but with the first column of its Bartlett factor LW removed.

At this point it is instructive to consider this joint distribution in terms of the marginal distributions
of elements in the Bartlett decompositions of W and V . Let NW,i,j be the i.i.d. standard normally
distributed random variables over R in the off-diagonal elements of LW (with the convention i < j),
and similarly for NV,i,j and the Bartlett factor LV of V . Furthermore, let χW,i be the i.i.d. χ-
distributed random variables along the diagonal of LW , and similarly for χV,i and LV .

We first condition on ℓ̂ = z. From Eq. (188) this is equivalent to conditioning on χW,0 =
√

r
Ioz.

Conditioned on this event, the first derivative is distributed as:

ℓ̂;i|z =
2Io

rN

√
r

Io
zχV,0 (NW,0,2i+1NV,0,2i −NW,0,2iNV,0,2i+1) . (237)

Similarly, the second derivative conditioned on this event is distributed as:

ℓ̂;i,j|z =
2Io

rN2

√
r

Io
zχV,0

× (NV,0,2i+1 ⟨2i| −NV,0,2i ⟨2i+ 1|) W̃ (|2j⟩NW,0,2j+1 − |2j + 1⟩NW,0,2j) .
(238)

Note that W̃ is independent fromNW,0,i exactly due to the removal of the first column of the Bartlett
factor of W .

We will next simplify further using the fact that χV,0 concentrates around its mean, in particular
using the χ-distribution tail bound (for N − r > 0, some universal constant C > 0, and bounded t):

P

[
1

(N − r)
1
4

∣∣∣χ−
√
β (N − r)

∣∣∣ ≥ t

]
≤ 2 exp

(
−C

√
N − rmin

(
t, t2

))
(239)
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which follows from Lemma 42, proved in Appendix N. Just as we accounted for α5, up to an order

α6 = O
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 (240)

error in Ky Fan metric,

ℓ̂;i|z =
2Io

N

√(
N

r
− 1

)
z

Io
(NW,0,2i+1NV,0,2i −NW,0,2iNV,0,2i+1) , (241)

ℓ̂;i,j|z =
2Io

N2

√(
N

r
− 1

)
z

Io

× (NV,0,2i+1 ⟨2i| −NV,0,2i ⟨2i+ 1|) W̃ (|2j⟩NW,0,2j+1 − |2j + 1⟩NW,0,2j) .

(242)

Using Lemma 25 we can simplify this further as:

ℓ̂;i|z =
2Iσo
N

√
z

Io
(NW,0,2i+1NV,0,2i −NW,0,2iNV,0,2i+1) , (243)

ℓ̂;i,j|z =
2Iσo
N2

√
z

Io
(NV,0,2i+1 ⟨2i| −NV,0,2i ⟨2i+ 1|) W̃ (|2j⟩NW,0,2j+1 − |2j + 1⟩NW,0,2j) .

(244)

We can simplify this even further by realizing that the joint distribution of (NV,0,2i, NV,0,2i+1) is
invariant under orthogonal transformations, i.e., it is circularly symmetric. We can thus simultane-
ously transform (NV,0,2i, NV,0,2i+1) and conjugate W̃ by orthogonal operators such that we need
only consider the joint distribution of:

ℓ̂;i|z =
2Iσo
N

√
z

Io
χiNV,0,2i+1, (245)

ℓ̂;i,j|z =
2Iσo
N2

√
z

Io
χj (NV,0,2i ⟨2i| −NV,0,2i+1 ⟨2i+ 1|) W̃ |2j⟩ , (246)

where here the χi are i.i.d. χ-distributed random variables with 2 degrees of freedom given by:

χi ≡
√
N2
W,0,2i +N2

W,0,2i+1. (247)

This proves Theorem 17 for sectors with F = R, with accumulated error in Lévy–Prokhorov dis-
tance:

π′ = π1+α3+2α4+α6 = O

(
p log log

(
N−tϵ−1

)
log (N−tϵ−1)

+
p log (t)√

t
+

√
N log (N)

N1.001
+

N 1
3 log (N)

N
5
12

)
.

(248)

We finally consider the second derivative conditioned on both ℓ̂ = z and all ℓ̂;i|z = 0 (for z > 0).
Note that the χ distribution density is zero at 0. In particular, this conditioning is equivalent to
conditioning on NV,0,2i+1 = 0, yielding:

ℓ̂;i,j|z,0 =
2Iσo
N2

√
z

Io
NV,0,2iχj ⟨2i| W̃ |2j⟩ . (249)

As submatrices of Wishart matrices are also Wishart, we can more conveniently rewrite this by
taking W̃ to be p× p:

ℓ̂;i,j|z,0 =
2Iσo
N2

√
z

Io
N̂iχj ⟨i| W̃ |j⟩ , (250)

where the N̂i are i.i.d. standard normal random variables. This proves Theorem 19 for sectors with
F = R, with accumulated error in Lévy–Prokhorov distance:

π′′ = π1+α3+2α4+α5+α6 = O

(
p2 log log

(
N−tϵ−1

)
log (N−tϵ−1)

+
p2 log (t)√

t
+

N 1
3 log (N)

N
1
3

)
. (251)
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E QUANTUM ALGORITHM FOR DETERMINING ASYMPTOTIC TRAINABILITY

We elaborate here on a claim made in Sec. 6 that one can efficiently estimate Tr
(
(Oα)

2
)

and

Tr
(
(ρα)

2
)

on a quantum computer and thus, by Definition 7, determine whether a given quantum
neural network architecture is asymptotically trainable or not. We assume as input the Jordan algebra
A ∼=

⊕
αAα associated with the model, given as orthonormal bases {Bα,i}i spanning each Aα.

Note that the corresponding traces Trα
(
(Oα)

2
)

and Trα

(
(ρα)

2
)

in the defining representation of
Aα can then also be evaluated using Eq. (11):

Tr (·) = Iα Trα (·) ; (252)
in particular, Iα can be calculated from the ratio of traces of any Bα,i in the defining representation
of HN (C) ⊇ Aα and that of Aα.

We begin with Tr
(
(ρα)

2
)

. It is immediate from the orthonormality of the Bα,i that:

Tr
(
(ρα)

2
)
=
∑
i

Tr (Bα,iρ)
2
; (253)

in particular, Tr
(
(ρα)

2
)

is calculable via, for instance, phase estimation (Nielsen & Chuang,
2010a) of the Bα,i.

