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ABSTRACT

We propose a distributional framework for assessing socio-technical risks of foun-
dation models with quantified statistical significance. Our approach hinges on a
new statistical relative testing based on first and second order stochastic domi-
nance of real random variables. We show that the second order statistics in this
test are linked to mean-risk models commonly used in econometrics and math-
ematical finance to balance risk and utility when choosing between alternatives.
Using this framework, we formally develop a risk-aware approach for foundation
model selection given guardrails quantified by specified metrics. Inspired by port-
folio optimization and selection theory in mathematical finance, we define a met-
rics portfolio for each model as a means to aggregate a collection of metrics, and
perform model selection based on the stochastic dominance of these portfolios.
The statistical significance of our tests is backed theoretically by an asymptotic
analysis via central limit theorems instantiated in practice via a bootstrap vari-
ance estimate. We use our framework to compare various large language models
regarding risks related to drifting from instructions and outputting toxic content.

1 INTRODUCTION

Foundation models such as large language models have shown remarkable capabilities and oppor-
tunities redefining the field of artificial intelligence. At the same time, they present pressing and
challenging socio-technical risks regarding the trustworthiness of their outputs and their alignment
with human values and ethics (Bommasani et al., 2021). Evaluating LLMs is therefore a multi-
dimensional problem, where those risks are assessed across diverse tasks and domains (Chang et al.,
2023).

In order to quantify these risks, Liang et al. (2022); Wang et al. (2023); Huang et al. (2023) proposed
benchmarks of automatic metrics for probing the trustworthiness of LLMs including accuracy, ro-
bustness, fairness, toxicity of the outputs, etc. Human evaluation benchmarks can be even more
nuanced, and are often employed when tasks surpass the scope of standard metrics. Notable bench-
marks based on human and automatic evaluations include, among others, Chatbot Arena (Zheng
et al., 2023), HELM (Bommasani et al., 2023), MosaicML’s Eval, Open LLM Leaderboard (Wolf,
2023), and BIG-bench (Srivastava et al., 2022), each catering to specific evaluation areas such as
chatbot performance, knowledge assessment, and domain-specific challenges. Traditional metrics,
however, sometimes do not correlate well with human judgments. Aiming for a better alignment
with human judgments, some approaches utilize ChatGPT/GPT-4 for natural language generation
evaluations (Liu et al., 2023; Zhang et al., 2023; Hada et al., 2023).

Evaluating Machine Learning models is intimately connected to statistical significance testing
(SST), although it is still underutilized: for example, Dror et al. (2018) reports almost 50% of ACL
papers miss SST indicators. With the ever increasing parametric complexity of Large Language
Models, obtaining a reliable SST in evaluating foundation models becomes ever more urgent. Fo-
cusing on robust comparison of DNNs specifically, Dror et al. (2019) defined criteria that valid and
powerful tests should satisfy, and developed an assumption-less significance test utilizing Almost
Stochastic Ordering (ASO) (Del Barrio et al., 2018). Besides theoretical guarantees, this method
was shown to outperform traditional SST on a variety of NLP tasks. Building on the ASO work,
Ulmer et al. (2022) re-implemented the method of Del Barrio et al. (2018); Dror et al. (2019) as an
easy-to-use open-source package accompanied by guidelines and case studies.
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In this paper, we propose a distributional framework for evaluating and comparing multiple founda-
tion models across different metrics with quantified statistical significance. While Dror et al. (2018)
relied on first order almost stochastic dominance and on a statistical testing against a fixed threshold,
we propose a relative testing based on first and second stochastic orders. In econometrics and mathe-
matical finance, the second order dominance is used to perform portfolio selection and optimization
in risk averse settings (Ogryczak & Ruszczynski, 2002). We draw inspiration from this literature
and propose a metrics portfolio for each model as a means to aggregate the metrics, and perform
SST of model comparisons using these portfolios. We provide an efficient implementation of these
new proposed statistical tests and risk assessments.

The paper is organized as follows: In Section 2 we review stochastic dominance and introduce our
new notion of relative dominance. Section 3 presents our statistical tests, backed with central limit
theorems, and in Section 4 we present our distributional framework for evaluating foundation models
based on our relative tests. Finally in Section 5, we present experimental results of our framework,
evaluating LLMs regarding risks of drift from instructions and toxicity of generations.

2 STOCHASTIC DOMINANCE

We first review notions of stochastic dominance and their relation to downside risk measures and risk
averse preference modeling. Stochastic dominance between two random variables defines a partial
ordering via considering a point-wise comparison of performance functions constructed from the
variables’ distributions. We use the notation of the seminal paper Ogryczak & Ruszczynski (2002),
and assume that the random variables are standardized so that larger outcomes are preferable.

2.1 FIRST AND SECOND ORDER DOMINANCE AND MEAN-RISK MODELS

First Order Stochastic Dominance The First-order Stochastic Dominance (FSD) between real-
valued random variables uses the right-continuous cumulative distribution (CDF) as a performance
function. Specifically, for a real random variable X , define the first performance function F

(1)
X :

R→ [0, 1] as the CDF: F (1)
X (η) = P(X ≤ η),∀η ∈ R. The FSD of X on Y is defined as follows:

X ≽
FSD

Y ⇐⇒ F
(1)
X (η) ≤ F

(1)
Y (η),∀η ∈ R, (1)

this intuitively means that for all outcomes η, the probability of observing smaller outcomes than η

is lower for X than Y . An equivalent definition can be expressed using the quantile F
(−1)
X :

X ≽
FSD

Y ⇐⇒ F
(−1)
X (p) ≥ F

(−1)
Y (p),∀p ∈ (0, 1], (2)

where F
(−1)
X : [0, 1] → R is the left-continuous inverse of F (1)

X : F
(−1)
X (p) = inf{η : F

(1)
X (η) ≥

p} for p ∈ (0, 1]. We focus on this definition as it is more computationally and notationally friendly
since the quantile function is always supported on [0, 1].

Second Order Stochastic Dominance The Second-order Stochastic Dominance (SSD) is defined
via the second performance function F

(2)
X : R → [0, 1] that measures the area under the CDF:

F
(2)
X (η) =

∫ η

−∞ F
(1)
X (x)dx, for x ∈ R, yielding:

X ≽
SSD

Y ⇐⇒ F
(2)
X (η) ≤ F

(2)
Y (η),∀η ∈ R. (3)

Note that FSD implies SSD, hence SSD is a finer notion of dominance. While FSD implies that X is
preferred to Y by any utility-maximizing agent preferring larger outcomes1, Ogryczak & Ruszczyn-
ski (2002) showed that SSD implies that X is preferred to Y by any risk-averse agent preferring
larger outcomes.2 Similarly to FSD, SSD can be measured with quantile functions via introducing

1I.e. having an increasing utility function.
2I.e. having an increasing and concave utility function.
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the second quantile function also known as integrated quantiles F (−2)
X : (0, 1]→ R

F
(−2)
X (p) =

∫ p

0

F
(−1)
X (t)dt, for t ∈ (0, 1]. (4)

Similarly to the FSD case, a more computationally friendly definition can be expressed in terms of
the second quantile function:

X ≽
SSD

Y ⇐⇒ F
(−2)
X (p) ≥ F

(−2)
Y (p),∀p ∈ (0, 1]. (5)

This equivalence is not straightforward and is due to Fenchel duality between F (2) and F (−2). Using
p = 1 we see that SSD implies µX ≥ µY , where µX and µY are means of X and Y .