This leaves only Tr
(
(Oα)

2
)

. If O were an efficiently preparable, valid quantum state, one could

immediately calculate Tr
(
(Oα)

2
)

in the same way as Tr
(
(ρα)

2
)

. In the more general case where,
for instance. O is given via its Pauli decomposition:

O =

S∑
i=1

oiPi, (254)

one can proceed similarly via a block encoding using the linear combination of unitaries (LCU)
subroutine (Childs & Wiebe, 2012).

To outline this procedure, we assume O is an observable on n qubits. Let:

f (O) ≡
S∑
i=1

oi
2
Pi ⊗ (I2 +Z) , (255)

where IN is the N ×N identity matrix and Z the 2 × 2 single-qubit Pauli Z matrix, and consider
the (n+ 1)-qubit quantum state:

ω0 ≡ I2n

2n
⊗ |0⟩ ⟨0| . (256)

We have by construction that:
O2 ⊗ |0⟩ ⟨0| = f (O)ω0f (O) . (257)

Thus,
Tr
(
(Oα)

2
)
=
∑
i

Tr
(
Bα,iO

2Bα,i

)
=
∑
i

Tr
(
(Bα,i)

2
f (O)ω0f (O)

)
.

(258)

Of course, f (O) is not necessarily unitary, so naive application of f (O) is impossible on a quantum
computer. However, one can proceed using the standard LCU subroutine (Childs & Wiebe, 2012).
Assuming O is normalized such that its root mean square eigenvalue is Θ(1),

Tr (f (O)ω0f (O)) = 2−n Tr
(
O2
)
= Θ(1) . (259)

Following the protocol described by Theorem 1 of Chakraborty (2024), then, each
Tr
(
(Bα,i)

2
f (O)ω0f (O)

)
can be estimated to an additive error ϵ using one ancilla qubit and

O
(
S4

ϵ2

)
samples through an LCU block encoding.
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F OPEN QUESTIONS

As our results are formal, there is room for violation of their conclusions in the settings where their
assumptions do not hold. One example of this is the local minima distribution of quantum neural
networks discussed in Appendix C.3. The results given there assume that the eigenvalue spectrum
of the objective observable is concentrated as is typical of low-weight fermionic (Feng et al., 2019)
and local spin Hamiltonians (Erdős & Schröder, 2014). However, the behavior of the local minima
density differs when the spectrum is not concentrated, as is typical of observables drawn from the
Gaussian unitary ensemble (GUE) and nonlocal spin systems. Observables from this latter class are
known to be “quantumly easy” in the sense that phase estimation performed on the maximally mixed
state efficiently prepares the ground state (Chen et al., 2024). Based on this intuition these nonlocal
systems may also yield local minima distributions for quantum neural networks more amenable
to variational optimization even at shallow depth. If this is true, this may give a natural class of
optimization problems which are easy to solve given access to a quantum computer.

Furthermore, we nowhere discuss the impact of noise: we assume all operations implemented by
the quantum neural network are unitary, not general quantum channels. It is already known that
noise can affect the presence of barren plateaus (Wang et al., 2021) as well as local minima (Li &
Hernandez, 2024; Mele et al., 2024) in variational loss landscapes. Heuristically the former can be
understood as an additional channel mixing the variational ansatz over Hilbert space, and the latter
as noise effectively limiting the number of parameters influencing the variational ansatz and thus
always keeping the network in the underparameterized regime. We hope in the future to make this
heuristic understanding rigorous.

G REDUCTION OF SPIN FACTOR SECTORS TO REAL SYMMETRIC SECTORS

We elaborate here on the claim made in Appendix B.1 that the α where Aα
∼= LNα—i.e., the spin

factor sectors—are conceptually equivalent to the case Aα
∼= HNα−1 (R). To see this, consider a

parameterization of Tα (θ) in the spin factor case:

T (θ) = gα⊺0

p∏
i=1

gαi exp (θiA
α
i ) g

α⊺
i , (260)

where gαi ∈ SO (N − 1) and Aαi ∈ so (N − 1). As stated in Appendix B.1, gαi acts trivially on
the first component in the defining representation. Because of this (assuming the loss is shifted by
a constant to always be nonnegative), the associated ℓα (θ;ρ) is just equal to the square root of an
instance of the HNα−1 (R) case with initial state:

ρ̃α ≡ ρα⊺ ⊗ ρα (261)

and objective observable:
Õα ≡ Oα ⊗Oα⊺. (262)

H REDUCTION OF PREVIOUSLY STUDIED ANSATZ CLASSES TO JORDAN
ALGEBRA-SUPPORTED ANSATZES

We here show that Jordan algebra-supported ansatzes (JASAs) are reduced to by the algebraically
defined classes of variational ansatzes previously introduced in the literature, with a primary focus
on the Lie algebra-supported ansatzes (LASAs) (Fontana et al., 2024). A reduction in the other
direction—i.e., given a Jordan algebra-defined ansatz, define an equivalent LASA—is not possible.
As a simple example, consider the case when the objective observable O is a real symmetric matrix
and the variational ansatz is PT symmetric (i.e., real) but has no other symmetries. This fits our
framework with Jordan algebra A ∼= HN (R) and automorphism group given by the action of
conjugation by SO (N). However, so (N) in the defining representation consists of antisymmetric
matrices, so this is not a LASA. We also give a reduction from the variational matchgate circuits of
Diaz et al. (2023) to our Jordan algebraic framework, and will later demonstrate that such a reduction
to LASAs is not possible.
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We first discuss how JASAs are reduced to by LASAs. The loss function of a LASA is of the form:
ℓ (θ; ρ) = τ (ρ, T (θ)O) , (263)

whereO belongs to some dynamical Lie algebra g, T (θ) is the adjoint action of some element of the
compact Lie group G associated with g, and ρ is arbitrary. As demonstrated in Fontana et al. (2024),
only the projection of ρ onto the g contributes to the loss, so we consider when ρ ∈ g WLOG.