Mean – Risk Models (MRM) As noted earlier SSD is linked to risk assessment via the second per-
formance function F (2)(.) measuring expected shortfall, and the negative second quantile function
−F (−2)(p) that is an assessment of expected losses given outcomes lower than the p-quantile.

Definition 1 (Mean – Risk Models). A mean – risk model of a random variable X consists of the
pair (µX , rX), where µX is the mean of X , and rX is a functional that measures the risk of the
random outcome X .

The consistency of a mean – risk model with SSD is defined as follows:

Definition 2 (SSD consistency of Mean – Risk Models). A mean – risk model (µX , rX) is
α−consistent with SSD, if for α > 0 the following is true:

X ≽
SSD

Y =⇒ µX − αrx ≥ µY − αrY . (6)

The ubiquitous mean – risk model in machine learning is (µX , σX), where σX is the standard devia-
tion. Unfortunately this model is not consistent with the SSD and has several limitations as it implies
Gaussianity of the outcomes or a quadratic utility function. A large body of work was devoted to
defining mean – risk models that are consistent with SSD in econometrics and mathematical finance.
The summary statistics rX quantifying risks consistent with SSD are of interest in order to assess
risks of foundation models. We give in Table 1 a summary of these risks measurement and their
α−consistency and refer the reader to (Ogryczak & Ruszczynski, 2002) for proofs of these claims:

Name Risk Measure α− consistency with SSD
Standard deviation σX =

√
E(X − µX)2 not consistent

Absolute semi deviation δX = E(µX −X)+ 1− consistent
Negative Tail Value at Risk −TVARX(p) = −F (−2)(p)

p 1− consistent for all p ∈ (0, 1]

Mean absolute deviation from a quantile hX(p) = µx −
F

(−2)
X (p)

p 1− consistent for all p ∈ (0, 1]

Gini Tail ΓX = 2
∫ 1

0
(µXp− F

(−2)
X (p))dp 1− consistent

Table 1: Risk models and their α−consistency with SSD.
Note that several risks in Table 1 use the second quantile function as part of an assessment of the
left tails of the outcomes.

2.2 RELAXATIONS OF STOCHASTIC DOMINANCE

Recalling the definitions of FSD and SSD in Equations (7) and (8), in the finite-sample regime
it is hard to test for these relations as one needs to show the infinite-sample quantile or second
quantile properties hold uniformly over all p ∈ (0, 1]. This difficulty motivated the relaxation of
stochastic dominance to an almost stochastic dominance pioneered by Leshno & Levy (2002). These
relaxations were revisited for the first order by Alvarez-Esteban et al. (2014) who later proposed an
optimal transportation approach to assess almost first stochastic order Del Barrio et al. (2018).

Almost FSD (ε-FSD) Following Leshno & Levy (2002), Del Barrio et al. (2018) relaxed FSD via
the violation ratio of FSD:
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Definition 3 (FSD Violation Ratio (Del Barrio et al., 2018) ). For FX ̸= FY define the
violation ratio:

εW2
(FX , FY ) =

∫
A

(1)
0
(F

(−1)
X (t)− F

(−1)
Y (t))2dt∫ 1

0
(F

(−1)
X (t)− F

(−1)
Y (t))2dt

=

∫ 1

0
(F

(−1)
Y (t)− F

(−1)
X (t))2+dt

W2
2(FX , FY )

,

where A(1)
0 =

{
t ∈ (0, 1) : F

(−1)
Y (t) > F

(−1)
X (t)

}
is the violation set the relation X ≽

FSD
Y ,

and W2 is the Wasserstein−2 distance.

Note that 0 ≤ εW2
(FX , FY ) ≤ 1, with value 0 if X ≻

FSD
Y and 1 if Y ≻

FSD
X . For ε ∈ (0, 1

2 ], the

relaxed FSD can be therefore defined as follows

X ≽
ε−FSD

Y ⇐⇒ εW2(FX , FY ) ≤ ε. (7)

Figure 1a in Appendix C illustrates ε-FSD, dashed areas represent the violation set.

Almost SSD (ε-SSD) Note that the original definition of ε-FSD of X on Y in Leshno & Levy
(2002) is an L1 definition and uses the CDF rather than quantiles:

∫∞
−∞(FX(x) − FY (x))+dx ≤

ε
∫∞
∞ |FX(x) − FY (x)|dx. Tzeng et al. (2013) gave a similar L1 definition for ε-SSD using the

second performance function F (2)(.). According to Tzeng et al. (2013), X dominates Y in the ε-
SSD if

∫∞
−∞(F

(2)
X (x)− F

(2)
Y (x))+dt ≤ ε

∫ +∞
−∞ |F

(2)
X (x)− F

(2)
Y (x)|dx. Following Del Barrio et al.

(2018), we redefine ε-SSD using second quantiles and with a L2 definition, this eases the analysis
and practically the integration is on (0, 1] rather than (−∞,∞).

We define the SSD violation ratio as follows:

Definition 4 (SSD Violation Ratio ). For FX ̸= FY define the violation ratio:

εIQ(FX , FY ) =

∫
A

(2)
0
(F

(−2)
X (t)− F

(−2)
Y (t))2dt∫ 1

0
(F

(−2)
X (t)− F

(−2)
Y (t))2dt

=

∫ 1

0
(F

(−2)
Y (t)− F

(−2)
X (t))2+dt

d2IQ(FX , FY )
,

where A(2)
0 =

{
t ∈ (0, 1) : F

(−2)
Y (t) > F

(−2)
X (t)

}
is the violation set the relation X ≽

SSD
Y ,

and dIQ is the L2 distance between the Integrated Quantiles (F (−2)).

We are now ready to define ε-SSD, for ε ∈ (0, 1
2 ):

X ≽
ε−SSD

Y ⇐⇒ εIQ(FX , FY ) ≤ ε (8)

Figure 1b in Appendix C illustrates the second order, dashed areas represent the violation set of SSD
of X on Y . Integrated quantiles fully characterize one dimensional distributions as can be seen from
the following theorem, proved in Appendix E:

Theorem 1 (dIQ is a metric). dIQ is a metric on the space of univariate distributions with
continuous CDF, moreover, it metrizes the weak topology.

2.3 RELATIVE STOCHASTIC DOMINANCE

In the remainder of the paper, we refer to the FSD violation ratio as εW2
(FX , FY ) ≡ ε(1)(FX , FY )

and to the SSD violation ratio as εIQ(FX , FY ) ≡ ε(2)(FX , FY ). One of the shortcomings of almost
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stochastic dominance is the need to fix a threshold ε on the violation ratio. When comparing two ran-
dom variables, setting a threshold is a viable option. Nevertheless, when one needs to rank multiple
variables X1, . . . , Xk (considering all pairwise comparisons), setting a single threshold that would
lead to a consistent relative stochastic dominance among the k variables becomes challenging. To
alleviate this issue, we draw inspiration from relative similarity and dependence tests (Bounliphone
et al., 2016a;b) that circumvent the need for a threshold via relative pairwise testings.

For ℓ ∈ {1, 2} (i.e for FSD or SSD) we consider all pairs of violations ratios:

ε
(ℓ)
ij = ε(ℓ)(FXi

, FXj
) for i, j ∈ {1 . . . k}, i ̸= j,

noting that ε(ℓ)ij + ε
(ℓ)
ji = 1. Let F = (FX1

, . . . FXk
). We define the one-versus-all violation ratio of

the dominance of Xi on all other variables Xj , j ̸= i :

ε
(ℓ)
i (F ) =

1

k − 1

∑
j ̸=i

ε
(ℓ)
ij .

We then define relative stochastic dominance for both orders, r-FSD an r-SSD respectively:

Xi1 ≽
r−FSD

Xi2 . . . ≽
r−FSD

Xik ⇐⇒ ε
(1)
i1

(F ) ≤ · · · ≤ ε
(1)
ik

(F ) (9)

Xi1 ≽
r−SSD

Xi2 . . . ≽
r−SSD

Xik ⇐⇒ ε
(2)
i1

(F ) ≤ · · · ≤ ε
(2)
ik

(F ) (10)

In this definition of relative stochastic dominance, the most dominating model is the one with the
lowest one-versus-all violation ratio and to test for relative dominance of Xi on Xj we can look at
the following statistics:

∆ε
(ℓ)
ij (F ) = ε

(ℓ)
i (F )− ε

(ℓ)
j (F ), (11)

and we have the following threshold-free test for relative order:3

Xi ≽
r−FSD

Xj ⇐⇒ ∆ε
(1)
ij (F ) ≤ 0 (12)

Xi ≽
r−SSD

Xj ⇐⇒ ∆ε
(2)
ij (F ) ≤ 0 (13)

3 TESTING FOR ALMOST AND RELATIVE STOCHASTIC DOMINANCE

Given empirical samples from FX and FY we perform statistical testing of the almost and relative
stochastic dominance of X on Y given empirical estimates of the statistics given in Sections 2.2
and 2.3. A key ingredient for quantifying the statistical significance of such tests is a central limit
theorem that guarantees that the centered empirical statistics is asymptotically Gaussian at the limit
of infinite sample size. Given n samples from FX (m from FY respectively), we denote Fn

X and
Fm
Y the corresponding empirical distributions. For ε0− FSD, Del Barrio et al. (2018) studied the

following hypothesis testing H0 : X �≽
ε0−SSD

Y versus the alternative Ha : X ≽
ε0−SSD

Y . Using (7),

this amounts to the following null hypothesis : H0 : εW2
(Fn

X , Fm
Y ) > ε0. Del Barrio et al. (2018)

showed the asymptotic normality of the empirical statistics:√
mn

m+ n
(εW2(F

n
X , Fm

Y )− εW2(FX , FY ))→ N (0, σ2(FX , FY )).

Given an estimate of the standard deviation σ̂m,n of εW2(F
n
X , Fm

Y ) obtained via bootstrapping4,
Del Barrio et al. (2018); Ulmer et al. (2022) propose to reject H0 with a confidence level 1− α if:

3For comparing k = 2 random variables, these r-FSD and r-SSD tests reduce to 0.5-FSD and 0.5-SSD
absolute tests, respectively.

4While the CLT provides an asymptotic value for the variance, bootstrapping is used in practice since it is
nonasymptotic and hence usually more accurate.
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εW2
(Fn

X , Fm
Y ) ≤ ε0 +

√
m+ n

mn
σ̂m,nΦ

−1(α), (14)

where Φ−1 is the quantile function of a standard normal.

ε-SSD Testing Similar to ε-FSD, using the definition in (8) we propose to test using the following
null hypothesis for testing for ε0-SSD:

H0 : εIQ(F
n
X , Fm

Y ) > ε0

We state a Central Limit Theorem for the second order statistics in Appendix D (Theorem 2, proved
in Appendix F.1). Similarly to (14), Theorem 2 suggests to reject H0 with a confidence 1− α if :

εIQ(F
n
X , Fm

Y ) ≤ ε0 +

√
m+ n

mn
σ̂m,nΦ

−1(α), (15)

where (for the same reasons as the FSD case) σ̂m,n is an estimate of the standard deviation of
εIQ(F

n
X , Fm

Y ) that we can obtain via bootstrapping (Efron & Tibshirani, 1993).

Relative Stochastic Dominance Testing We turn now to relative stochastic dominance that we
introduced in (12) and (13) for first and second orders. Given n samples from k random variables
(X1 . . . Xk). Let F = (F1, . . . , Fk) be the marginals of Xi and Fn = (F1n, . . . , Fkn) denote
the empirical marginals. To test for R-SSD of Xi1 on Xi2 we propose to test the following null
hypothesis:

H0 : ∆ε
(ℓ)
ij (Fn) > 0, ℓ = 1 or 2

We state in Appendix D a central limit theorem for the relative second order statistics (Theorem 3
proved in in Appendix F.2). A similar result holds for the relative first order statistics that we omit
for brevity. Theorem 3 suggests to reject H0 with a confidence 1− α if:

∆ε
(2)
i1,i2

(Fn) ≤
√

1

n
σ̂nΦ

−1(α) (16)

where σn is an estimate of the standard deviation of ∆ε
(2)
i1,i2

(Fn) that we (again) can obtain via
bootstrapping. A similar test can be performed for the relative FSD.

Multi-Testing Algorithm Algorithm 1 given in Appendix A summarizes the multi-testing setup
for both relative and almost (absolute) FSD and SSD. The main idea behind Algorithm 1 is to turn
multi-testing to pairwise testings and to correct for the confidence level by dividing by the number
of all pairs (Bonferroni, 1936). Then in order to combine the pairwise rankings to a single rank, we
use a simple Borda count (de Borda, 1781) rank aggregation algorithm.