G is a compact Lie group. Thus, up to an Abelian sector that does not contribute to the loss (as
O ∈ g), G can be written as the direct sum of simple compact Lie groups. By the well-known
classification of simple compact Lie groups these are either the classical so (N), su (N), sp (N), or
one of the exceptional Lie groups. The exceptional Lie groups are of fixed dimension—i.e., there is
no sense of an asymptotic limit—so we consider here the classical cases only.

We begin with the case g ∼= su (N), with defining representation dϕ over C. It is easy to see that
i dϕ (O) and i dϕ (ρ) are in the defining representation of the Jordan algebra H (C), with identical
trace form. Such a simple component is thus equivalent to a JASA with simple subalgebra isomor-
phic to HN (C).

We now consider when g ∼= su (N), with defining representation dϕ over H. As the loss is real-
valued we have the expansion in this sector:

ℓ (θ; ρ) ∝Tr
(
Re {i dϕ (ρ)} dϕ (U (θ))Re {i dϕ (O)} dϕ (U (θ))

†
)

+Tr
(
Re {j dϕ (ρ)} dϕ (U (θ))Re {j dϕ (O)} dϕ (U (θ))

†
)

+Tr
(
Re {k dϕ (ρ)} dϕ (U (θ))Re {k dϕ (O)} dϕ (U (θ))

†
)
.

(264)

Each of these real parts is Hermitian and can be written as elements of the defining representation
of HN (H), reducing this simple component to that of a JASA.

We finally consider when g ∼= so (N). There are more subtleties compared with the other classical
Lie algebras as, in the defining representation over R, there is no simple relation between Hermitian
and anti-Hermitian operators. To make the following concrete, we here consider the representation
of so (N) defined by Majorana operators γi, with generators:

Mij =
1

2
[γi, γj ] , (265)

i.e., polynomials quadratic in Majorana operators. These are the generators of the spin algebra spin
associated with the vector space spanned by the γi and thus is isomorphic to so (N). Furthermore,
the gates generated by the Mij are just matchgates. The loss function variance of variational match-
gate circuits was studied in detail in Diaz et al. (2023). The authors there also consider when O ̸∈ g,
making this an example of a barren plateau result beyond the LASA formalism.

We now demonstrate how this setting fits into the Jordan algebra picture. Let A be the Jordan algebra
of Majorana fermions, with Jordan multiplication ◦ given by half the anticommutator. As in the Lie
algebra picture, the dimension of this algebra grows exponentially with n; similarly, the Jordan al-
gebra generated by k-body (2 < k < n) Majorana terms has dimension growing exponentially with
n, as does the generated algebra when acting on these k-body terms via conjugation by a matchgate.
However, though these operators are not closed as an algebra under matchgate conjugation, they are
closed as a vector space. Furthermore, the trace form of a k-body term ψ and a k′-body term ψ′ is
always zero when k ̸= k′. This allows us to instead consider O as a member of a different Jordan
algebra A′, with the same underlying vector space as A and new Jordan multiplication operation •
defined as:

ψ • ψ′ =


1 if ψ = ψ′,

ψ if ψ′ = 1,

ψ′ if ψ = 1,

0 otherwise.

(266)

Note that this new multiplication operation still satisfies the Jordan identity:

(ψ • ψ′) (ψ • ψ) = ψ • ψ′

= ψ • (ψ′ • 1)
= ψ • (ψ′ • (ψ • ψ)) .

(267)
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It also preserves the canonical trace form, as:

Tr (L◦ (ψ ◦ ψ′)) = 2nδψ,ψ′ = Tr (L• (ψ • ψ′)) . (268)

Here, L• is the linear transformation associated with the Jordan multiplication •:

L• (u) v = u • v, (269)

and similarly for L◦. The loss function in this sector is thus a JASA under the Jordan algebra A′,
and thus both general matchgate ansatzes or the LASA setting with g ∼= so (N) reduce to JASAs.

Interestingly, one can show that the matchgate setting cannot generally be described by a LASA
while maintaining the trace form, even when the Lie bracket is redefined. To see this, we consider
the adjoint endomorphism

ad[·,·] (u) v = [u, v] (270)

associated with the Lie bracket [·, ·]. The canonical trace form for Lie algebras is the Killing form,
given by:

K (u, v) = Tr
(
ad[·,·] (u) ad[·,·] (v)

)
. (271)

Note that (as ad[·,·] (u) is antisymmetric):

K (u, u) = −
∥∥ad[·,·] (u)∥∥2F . (272)

For u a Majorana monomial under the usual Lie algebra of Majoranas, this is just (minus) the
number of terms anticommuting with the monomial. For u a degree-1 monomial this will grow
exponentially in the number of Majoranas n. If instead one considered defining a new Lie bracket
[·, ·]′ that is zero when mapping from k-degree Majorana monomials to those of different degree,
K (·, ·) would always be zero on degree-1 Majorana monomials—in particular, the trace form is not
preserved when modifying the Lie bracket.

I REDUCTION OF LOW-PURITY INPUTS TO MAXIMALLY MIXED INPUTS

We elaborate here on the claim made in Appendix B.2 that if the input state ρ projected into a simple
sector Aα has sufficiently low purity, the loss contribution from this sector does not contribute in any
meaningful way. This is true even when the loss is rescaled by some N ≤ O

(
N0.99

)
as we consider

elsewhere. Intuitively this is due to ρα being close to maximally mixed and thus the contribution to
the loss in this algebraic sector is effectively constant. We formally state this claim as the following
lemma.
Lemma 29 (Low purity inputs are approximately trivial). Let J , ℓ be as in Theorem 13. For a
ρ ∈ R such that for some α:

Tr
(
(ρα)

2
)
≤ N−0.999

α , (273)

we have for sufficiently large ϵ−1, t that:

Var [N ℓα (θ;ρ)] ≤ O

(
N 2

N1.997
α

)
+O(π) = o (1) (274)

for all N ≤ O
(
N0.99

)
.

Proof. Assume Tr (ρα) = 1 WLOG by otherwise absorbing a factor of Tr (ρα) into Oα. Consider
the decomposition into eigenspaces:

ρα = σα + τα, (275)
where the nonzero eigenvalues of σα are the largest

⌊
N0.999
α

⌋
eigenvalues of ρα. Iterate this proce-

dure

Mα ≡
⌈

Nα
⌊N0.999

α ⌋

⌉
(276)

total times to yield the decomposition:

ρα = σα +

Mα−1∑
i=1

ταi . (277)
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The standard deviation of a sum of random variables is upper bounded by the sums of the standard
deviations. Furthermore, from Eq. (277) we have that

Tr
(
(ρα)

2
)
≥ Tr

(
(σα)

2
)
. (278)

We can thus upper bound the standard deviation of the loss by applying Corollary 20 to the terms in
Eq. (277):

Var [N ℓα (θ;ρ)] ≤ N 2M2
α

Tr
(
(Oα)

2
)
Tr
(
(σα)

2
)

dimR (gα)
+ O (π)

≤ N 2M2
α

Tr
(
(Oα)

2
)
Tr
(
(ρα)

2
)

dimR (gα)
+ O (π)

≤ O

(
N 2

N1.997

)
+O(π) ,

(279)

yielding the final result.

J ϵ-APPROXIMATE 2-DESIGNS SUFFICE FOR THE Gi

We here argue that one need only assume that the Gi form ϵ-approximate 2-designs—not large-t t-
designs—if one takes the overall normalization N to be at most o

(
N

2
3

)
and if p grows sufficiently

slowly with the Nα. More concretely, instead of taking Assumption 15 we may take the following
assumption:
Assumption 30 (Scaling of parameter space with ansatz moments). The number of trained param-
eters p satisfies:11

p2 ≤ o

min
α

 log
(
N−1N

2
3
α

)
log log

(
N−1N

2
3
α

)
 , (280)

where the Gαi are i.i.d. ϵ-approximate 2-designs over Tα = Aut1 (Aα), where

ϵ ≤ O
(
N

− 2
3

α

)
. (281)

To achieve this we will rely on tools from random matrix theory to bound the error of various mixed
cumulants of our expressions under such a change. In particular, we will use the existence of so-
called limit distributions of all orders.
Definition 31 (Limit distribution of all orders (Collins et al., 2007)). A sequence of sets of N ×N

random matrices {Ai}di=1 has a limit distribution of all orders if there exist functions αk such that
the cumulants κk obey as N → ∞:

lim
N→∞

N∥k∥1−2κk (Tr (p1 (A1, . . . ,As)) , . . . ,Tr (pr (A1, . . . ,As)))

= αk (p1 (A1, . . . ,As) , . . . , pr (A1, . . . ,As))
(282)

for all fixed polynomials pi. Here, r ≡ ∥k∥0.

Simple classes of distributions which satisfy this property include constant matrices of bounded
operator norm, Gaussian random matrices, Wishart random matrices, and Haar random unitaries.
We here will be interested in a weaker notion of the existence of a limit distribution of all orders,
requiring only that higher-order moments vanish sufficiently quickly and not necessarily that they
have well-defined limits.
Definition 32 (Weak limit distribution of all orders). A sequence of sets of N ×N random matrices
{Ai}di=1 has a weak limit distribution of all orders if the cumulants κk obey as N → ∞:

κk (Tr (p1 (A1, . . . ,As)) , . . . ,Tr (pr (A1, . . . ,As))) = O
(
N2−∥k∥1

)
(283)

for all fixed polynomials pi. Here, r ≡ ∥k∥0.
11As in Assumption 15, this can be weakened to a bound on p if one is only interested in the gradient.
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Products of matrices with limit distributions of all orders over F = R,C,H were considered in
Mingo & Popa (2013); Collins et al. (2007); Redelmeier (2021) respectively, allowing us to prove
the following lemma.
Lemma 33 (Existence of weak limit distributions of all orders). Let Li, i ∈ [d] be multilinear
functions of the form:

Li = Tr
(
MihOh†) , (284)

where h is Haar random and independent from the Mi. Assume all Mi have weak limit distributions
of all orders. For any cumulant κk (Li1 , . . . , Lir ) with ∥k∥1 ≥ 3,

κk (Li1 , . . . , Lir ) = O
(
N2−∥k∥1

)
. (285)

Proof. Following:

1. Lemma 5.12 of Redelmeier (2012) when F = R;

2. Remark 4.8 of Collins et al. (2007) when F = C;

3. and Corollary 3.2 of Redelmeier (2021) when F = H,

the product of a matrix from a unitarily-invariant ensemble with any other independent matrix with
a weak limit distribution of all orders has a weak limit distribution of all orders. This implies that
the MihOh† have a weak limit distribution of all orders. The vanishing of higher-order cumulants
as in Eq. (285) then follows from Definition 32.

We thus have the following lemma.
Lemma 34 (Weak convergence to Haar random gi). Assume Assumption 30. Let Li, i ∈ [d] be
uniformly bounded multilinear functions of the form:

Li = Tr

ρhOh†
∏
j∈Ii

gjMjg
†
j

 , (286)

where Ii is some index set associated with i of constant cardinality, h is Haar random, gj ∼ Gj , ρ

and the Mi are fixed with bounded trace norm, and d = o

(
log

(
N−1N

2
3

)
log log

(
N−1N

2
3

)
)

. Let L̂i be the same

multilinear functions, where now the gj are Haar random. The joint distribution of NLi differs
from the joint distribution of N L̂i by an error at most

π2 = O

d log
(
N−1N

2
3

)
(
N−1N

2
3

)0.99
 (287)

in Lévy–Prokhorov metric for any N ≤ O(N).

Proof. The gjMjg
†
j have a limit distribution of all orders due to the Mj being fixed. Thus, itera-

tively one can show the trace arguments of the Li have weak limit distributions of all orders by the
results cited in the proof of Lemma 33. Incorporating the bounded trace norm of the Mi and the
normalization N gives an error for the cumulants of order k > 2:

ϵ̃ = O
(
N kN1−k) ≤ O

((
NN− 2

3

)k)
. (288)

This also bounds the k = 1, 2 cases whenever

ϵ ≤ O
(
N− 2

3

)
, (289)

which is true by Assumption 30. The result then follows from Corollary 40, where µ is subleading
as in the proof of Lemma 26.
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K EQUICONTINUITY OF PROBABILITY DENSITIES

In Appendix D we prove that the joint distribution of the loss function and its first two derivatives
for a certain random class of variational quantum loss functions converges in distribution to a fairly
simple expression involving Wishart-distributed random matrices. However, Corollaries 14 and 18
are stated in terms of the probability densities of the loss and first derivative, and weak convergence
does not necessarily imply pointwise convergence in densities. However, it is known that this is the
case when the sequence of densities are equicontinuous and bounded (Boos, 1985). Whether or not
this is true depends on the details of the distributions G,H . As an example, we here show this is true
for the loss when G,H are Haar random, under reasonable assumptions (which we conjecture are
not necessary) on the spectrum of the objective observable O projected into any simple component.