4 DISTRIBUTIONAL RISK ASSESSMENT OF FOUNDATION MODELS

Setup We consider the assessment of a foundation model A : X → O, using N metrics mi : O →
R, i = 1 . . . N , where mi are real valued functions evaluated on different test sets and tasks. We
denote the respective data distribution of these sets and tasks by Di. Without loss of generality,
assume that each of the metrics are standardized such that higher values of mi correspond to more
desirable model performance. We model observed values for each metric mi as a continuous random
variable Mi with unknown CDF FMi . For a model A : X → O and a data sample X ∼ Di, we
describe the evaluation of model A with mi with the following random variable Mi: Mi|A,X :=
mi(A(X)), X ∼ Di, i = 1 . . . N, where the randomness arises from the data sampling procedure
X ∼ Di, and (if applicable) the stochasticity of the model A, for example if the model uses sampling
to compute its output.

Stochastic Dominance In Dror et al. (2018; 2019); Ulmer et al. (2022); Simpson (2021) a distri-
butional assessment of the models based on stochastic dominance was proposed to overcome the
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limitations of the ubiquitous Mean-Variance Risk model used in machine learning. (Ulmer et al.,
2022) used first order almost stochastic dominance and advocated for selecting a model A over B
based on a metric mi if: Mi|A,X ≽

ε−FSD
Mi|B,X. We expand this to the Relative-FSD. In natural

language (and other) applications, it is often crucial to mitigate the risk of outputs with low met-
rics, especially when those metrics quantify important socio-technical guardrails such as model’s
toxicity, safety, or robustness. Unfortunately, the first stochastic ordering does not capture an as-
sessment of the left tail behavior of Mi|A,X and Mi|B,X and hence does not provide a risk-aware
assessment Ogryczak & Ruszczynski (2002). To alleviate this issue, we instead consider the second
order stochastic ordering and use our second order almost or relative stochastic dominance tests
introduced in Section 3 for selecting a model A if:Mi|A,X ≽

ε or R−SSD
Mi|B,X.

Metrics Portfolio Selection using Stochastic Dominance Evaluation of foundation models is
multi-dimensional in nature and multiple metrics assess the models on different socio-technical
dimensions that probe the trustworthiness of their outputs and their adherence to shared values and
ethics. In order to enable such an evaluation with stochastic orders, we propose the following method
inspired from portfolio optimization in finance. Let λ = (λ1, . . . , λN ) be a probability vector that
represents the importance of the mi metrics to the model’s end user. Inspired by the portfolio op-
timization literature, we model the user return from a model as a portfolio of metrics mi evaluated
on a test set Di. Following (Ulan et al., 2021; Belgodere et al., 2023), we define this portfolio as an
Archimedean copula, which forms a weighted geometric mean of the CDFs:

RA(X) = exp

(
N∑
i=1

λi logFMi (mi(A(X)))

)
=

N∏
i=1

Fλi

Mi
(mi(A(X))). (17)

Note that (17) normalizes the metrics using the CDF of the metric Mi, eliminating the issue of
differing dynamic ranges. This CDF should be formed by pooling together the evaluations on all
samples and from all models being compared, to ensure that the various RA are comparable. The
CDF normalization is monotonic and hence it preserves the order of each metrics and allow us to
aggregate in the probability space the metrics using a simple weighted geometric mean. Computing
RA(X) for all test samples X , we can therefore characterize the distribution of the metric portfolio
of the model A. To compare two models it is enough to compare their corresponding portfolios,
specifically, Model A is preferred to Model B using ε- or R-SSD:

RA(X) ≽
ε− or R−SSD

RB(X). (18)

Similar tests can be performed for FSD.

Multiple Models Comparison Given k models Aℓ, ℓ = 1 . . . k and their evaluations
mi(Aℓ(X)), X ∼ Di, i = 1 . . . N , we pool all model evaluations for a metric to estimate the
CDF of each metric FMi and construct a portfolio for each model RAℓ

(X). We use our Relative
Stochastic Dominance testing introduced in Section 3 and in Algorithm 1 to rank the models by their
metrics portfolio in relative SSD or FSD with a confidence level 1− α.

Per Metric Stochastic Dominance and Rank Aggregation We also explore another approach for
multi-testing, by considering the stochastic dominance of the models on per-metric basis. This
amounts to computing N relative stochastic orders for eachMi = (mi(A1(X)), . . . ,mi(Aℓ(X))),
i = 1 . . . N . This amounts to producing via Algorithm 1 a relative ranking πi of the models based on
Mi. A single rank π is then obtained via rank aggregation with uniform weighting on the per-metric
rankings πi, i = 1 . . . N . We use for rank aggregation the R package of (Pihur et al., 2009). For
more details on rank aggregation, the reader is referred to Appendix B.2.

5 EXPERIMENTS

5.1 VALIDATION OF STATISTICAL SIGNIFICANCE

We examine the statistical properties of our tests as a function of sample size. We purposely design
synthetic score distributions to represent challenging problems comprising large overlap between
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the distributions and considerable violation ratio, but where one would still like to have an ordering
among the variables. For this we consider the two Gaussian variables X ∼ N (0, 1) and and Y ∼
N (0.5, 2). Figure 2 in Appendix G.1 shows that our tests have desirable statistical properties.

5.2 LLM EVALUATION WITH STOCHASTIC DOMINANCE

We showcase LLM evaluation with stochastic dominance to assess two risks: drifting from instruc-
tions and outputting toxic content. The following datasets correspond to each risk we assess.

Mix-Instruct Evaluation Data We use the data from (Jiang et al., 2023), that consists of an in-
struction, an input sentence and an expected output from the user, as well as the output of a set of
different LLMs. The dataset consists of a training set of 100K samples and a test set of 5K samples.
(Jiang et al., 2023) used automatic metrics such as BARTscore and BLEU score comparing the LLM
generation to the expected output in order to evaluate if each LLM followed the instruction. (Jiang
et al., 2023) used also chatGPT to evaluate the generations. The total number of automatic metrics
N is 8, the total number of evaluated models k is 12. All metrics are unified so that larger values are
preferred.

Toxicity Evaluation We use the real toxicity prompts dataset of Gehman et al. (2020), and gen-
erate prompts completions from the Llama 2 7b , Llama 2 13b, Llama 2 70b , MosaicML MPT
30b and Tiiuae Falcon 40b models available in Opensource (k = 5 models). We select two sets of
prompts: toxic prompts (toxicity > 0.8, that gives ∼10K prompts ) and non-toxic prompts (toxicity
< 0.2, from which we randomly sample 10K). We sample from each model, 10 completions per
prompt using nucleus sampling (top-p sampling with p = 0.9 and a temperature of 1). This proce-
dure yields a dataset of ∼200K sentence completions per model. We evaluate the toxicity of these
generations using the Perspective API, on the following toxicity metrics (N = 6 metrics): Toxicity,
Severe toxicity, Identity Attack, Insult, Profanity and Threat. Following Liang et al. (2022), we eval-
uate the toxicity of generated completions only and refer to this as Gen Only evaluation. In order
to also give the context of the completion, we prepend the model generation with the prompt and
evaluate the full sentence using Perspective API. We refer to this as Prompt+Gen. The polarity of
all toxicity metrics is unified so that high values refer to non toxic content (we use−log probabilities
of Perspective API outputs).