Lemma 35 (Equicontinuity of loss density with Haar random ansatz). Consider a sequence of O as
N → ∞ with eigenvalues:

0 = o1 ≤ o2 ≤ . . . ≤ oN−1 ≤ oN = 1, (290)

with mean eigenvalue o and Tr(O)2

Tr(O2)N = r
N = Θ(1). For w ∈ RN−2, define:

Ew ≡
√
õ · (w ⊙w), (291)

Rw ≡
√
w⊺ ·w, (292)

where õ is the vector (o2, . . . , oN−1) and ⊙ denotes the Hadamard product. Let Dx be the domain
of w satisfying:

E2
w ≤ o+N− 1

2x ≤ 1 + E2
w −R2

w. (293)
Assume

p√Nℓ (x) =
1√

N
(
o+N− 1

2x
)
SN−1

∫
Dx

dw

(
1−

(
o+N− 1

2x
)−1

E2
w

)− 1
2

(294)

is locally Lipschitz and bounded at any x as N → ∞, with Lipschitz constants independent from
N . Then the density of

√
rℓ is bounded by a constant independent of N and is equicontinuous as a

sequence in N .

Proof. By assumption r = Θ(N) so we consider the density of
√
Nℓ WLOG. Let {|oi⟩}Ni=1 be the

eigenvectors of O associated with the eigenvalues oi. Let:

|u⟩ =
N∑
i=1

ui |oi⟩ , (295)

and let:

S (u) =

N∑
i=2

oi |ui|2 . (296)

Let p√Nℓ (x) be the density of
√
Nℓ =

√
No+ x. We have that:

p√Nℓ (x) = S−1
βN−1

∫
∥u∥2=1

du δ
(√

N (S (u)− o)− x
)
. (297)

Here, SβN−1 is the surface area of the (βN − 1)-sphere:

SβN−1 =
2π

βN
2

Γ
(
βN
2

) . (298)

We can integrate out the phases of the ui and note that the delta function has no dependence on u1
since o1 = 0. Therefore,

p√Nℓ (x) = S−1
N−12

N

∫
∥ũ∥2≤1,
ũ≥0

dũ δ
(√

N (S (ũ)− o)− x
)
. (299)
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Here, ũ ∈ RN−1
≥0 has indices in 2, . . . , N such that ũi = |ui|. We will similarly use õ to denote o

with the o1 = 0 component projected out.

We now proceed to show equicontinuity and uniform boundedness of pf (x) by showing that the
derivative of pf (x) is bounded everywhere by some N -independent constant. By symmetry we
restrict to the components of vN ≥ 0, introducing an overall factor of 2β . We also introduce new
coordinates w2, . . . , wN , where wi = ũi for 2 ≤ i ≤ N − 1 and wN = S (ũ). The constraint
ũ2N ≥ 0 becomes in these coordinates:

N−1∑
i=2

oiw
2
i ≤ wN . (300)

Only the final row of the resulting Jacobian is nontrivial and is equal to:

JN = 2õ⊺ ⊙ ũ⊺, (301)

where ⊙ denotes the Hadamard product. This gives a Jacobian determinant of (recalling that oN =
1):

det (J) = 2ũN = 2

√√√√wN −
N−1∑
i=2

oiw2
i . (302)

Putting everything together yields a density:

p√Nℓ (x) = S−1
N−12

N−2

∫
D

dw
δ
(√

N (wN − o)− x
)

√
wN −

∑N−1
i=2 oiw2

i

, (303)

where D is the domain of positive wi obeying the normalization constraint of Eq. (300) as well as:

wN +

N−1∑
i=2

(1− oi)w
2
i ≤ 1. (304)

Defining:

E2
w̃ =

N−1∑
i=2

oiw̃
2
i , (305)

R2
w̃ =

N−1∑
i=2

w̃2
i , (306)

and rescaling wN we can rewrite this as:

p√Nℓ (x) =
1√

NSN−1

∫
BN−2

dw̃

∫ √
N(E2

w̃+1−R2
w̃)

√
NE2

w̃

dwN
δ
(
wN −

√
No− x

)
√
N− 1

2wN − E2
w̃

, (307)

where BN−2 is the unit (N − 2)-ball. Integrating out the delta function then yields:

p√Nℓ (x) =
1√

N
(
o+N− 1

2x
)
SN−1

∫
Dx

dw̃

(
1−

(
o+N− 1

2x
)−1

E2
w̃

)− 1
2

, (308)

where Dx is the domain of w̃ satisfying:

E2
w̃ ≤ o+N− 1

2x ≤ 1 + E2
w̃ −R2

w̃. (309)

By assumption this is locally Lipschitz and bounded as N → ∞ with Lipschitz constants indepen-
dent from N , and thus is equicontinuous and bounded.
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We now discuss the main assumption of Lemma 35 in more detail, particularly the local Lipschitz
continuity of Eq. (294). Note that the defining equations of Dx imply that all w2

i ≤ 1, i.e., the
domain of integration is always of O(1) volume. This holds true even if some oi vanish with N ; it
is apparent that these terms do not contribute to the integrand at leading order O, and only the Θ(1)
eigenvalues contribute. Because of this, we will perform an example calculation of the Lipschitz
constants of Eq. (294) when all oi = o = 1

2 for i ̸= 1, N , though due to this observation similar
results hold for all reasonable spectrums.