Evaluation Protocol and Baselines We evaluate each of the use cases (instruction following and
toxicity) using the following absolute stochastic dominance tests: (1) ε-FSD (corresponds to the
ASO evaluation of Ulmer et al. (2022)) for ε = 0.08, 0, 25, 0.4. (2) our proposed ε-SSD using the
same values for ε, (3) our relative stochastic dominance R-FSD and R-SSD tests, (4) the Mean –
Risk models described in Table 1, and (5) the ranking produced by the Mean Win Rate (MWR) used
by LLM leaderboards such as HELM (Liang et al., 2022). As noted in Section 4, we either perform
these tests on a metrics portfolio (given in Equation (17)) – we refer to this as test @ P; or on a
per metric basis leading to N rankings of the models that we reduce to a single ranking via Rank
Aggregation (RA) (Pihur et al., 2009) – we refer to this as RA(test @ M). In this naming convention,
test takes values in {MWR, ε-FSD, ε-SSD, R-FSD, R-SSD, Mean – Risk Model (µX − rX)}
where rX is a chosen risk from Table 1. We perform all our statistical tests with a significance level
α = 0.05, and use 1000 bootstrap iterations.

Efficient Implementation We compare the computational complexity of our implementation for
computing all stochastic orders to that of the Deep-Significance package (deepsig, 2022)
which implements ε-FSD in the ASO framework (Ulmer et al., 2022), on the task of com-
paring models on the Mix-Instruct dataset (sample size 5K, k = 12 models). Using the
Deep-Significance implementation of MULTI-ASO in (Ulmer et al., 2022) for ε = 0.25
with just 3 bootstrap iterations5, the test completes in 15min50s (averaged over 7 runs). Our code
for relative and absolute testing performs all tests at once and relies on caching vectorization and
multi-threading of the operations. Our code completes all tests in an average of just 17.7 s with
1000 bootstrap iterations. Experiments were run on a CPU machine with 128 AMD cores, of which
2 were used.

Mix-Instruct Results and Analysis Table 2 summarizes the rankings we obtain for different models
using the different tests described above. We see that the Mean Win Rate currently used in LLM

5Limited to 3 for computational reasons.
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leaderboards such as HELM (Liang et al., 2022) leads to different orderings than FSD and SSD. For
example the flan-t5 model is ranked 5 or 6 by MWR with rank aggregation and portfolio respectively.
In contrast, for R-FSD and R-SSD it is given a low ranking (8, 11) or 12. This is due to the fact
that MWR only counts wins and does not take into account how fat is the left tail of the distribution
of the metric being assessed, possibly leading to overevaluation of risky models. When comparing
R-FSD and R-SSD to each other, we see some changes in the ranking in near or adjacent positions.
Remarkably, the R-SSD ordering agrees with the rank aggregation of all (consistent) mean – risk
models, confirming the theoretical link between second order dominance and risk averse decision
making. Table 3 in Appendix G shows for this data that R-FSD and R-SSD are consistent with ε-
FSD and SSD respectively for various values of ε. While it is common to give radar plots of MWR
for a metric or an average of the metric, we give in G a radar plot (Figure 3) for each of the Mean –
Risk models, to aid practitioners in visualizing and selecting models in a risk aware manner.

Open koala alpaca llama flan-t5 stablelm Vicuna Dolly Moss ChatGLM mpt-7b mpt-7b
assistant 7b (v2) 6b instruct

Mean Win Rates
RA(MWR @ M) 1 6 2 8 5 7 3 10 9 4 11 12

MWR @ P 1 5 2 7 6 8 3 9 10 4 11 12

Relative FSD
RA(R-FSD @ M) 1 6 2 5 8 11 4 10 7 3 9 12

R-FSD @ P 1 6 2 5 11 10 4 8 7 3 9 12

Relative SSD
RA(R-SSD @ M) 1 7 2 5 12 10 4 9 6 3 8 11

R-SSD @ P 1 6 3 5 12 11 4 7 8 2 9 10

Mean-Risk Models
RA(µX − ΓX ) @ M 1 7 2 5 12 11 4 9 6 3 8 10
RA(µX − rX ) @ P 1 6 3 5 12 11 4 7 8 2 9 10

Table 2: Rankings of models on following instructions according to all tests, with the top 3 ranks
highlighted. We see that SSD and Mean – Risk models are consistent. Note that RA(µX − rX ) @
P denotes the aggregation of rankings produced by (µX − rX ) @ P for each rX in Table 1.

Toxicity Results and Analysis Table 4 in Appendix G summarizes the results of our tests. We
make a few observations: First, overall the portfolio approach agrees well with the rank aggrega-
tion of per-metric rankings. The portfolio is more computationally efficient as it needs to run the
stochastic dominance test only on the portfolio, rather than running N tests and aggregating them
via rank aggregation. Secondly, on this dataset the R-FSD and R-SSD agree, with a few exceptions.
Interestingly, when comparing models on model generation only, on toxic prompts MosaicML MPT
stands out, while on non toxic prompts Llama2 7B stands out and on the combined set Mosaic ML
MPT stands out. When evaluating the toxicity of the context (Prompt + Gen), Llama70B stands
out on toxic prompts, Llama7b stands out on non toxic prompts and MosaicML MPT still stands
out on the combined set. This study shows that the evaluation problem is not only challenging in
terms of the statistical significance of the test, but also with regards to the conditioning on which
data the evaluation is performed. The stability of the ranking across all methods, on the combined
set suggests that rank stability can be a criterion to assess the representativity of the evaluation set.

6 CONCLUSION

In this paper we introduced a distributional framework for risk assessment and comparison of foun-
dation models based on multi-metric evaluations. Our framework is of interest beyond the current
applications presented here by providing statistical significance while ranking assets for decision
making. We believe our tools for training models to be risk averse can be of significant use to
practitioners and serve as a stepping stone towards solving the AI alignment problem.
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A MULTI-TESTING ALGORITHM FOR RELATIVE AND ALMOST STOCHASTIC
DOMINANCE

Our multi-testing algorithm for relative and almost stochastic dominance is detailed in Algorithm 1.

B SUPPLEMENT DISCUSSIONS

B.1 δ− CONSISTENCY OF GINI-RISK MODELS WITH ε-SSD

δ− Consistency of Gini-Risk Models with ε-SSD We relax the definition of α− consistency of
mean-risk models with SSD to (α, δ) consistency with ε-SSD as follows:
Definition 5 ((α, δ) consistency of MRM with ε-SSD). A mean-risk model (µX , rX) is (α, δ) con-
sistent with ε-SSD, if there exists α, δ > 0 such that X ≽

ε-SSD
Y =⇒ µX − αrx + δ ≥ µY − αrY

It is easy to see that the Mean-Gini tail MRM of X and Y is consistent with their ε-SSD:

Proposition 1. The Mean-Gini Tail MRM is (1, 2ε
1
2 dIQ(FX , FY )) consistent with ε-SSD.

Proof of Proposition 1.

µX − ΓX = µX − 2

∫ 1

0

(µXp− F
(−2)
X (p))dp = 2

∫ 1

0

(F
(−2)
X (p)− F

(−2)
Y (p) + F

(−2)
Y (p))dp

= 2

∫ 1

0

F
(−2)
Y (p) + 2

∫
A

(2)
0

(F
(−2)
X (p)− F

(−2)
Y (p))dp+ 2

∫
[0,1]/A

(2)
0

(F
(−2)
X (p)− F

(−2)
Y (p))dp︸ ︷︷ ︸

≥0

≥ 2

∫ 1

0

F
(−2)
Y (p)− 2

∫
A

(2)
0

|F (−2)
X (p)− F

(−2)
Y (p))|dp

= µY − ΓY − 2

∫ 1

0

(F
(−2)
Y (p)− F

(−2)
X (p))+dp

≥ µY − ΓY − 2

(∫ 1

0

dp

) 1
2
(∫ 1

0

(F
(−2)
Y (p)− F

(−2)
X (p))2+dp

) 1
2

(Cauchy-Schwartz)

≥ µY − ΓY − 2ε
1
2 dIQ(FX , FY )(By assumption X ≽

ε−SSD
Y )

B.2 RANK AGGREGATION

Given N ranks πi, i = 1 . . . N represented as permutations in Sk, the rank aggregation in (Pihur
et al., 2009) solves the following problem :

min
π∈Sk

N∑
i=1

αid(π, πi),

where αi ≥ 0,
∑N

i=1 αi = 1 represent importance of each ranking and d is a distance between
permutations. (Pihur et al., 2009) have multiple choices of distance such as Pearson or Kendall’s-
Tau. We fixed through out our experiments the distance to Pearson.

B.3 MEAN WIN RATE AND CDF NORMALIZERS IN PORTFOLIO

To unpack the notations in (17), consider a distribution A on models space. For a sample X ∼ Di

and a model A ∼ A, the metric mi() normalization through its CDF can be written as follows:

FMi(mi(A(X)) = EB∼AEY∼Di1mi(B(Y )≤mi(A(X)). (19)
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Algorithm 1 Stochastic Order Multi-testing (relative and absolute)

1: Input: F1, ..., Fk, k models we want to rank corresponding to empirical measure p1 =
1
n

∑n
i=1 δx1

i
, . . .pk = 1

n

∑n
i=1 δxk

i
, Threshold: τ .

2: Input: Desired stochastic order ∈ {1, 2}, B number of bootstraps, m = K2 number of com-
parisons, significance level α.

3: Cache the bootstraps samples and their statistics
4: for j = 1 to k do
5: p0j ← pj
6: Get Quantiles and Integrated Quantiles
7: Q0,j ← GETQUANTILES(pj)
8: IQ0,j ← GETINTEGRATEDQUANTILES(pj)
9: for b = 1 to B do

10: Get Quantiles and Integrated Quantiles
11: pbj ← RESAMPLEWITHREPLACEMENT(pj , n) {using quantiles and uniform}
12: Qb,j ← GETQUANTILES(pbj)

13: IQb,j ← GETINTEGRATEDQUANTILES(pbj)
14: end for
15: end for
16: Compute all violation ratios
17: εb,i,j ← COMPUTEVIOLATIONRATIOS(F b

i , F
b
j , order) for b = 0 . . . B, i, j = 1 . . . k, i ̸= j

{ratio of Q or IQ of j > i by total area}
18: εb,i,i = 0,∀ b, i
19: Compute the sum statistics
20: for b = 0 to B do
21: for i = 1 to k do
22: εib ← 1

k−1

∑
j εb,i,j

23: end for
24: end for
25: Compute the relative statistics
26: ∆εi,jb = εib − εjb,∀b, i, j
27: Compute the Bootstrap Variance
28: for i = 1 to k do
29: for j = 1 to k do
30: σij =

√
1

B−1

∑B
b=1(∆εi,jb −MEAN(∆εi,jb , b))2

31: σabs
ij =

√
1

B−1

∑B
b=1(εb,i,j −MEAN(εb,i,j , b))2

32: end for
33: end for
34: Compute the test
35: Winij = Winabsij = 0
36: for i = 1 to k do
37: for j = 1 to k do
38: if i ̸= j and ∆εi,j0 − 1√

n
σijΦ

−1(α/k2) ≤ 0 then
39: Winij = 1 {with confidence level 1− α/k2}
40: end if
41: if i ̸= j and ε0.i,j − 1√

n
σabs
ij Φ−1(α/k2) ≤ τ then

42: Winabsij = 1 {with confidence level 1− α/k2}
43: end if
44: end for
45: end for

rank = BORDA(Win) {with confidence level 1− α}
rankabs = BORDA(Winabs) {with confidence level 1− α}

46: return rank, rankabs
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Algorithm 2 COMPUTEVIOLATIONRATIOS(Fa,Fb,order)

if order =1 then
return εW2

(Fa, Fb) in Definition 3
else if order=2 then

return εIQ(Fa, Fb) in Definition 4
end if

Hence for a model A on each evaluated sample the CDF normalizer computes a soft ranking of the
evaluation of the model A with a metric mi on the sample X with respect to all models and all
samples.

Remark 1 (Mean Win Rate ). Note that in LLM leaderborads such as HELM and Hugging face, the
performance of a model A evaluated with a metric mi, is summarized via a Mean Win Rate (MWR)
aggregated on models level looking on expected metrics

MWRA,Mi
= EB∼A1EX∼Di

[mi(B(X))]≤EX∼Di
[mi(A(X))], (20)

or aggregated on sample level marginalizing on models with a max:

MWRA,Mi = EX∼Di1maxB ̸=A mi(B(X))≤mi(A(X)), (21)

Contrasting (19) , (20) and (21) we see that instead of looking at the MWR summary statistics that
does not allow to consider all order statistics and relative ordering as well the risks of tails events,
we consider a full distributional assessment in the metrics portfolio approach.
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Figure 1: (a) An Example of Almost First Order Stochastic Dominance: Plots of quantile func-
tions of U and V . Dashed areas is the violation set of first order stochastic dominance of U on V .
(b) An Example of Almost Second Order Stochastic Dominance: Plots of integrated quantile
functions; dashed area is the violation set for the second order stochastic dominance of X on Y .
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D CENTRAL LIMIT THEOREMS

D.1 CLT FOR ε-SSD

Theorem 2 (Central Limit Theorem for ε-SSD). Assume that FX , FY are supported on

intervalsa in [−M,M ], and have pdfs fx, fy such that f ′
x(p)

f3
x(p)

,
f ′
y(p)

f3
y (p)

are bounded almost
everywhere on the support of fx and fy respectively. Assume we have n samples from FX

and m samples from FY , with n,m→∞ such that n
n+m → λ for some λ. Then√

mn

m+ n
(εIQ(F

n
X , Fm

Y )− εIQ(FX , FY ))→ N (0, σ2
λ(FX , FY ))

where

σ2
λ(FX , FY ) =

1

d8IQ(FX , FY )
[(1− λ)Var(vX(U)) + λVar(vY (U))] ,

for U ∼ Unif[0, 1], vY (t) = 2
(

1
fy(F

−1
Y (t))

)(∫ 1

t
(F

(−2)
X (p)− F

(−2)
Y (p))+dp

)
, and

vX(t) = 2
(

1
fx(F

−1
X (t))

)(∫ 1

t
(F

(−2)
X (p)− F

(−2)
Y (p))−dp

)
.

aThe interval for F and for G need not coincide.