For such O,

E2
w̃ =

1

2
R2

w̃, (310)

so

p√Nℓ (x) =

√
2√

N
(
1 + 2N− 1

2x
)
SN−1

∫
Dx

dw̃

(
1−

(
1 + 2N− 1

2x
)−1

R2
w̃

)− 1
2

=

√
2SN−3√

N
(
1 + 2N− 1

2x
)
SN−1

∫ √
1−2N− 1

2 |x|

0

dr rN−3

(
1−

(
1 + 2N− 1

2x
)−1

r2
)− 1

2

=
SN−3√

2N
(
1 + 2N− 1

2x
)
SN−1

∫ 1−2N− 1
2 |x|

0

dr r
N
2 −2

(
1−

(
1 + 2N− 1

2x
)−1

r

)− 1
2

=

(
1− 2N− 1

2 |x|
)N

2 −1

SN−3√
2N
(
1 + 2N− 1

2x
)
SN−1

∫ 1

0

dr r
N
2 −2

(
1− 1− 2N− 1

2 |x|
1 + 2N− 1

2x
r

)− 1
2

=

(
1− 2N− 1

2 |x|
)N

2 −1

Γ
(
N
2

)
π

√
2N
(
1 + 2N− 1

2x
)
Γ
(
N
2 − 1

)
∫ 1

0

dr r
N
2 −2

(
1− 1− 2N− 1

2 |x|
1 + 2N− 1

2x
r

)− 1
2

.

(311)
This integral is just the integral definition of the hypergeometric function 2F1, yielding:

p√Nℓ (x) =

(
1− 2N− 1

2 |x|
)N

2 −1

π

√
2N
(
1 + 2N− 1

2x
) 2F1

(
1

2
,
N

2
− 1;

N

2
;
1− 2N− 1

2 |x|
1 + 2N− 1

2x

)
. (312)

We now consider the large-N asymptotics of the derivative of this expression. By Gauss’s hyperge-
ometric theorem, for z = 1 +O

(
N− 1

2

)
,

2F1

(
1

2
,
N

2
− 1;

N

2
; z

)
=
(
1 + O

(
N− 1

2

)) Γ
(
N
2

)
Γ
(
1
2

)
Γ
(
N−1
2

)
Γ (1)

= O
(√

N
)
. (313)

Similarly, we have by the derivative rule for the hypergeometric function that:

2F1
′
(
1

2
,
N

2
− 1;

N

2
; z

)
=

1

2

(
1− 2N−1

)
2F 1

(
3

2
,
N

2
;
N

2
+ 1; z

)
= O

(
N

3
2

)
. (314)

Taking into account the N− 1
2 factors scaling x thus yields (where defined):

p′√
Nℓ

(x) = O (1) . (315)

In particular, p√Nℓ (x) is locally Lipschitz with Lipschitz constants independent from N . These O
thus satisfy the assumptions of Lemma 35, as claimed.
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L BOUNDING LARGE DEVIATIONS OF THE HESSIAN DETERMINANT

In calculating the density of local minima in Appendix C.3 we require analyzing the asymptotics of:

E [det (Dz)1 {Dz ⪰ 0}] , (316)

where Dz is as in Eq. (124), i.e., it is a Wishart-distributed random matrix normalized by its degrees
of freedom parameter. As the determinant is exponentially sensitive to its argument, exponentially
unlikely deviations in the convergence of the spectrum of Dz to its asymptotic value can, in prin-
ciple, cause this expectation to not converge to the determinant of the (almost sure) asymptotic
spectral measure of Dz . The same is true of the minimum eigenvalue of Dz . We here show that
these deviations do not asymptotically contribute to Eq. (316). We will here be brief as this is not
the main focus of our work, and instead refer the interested reader to Anschuetz (2022) for a more
detailed account of very similar arguments. In the following we consider only the case when γ ≤ 1
as otherwise Dz is never full-rank and Eq. (316) is identically zero.

We begin with the empirical spectral measure of Dz . The empirical spectral measures of W satisfies
a large deviations principle at a speed p2 with good rate function maximized by the Marčenko–Pastur
distribution dµγMP (λ) (Hiai & Petz, 1998). As the determinant is only sensitive at a speed p, i.e.,

det (Dz) = exp

(
p

∫
dµγMP (λ) ln (λ)

)
, (317)

by Varadhan’s lemma (Dembo & Zeitouni, 2010) the expected determinant converges to the deter-
minant of our asymptotic expression for Dz .

We now consider the smallest eigenvalue of Dz . For fluctuations below its asymptotic value this
satisfies a large deviations principle with good rate function at a speed p, where this rate function is
maximized at the infimum of the support of the Marčenko–Pastur distribution; for fluctuations above
its asymptotic value it satisfies a large deviations principle at a speed p2 (Katzav & Pérez Castillo,
2010). By Varadhan’s lemma, then, only fluctuations below the asymptotic value potentially con-
tribute, but as these fluctuations only decrease the value of the argument of Eq. (316) they do not
contribute asymptotically (Dembo & Zeitouni, 2010). These together imply that Eq. (316) converges
as claimed in Appendix C.3.

M LEMMAS ON CONVERGENCE IN DISTRIBUTION

We here prove a few helper lemmas that will allow us to obtain quantitative error bounds on the rate
of convergence of two sequences of distributions given bounds on the differences of their moments
or cumulants. We will achieve this by bounding the Lévy–Prokhorov distance between the two
distributions, which metricizes weak convergence. We first restate a result of Berkes & Philipp
(1979) which bounds this distance, with a slight modification due to our use of the infinity norm
rather than the Euclidean norm (see Appendix A.5).
Theorem 36 (Slightly modified version of Lemma 2.2, Berkes & Philipp (1979)). Let p (x) , q (x)
be two distributions on Rd with characteristic functions ϕ (u) , γ (u), respectively. Assume there
exists a C such that

∫
∥x∥∞≥C p (x) ≤ µ. There exists a universal constant K such that for all

T ≥ max (2C,Kd), the Lévy–Prokhorov distance between p and q is bounded by:

π (p, q) ≤
(
T

π

)d ∫
∥u∥∞≤T

|ϕ (u)− γ (u)|du+
16 ln (T )

T
+ µ. (318)

Motivated by this, we prove a general bound on the error of the characteristic functions given errors
in the moments.
Lemma 37 (Bound on characteristic functions from moments). Let p (x) , q (x) be two probability
densities on Rd with characteristic functions ϕ (u) , γ (u). Assume each moment of order k ≤ t of
p differs from that of q by an additive error at most ϵ > 0, and assume all moments of order k > t

are bounded by
(
C
√
k
)k

for some k-independent C ≥ 0. Then, for all u such that ∥u∥1 ≤
√
t+1

2eC ,

|ϕ (u)− γ (u)| ≤ ϵ exp (∥u∥1) + exp2 (1− t) . (319)
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Proof. We have by the definition of the characteristic function and the triangle inequality that:

|ϕ (u)− γ (u)| ≤ ϵ
∑

k ̸=0∈Nd
0

d∏
j=1

∣∣∣(iuj)kj ∣∣∣
kj !