Remark 2 (Non-independent samples). Theorem 2 assumes that the n-sample from FX is indepen-
dent of the m-sample for FY . Consider instead the setting where there are n samples from FX and
FY that are dependent (e.g. X , Y are evaluations of different models applied to the same data).
We can describe general dependence structure as the following. Suppose (X,Y ) has marginals
X ∼ FX , Y ∼ FY , with some unknown dependence structure (optionally described by the copula
CXY (ux, uy) = Pr(FX(X) ≤ ux, FY (Y ) ≤ uy)). Let

(Ux, Uy) = (FX(X), FY (Y )) ∼ CXY .

Note that Ux and Uy have marginals equal to Unif([0, 1]), but Ux and Uy may be dependent. Hence
the variances in each term of the decomposition (23) in the appendix cannot be added. Instead, one
should modify the result of Theorem 2 to use

σ̄2
λ(FX , FY ) =

1

d8IQ(FX , FY )
Var [vX(Ux) + vY (Uy)] .

D.2 CLT FOR RELATIVE STATISTICS

We focus here on presenting the Central Limit Theorem for SSD. The relative FSD has a similar
form and we omit its statement here.
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Theorem 3 (Central limit Theorem for Relative SSD). Assume F1n, . . . , Fkn are available
and independent, and each Fi satisfies the conditions of Theorem 2. Then

√
n
(
∆ε

(2)
i1,i2

(Fn)−∆ε
(2)
i1,i2

(F )
)
→w N

(
0,

1

(k − 1)2

k∑
i=1

σ2
i (i1, i2)

)
.

where

σ2
i (i1, i2) =



Var

(
2v

(1)−
i1i2

(Ui)

d4
IQ(Fi1

,Fi2
)
+
∑

j ̸=i1,i2

v
(1)−
i1j (Ui)

d4
IQ(Fi1

,Fj)

)
i = i1

Var

(
2v

(2)+
i1i2

(Ui)

d4
IQ(Fi1

,Fi2
)
−
∑

j ̸=i1,i2

v
(1)−
i2j (Ui)

d4
IQ(Fi2

,Fj)

)
i = i2

Var

(
v
(2)+
i1j (Ui)

d4
IQ(Fi1

,Fj)
−

v
(2)+
i2j (Ui)

d4
IQ(Fi2

,Fj)

)
i ̸= i1, i2

for Ui ∼ Unif([0, 1]) all independent, and v
(1),−
ij (t) =

2
(

dF−1
i (t)

dt

)(∫ 1

t
(F

(−2)
i (p)− F

(−2)
j (p))−dp

)
, v

(2),+
ij (t) =

2

(
dF−1

j (t)

dt

)(∫ 1

t
(F

(−2)
i (p)− F

(−2)
j (p))+dp

)
.

Remark 3 (Dependent samples). If the Fin are dependent, a similar expression to that shown in
Remark 2 for the absolute testing case also holds here. The statement is omitted.

E PROOF OF THEOREM 1

First, we show that dIQ(F,G) = 0 if and only if F = G. The forward direction is obvious.
For the reverse direction, if dIQ(F,G) = 0, then F (−2)(t) = G(−2)(t) a.e. By the continuity of
integrated quantiles, this implies F (−2) = G(−2) everywhere. Then, since F (−1)(t) is simply the
derivative of F (−2)(t) with respect to t6, F (−1) = G(−1) everywhere by differentiating both sides of
F (−2)(t) = G(−2)(t). Hence F = G since distributions are uniquely determined by their quantile
functions.

The triangle inequality follows from the triangle inequality of the L2 norm, since√∫ 1

0
(F (−2)(t)−G(−2)(t))2dt = ∥F (−2)(t)−G(−2)(t)∥L2([0,1]). Hence dIQ is a metric. By The-

orem 10 in Gushchin & Borzykh (2017), we know that random variable X(i) →w X (with cdf F(i))
if and only if F (−2)

(i) converges uniformly to F (−2). Hence dIQ must metrize weak convergence.

F PROOFS OF CENTRAL LIMIT THEOREMS

F.1 ABSOLUTE TESTING: PROOF OF THEOREM 2

Note that for Ui and Vi an n-sample and an m-sample respectively from Unif([0, 1]), we can get
Xi, Yi as Xi = F−1(Ui), Yi = G−1(Vi). Let Hn,1 and Hm,2 be the empirical d.f.s of the Ui and
Vi respectively. We have

F−1
n (t) = F−1(H−1

n,1(t)),

hence

F (−2)
n (t) =

∫ t

0

F−1
n (p)dp =

∫ t

0

F−1(H−1
n,1(p))dp.

We are interested in

εIQ(Fn, Gm) =

∫
A0

(F
(−2)
n (t)−G

(−2)
m (t))2dt

d2IQ(Fn, Gm)
,

6This follows because F−2 is the integral of the finite-valued quantile function F−1(t).
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where
A0 =

{
t ∈ (0, 1) : G(−2)

m (t) > F (−2)
n (t)

}
,

is the violation set.

It is shown in Gushchin & Borzykh (2017) (Theorem 10 therein) that integrated quantiles converge
uniformly, i.e. F (−2)

n (t)→ F (−2)(t) pointwise. As an immediate consequence, we have
εIQ(Fn, Gm)→a.s. εIQ(F,G).

We apply the following decomposition and bound the two terms separately:
εIQ(Fn, Gm)− εIQ(F,G) = (εIQ(Fn, Gm)− εIQ(F,Gm))+ (εIQ(F,Gm)− εIQ(F,G)). (22)

We derive asymptotic normality of these terms for Gm, the proof for Fn is identical by symmetry.

We introduce the statistics

Sm =

∫ 1

0

(F (−2)(t)−G(−2)
m (t))2dt

S+
m =

∫ 1

0

(F (−2)(t)−G(−2)
m (t))2+dt

S−
m =

∫ 1

0

(F (−2)(t)−G(−2)
m (t))2−dt

The nonrandom S, S+, S− are defined similarly with G instead of Gm.