+ 2
∑

∥k∥1≥t+1

C∥k∥1 ∥k∥
∥k∥1

2
1

d∏
j=1

∣∣∣(iuj)kj ∣∣∣
kj !

. (320)

The first term has the upper bound:

ϵ
∑

k ̸=0∈Nd
0

d∏
j=1

∣∣∣(iuj)kj ∣∣∣
kj !

≤ ϵ exp (∥u∥1) . (321)

For the second term, we have the upper bound (for ∥u∥1 <
√
t+1
eC ):∑

∥k∥1≥t+1

C∥k∥1 ∥k∥
∥k∥1

2
1

d∏
j=1

|uj |kj

kj !
≤
∑
k≥t+1

∥
√
eCu∥k1√
k!

≤
∑
k≥t+1

∥∥∥∥ eCu√
t+ 1

∥∥∥∥k
1

=

(
eC√
t+1

∥u∥1
)t+1

1− eC√
t+1

∥u∥1
.

(322)

When ∥u∥1 ≤
√
t+1

2eC this gives the bound:

2
∑

∥k∥1≥t+1

C∥k∥1 ∥k∥
∥k∥1

2
1

d∏
j=1

∣∣∣(iuj)kj ∣∣∣
kj !

≤ 4

(
eC√
t+ 1

∥u∥1

)t+1

≤ exp2 (1− t) . (323)

Combining these bounds yields the final result.

This characteristic function bound combined with Theorem 36 gives us the following corollary.
Corollary 38 (Bound on Lévy–Prokhorov metric from moments). Let pN (x) , qN (x) be two se-
quences of distributions on Rd with characteristic functions ϕN (u) , γN (u), respectively. Assume
each moment of order k ≤ t of pN differs from that of qN by an (N -dependent) additive error at most

ϵ > 0, and assume all moments of order k > t (for t N -dependent) are bounded by
(
C
√
k
)k

for

some (k,N)-independent constant C. Assume as well that
∫
∥x∥∞≥ 1

2 min
(

0.99
d ln(ϵ−1),

√
t+1

2eCd

) p (x) ≤
µ for some (N -dependent) µ. The Lévy–Prokhorov distance between pN , qN is bounded by:

π (pN , qN ) = O

(
d log log

(
ϵ−1
)

log (ϵ−1)
+
d log (t)√

t
+ µ

)
. (324)

Proof. Let T = min
(

0.99
d ln

(
ϵ−1
)
,
√
t+1

2eCd

)
. From Theorem 36,

π (pN , qN ) ≤ Õ
(
T 2d

)
sup

∥u∥∞≤T
|ϕN (u)− γN (u)|+O

(
d log (T )

T

)
+O(µ) . (325)

From Lemma 37,
sup

∥u∥∞≤T
|ϕN (u)− γN (u)| ≤ ϵ0.01 + exp2 (1− t) . (326)

The convergence rate given in Eq. (324) is trivial when d = Ω

(
min

(
log(ϵ−1)

log log(ϵ−1) ,
√
t

log(t)

))
as

ϵ−1, t, N → ∞. When instead d = o

(
min

(
log(ϵ−1)

log log(ϵ−1) ,
√
t

log(t)

))
,

T 2d = exp
(
o
(
min

(
log
(
ϵ−1
)
,
√
t
)))

. (327)

The second term in Eq. (325) thus dominates in this setting, implying the final bound.
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We also prove a bound on the error of characteristic functions given bounds on the cumulants.

Lemma 39 (Bound on characteristic functions from cumulants). Let p (x) , q (x) be two probability
densities on Rd with characteristic functions ϕ (u) , γ (u). Assume each cumulant of order k of p
differs from that of q by an additive error of at most ϵk > 0. Then

|ϕ (u)− γ (u)| ≤ max (exp (exp (ϵ ∥u∥1)− 1)− 1, 1− exp (1− exp (ϵ ∥u∥1))) . (328)

Proof. We have that:

|ϕ (u)− γ (u)| ≤ |ϕ (u)| |1− exp (ln (γ (u))− ln (ϕ (u)))|
= |1− exp (ln (γ (u))− ln (ϕ (u)))| . (329)

By the definition of the cumulant generating function,

|ln (γ (u))− ln (ϕ (u))| ≤
∑

∥k∥1>0

d∏
j=1

∣∣∣(iϵuj)kj ∣∣∣
kj !

= exp (ϵ ∥u∥1)− 1. (330)

Taking into account the absolute values yields the final result.

This characteristic function bound combined with Theorem 36 gives us the following corollary.

Corollary 40 (Bound on Lévy–Prokhorov metric from cumulants). Let pN (x) , qN (x) be two se-
quences of distributions on Rd with characteristic functions ϕN (u) , γN (u), respectively. Assume
each cumulant of order k of pN differs from that of qN by an additive error of at most ϵk > 0.
Assume as well that

∫
∥x∥∞≥ 1

2d ϵ
−0.99 p (x) ≤ µ for some (N -dependent) µ. Finally, assume that

d = o

(
log(ϵ−1)

log log(ϵ−1)

)
as N → ∞. The Lévy–Prokhorov distance between pN , qN is bounded by:

π (pN , qN ) = O

(
d log

(
ϵ−1
)

ϵ−0.99
+ µ

)
. (331)

Proof. Let T = 1
dϵ

−0.99. From Theorem 36,

π (pN , qN ) ≤ Õ
(
T 2d

)
sup

∥u∥∞≤T
|ϕN (u)− γN (u)|+O

(
d log (T )

T

)
+O(µ) . (332)

From Lemma 39,
sup

∥u∥∞≤T
|ϕN (u)− γN (u)| ≤ Θ

(
ϵ0.01

)
. (333)

Similarly,
T 2d = exp

(
o
(
log
(
ϵ−1
)))

. (334)

The second term in Eq. (332) thus dominates, implying the given convergence rate.

N TAIL BOUND LEMMAS

We here prove some helper lemmas giving tail bounds for the marginal entries of β-Wishart ran-
dom variables. We will particularly leverage the Bartlett decomposition of β-Wishart matrices (see
Appendix A.4). In the following we will use |·⟩ to denote vectors in the vector space on which the
defining representation of Hp+1 (F) acts, with basis |0⟩ ∪ {|i⟩}pi=1.

We first prove that β-Wishart matrices are robust to certain low-rank perturbations of their Bartlett
decomposition. In particular, we show that removing a single column from the Bartlett factor L
of a β-Wishart matrix with many degrees of freedom—effectively reducing the degrees of freedom
parameter of the matrix by one—has little effect on the joint distribution of entries of the matrix.
Intuitively, this allows us to argue in Appendix D.3 that such a Wishart matrix is approximately
independent from these entries.
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Lemma 41 (Robustness of β-Wishart Bartlett decompositions). Let W be a (p+ 1) × (p+ 1)
β-Wishart matrix with r degrees of freedom and identity scale matrix. Let LL† be the Bartlett
decomposition of W . Let L̃ be L with the first column removed, and define W̃ ≡ L̃L̃†. For every
t ≥ 0,

P
[
r−

1
2 max
i,j∈[1,...,p]

∣∣∣⟨i|W |j⟩ − ⟨i| W̃ |j⟩
∣∣∣ ≥ t2 +

√
2β− 1

2 r−
1
4 t+ r−

1
2

]
≤ p exp

(
−
√
r

2
t2
)
.

(335)
In particular, the argument converges to zero under the Ky Fan metric as r → ∞ at a rate
Ω
( √

r
log(pr)

)
.

Proof. Let N0,i be the (i, 0) entry of L. Note that the N0,i are i.i.d. The lemma statement is then
equivalent to showing that

P
[

max
i,j∈[1,...,p]

∣∣N0,iN
∗
0,j

∣∣2 ≥
(√

rt2 +
√
2β− 1

2 r
1
4 t+ 1

)2]
≤ p exp

(
−
√
r

2
t2
)
. (336)

This in turn is implied by:

P
[
β max
i∈[1,...,p]

|N0,i|2 ≥ β
√
rt2 +

√
2βr

1
4 t+ β

]
≤ p exp

(
−
√
r

2
t2
)
. (337)

β |N0,i|2 is χ2-distributed with β degrees of freedom. The union bound along with standard χ2 tail
bounds (see, e.g., Lemma 1 of Laurent & Massart (2000)) thus immediately imply Eq. (337) and
therefore also the final result.

We now prove a tail bound for a χ-distributed random variable with D degrees of freedom.

Lemma 42 (Tail bounds for χ-distributed random variables). Let χ be χ-distributed withD degrees
of freedom. For every 0 ≤ t ≤ 3

8D
1
4 ,

P
[
D− 1

4

∣∣∣χ−
√
D
∣∣∣ ≥ 4

3
t+D− 1

4 t2
]
≤ 2 exp

(
−
√
Dt2

)
. (338)

In particular, the argument converges to zero under the Ky Fan metric as D → ∞ at a rate

Ω

(
4√
D√

log(D)

)
.

Proof. We have from standard χ2 tail bounds (see, e.g., Lemma 1 of Laurent & Massart (2000))
that:

P
[
χ2 −D ≥ 2D

3
4 t+ 2

√
Dt2

]
≤ exp

(
−
√
Dt2

)
, (339)

P
[
χ2 −D ≤ −2D

3
4 t
]
≤ exp

(
−
√
Dt2

)
. (340)

This implies that:

P
[
χ ≥

√
D + 2D

3
4 t+ 2

√
Dt2

]
≤ exp

(
−
√
Dt2

)
(341)

and (for t ≤ 1
2D

1
4 )

P
[
χ ≤

√
D − 2D

3
4 t

]
≤ exp

(
−
√
Dt2

)
. (342)

Using the general inequality (for x ≥ −1):
√
1 + x ≤ 1 +

x

2
, (343)

we have that: √
D + 2D

3
4 t+ 2

√
Dt2 −

√
D ≤ D

1
4 t+ t2 (344)
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such that
P
[
χ−

√
D ≥ D

1
4 t+ t2

]
≤ exp

(
−
√
Dt2

)
. (345)

Similarly, using the general inequality (for 0 ≤ x ≤ 3
4 ):

1− 2x

3
≤

√
1− x, (346)

we have under the given assumptions that:

P
[√

D − χ ≥ 4

3
D

1
4 t

]
≤ exp

(
−
√
Dt2

)
. (347)

Noting that both D
1
4 t + t2 and 4

3D
1
4 t are upper bounded by 4

3D
1
4 t + t2 then implies the final

result.

We end with a tail bound for the off-diagonal entries of a β-Wishart matrix.
Lemma 43 (Off-diagonal β-Wishart tail bounds). Let W be a (p+ 1)× (p+ 1) β-Wishart matrix
with r degrees of freedom and identity scale matrix. There exist universal constants C,K > 0 that
depends only on β such that, for every t ≥ 0,

P
[
r−

1
2 max
i∈[1,...,p]

|⟨0|W |i⟩| ≥ 1 + t

]
≤ Kp exp

(
−Cmin

(
t, t2

))
. (348)

Proof. Let LL† be the Bartlett decomposition of W . Let χ0 be the (0, 0) entry of L and N0,i the
(i, 0) entry. The lemma statement is then equivalent to showing that

P
[
χ2
0 max
i∈[1,...,p]

|N0,i|2 ≥ r (1 + t)
2

]
≤ Kp exp

(
−Cmin

(
t, t2

))
. (349)

Note that:

P
[
χ2
0 max
i∈[1,...,p]

|N0,i|2 ≥ r (1 + t)
2

]
≤ P

[
max

(
χ2
0

r
, max
i∈[1,...,p]

|N0,i|2
)2

≥ (1 + t)
2

]

= P
[
max

(
χ2
0

r
, max
i∈[1,...,p]

|N0,i|2
)

≥ 1 + t

]
,

(350)

so by the union bound we need only check whether

max
(
P
[
χ2
0 ≥ r (1 + t)

]
,P
[
|N0,i|2 ≥ 1 + t

])
≤ K

2
exp

(
−Cmin

(
t, t2

))
(351)

to prove the final result. As β |N0,i|2 is χ2-distributed with β degrees of freedom the final result
immediately follows from standard χ2 tail bounds.
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