Next, set
Tm =

√
m(Sm − S)

T+
m =

√
m(S+

m − S+)

T−
m =

√
m(S−

m − S−).

Theorem 4. Assume that G is supported on an interval that is a subset of [−M,M ], and has pdf g
such that g′(p)

g3(p) is bounded almost everywhere on the support of g. Then

Tm = αm,2(v) + oP (1)

T+
m = αm,2(v

+) + oP (1)

T−
m = αm,2(v

−) + oP (1)

where we define αm,2(t) =
√
m(t−H−1

m,1(t)) and αm,2(v) =
∫ 1

0
v(t)αm,2(t)dt, and

v(t) = 2

(
1

g(G−1(t))

)(∫ 1

t

F (−2)(p)−G(−2)(p)dp

)
.

v+(t) = 2

(
1

g(G−1(t))

)(∫ 1

t

(F (−2)(p)−G(−2)(p))+dp

)
,

v−(t) = 2

(
1

g(G−1(t))

)(∫ 1

t

(F (−2)(p)−G(−2)(p))−dp

)
.

Proof. We begin with Tm. Note that7

Tm =
√
m(Sm − S)

=
√
m

∫ 1

0

(F (−2)(t)−G(−2)
m (t))2 − (F (−2)(t)−G(−2)(t))2dt

=
√
m

∫ 1

0

[
2F (−2)(t)−G(−2)

m (t)−G(−2)(t)
]
(G(−2)(t)−G(−2)

m (t))dt

→ 2
√
m

∫ 1

0

[
F (−2)(t)−G(−2)(t)

]
(G(−2)(t)−G(−2)

m (t))dt

= 2
√
m

∫ 1

0

[
F (−2)(t)−G(−2)(t)

] [∫ t

0

G(−1)(p)−G(−1)(H−1
m,1(p)))dp

]
dt

7Convergence here is uniform convergence of the integrated quantiles.
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Let us do integration by parts:

2
√
m

∫ 1

0

[
F (−2)(t)−G(−2)(t)

] [∫ t

0

G(−1)(p)−G(−1)(H−1
m,1(p)))dp

]
dt =

= 2
√
m

[(∫ 1

0

F (−2)(t)−G(−2)(t)dt

)[∫ 1

0

G(−1)(t)−G(−1)(H−1
m,1(t)))dt

]
−
∫ 1

0

(∫ t

0

F (−2)(p)−G(−2)(p)dp

)[
G(−1)(t)−G(−1)(H−1

m,1(t)))
]
dt

]
= 2
√
m

∫ 1

0

(∫ 1

t

F (−2)(p)−G(−2)(p)dp

)[
G(−1)(t)−G(−1)(H−1

m,1(t)))
]
dt

= 2
√
m

∫ 1

0

(
dG−1(t)

dt

)(∫ 1

t

F (−2)(p)−G(−2)(p)dp

)
(t−H−1

m,1(t))dt

+O

(√
m

∫ 1

0

∫ 1

t

F (−2)(p)−G(−2)(p)dp)(t−H−1
m,1(t))

2dt

)
= 2
√
m

∫ 1

0

(
dG−1(t)

dt

)(∫ 1

t

F (−2)(p)−G(−2)(p)dp

)
(t−H−1

m,1(t))dt+ oP (1).

In the penultimate step we have used a first-order Taylor series on G−1(t) via the assumption that
d2G−1(t)

dt2 = − g′(G−1(t))
g3(G−1(t)) is bounded almost everywhere, and in the final step we have noted that

√
m

∫ 1

0

(∫ 1

t

F (−2)(p)−G(−2)(p)dp

)
(t−H−1

m,1(t))
2dt ≤ 2

√
m

∫ 1

0

(t−H−1
m,1(t))

2dt

= oP (1),

since the support of F and G lie in [−M,M ] and
∫ 1

0
(t−H−1

m,1(t))
2dt = Op(1/m).

We then have
Tm = αm,2(v) + oP (1),

where αm,2(t) =
√
m(t−H−1

m,1(t)), and αm,2(v) =
∫ 1

0
v(t)αm,2(t)dt where

v(t) = 2

(
dG−1(t)

dt

)(∫ 1

t

F (−2)(p)−G(−2)(p)dp

)
.

Similarly,
T+
m = αm,2(v

+) + oP (1), T−
m = αm,2(v

−) + oP (1)

where

v+(t) = 2

(
dG−1(t)

dt

)(∫ 1

t

(F (−2)(p)−G(−2)(p))+dp

)
,

v−(t) = 2

(
dG−1(t)

dt

)(∫ 1

t

(F (−2)(p)−G(−2)(p))−dp

)
.

Corollary 1. Assume that G is supported on an interval in [−M,M ], and has pdf g such that g′(p)
g3(p)

is bounded almost everywhere on the support of g. Then as m→∞
√
m(ϵIQ(F,Gm)− ϵIQ(F,G))→w N (0, σ2)

and if additionally n→∞
√
m(ϵIQ(Fn, Gm)− ϵIQ(Fn, G))→w N (0, σ2),

if for U ∼ Unif([0, 1])

σ2 =
Var(v+(U))

d8IQ(F,G)

is finite.
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Proof. Note that by Theorem 4

√
m(ϵIQ(F,Gm)− ϵIQ(F,G)) =

√
m

(
S−
m

Sm
− S−

S

)
=

√
m

SSm
(T−

m − Tm)→ −αm,2(v
+)

S2

since Sm → S a.s. Recalling the definition of αm,2 yields asymptotic normality with zero mean as
in Del Barrio et al. (2018), and variance as calculated in the corollary statement.

The case of
√
m(ϵIQ(Fn, Gm) − ϵIQ(Fn, G)) follows similarly since integrated quantiles weakly

converge as Fn → F .

Continuing with the main proof, recalling (22) and using Corollary 1 along with the asymptotic
independence of the two terms and the fact that n

n+m → λ, we have

√
mn

m+ n
(εIQ(Fn, Gm)− εIQ(F,G))

=
√

(1− λ)n(εIQ(Fn, Gm)− εIQ(F,Gm)) +
√
λn(εIQ(F,Gm)− εIQ(F,G)) (23)

→ N (0, σ2
λ(F,G))

where

σ2
λ(F,G) =

1

d8IQ(F,G)
[(1− λ)Var(vF (U)) + λVar(vG(U))] .

Here, we have defined

vG(t) = 2

(
1

g(G−1(t))

)(∫ 1

t

(F (−2)(p)−G(−2)(p))+dp

)
,

and

vF (t) = 2

(
1

f(F−1(t))

)(∫ 1

t

(F (−2)(p)−G(−2)(p))−dp

)
.

F.2 RELATIVE TESTING: PROOF OF THEOREM 3

Note that

∆εi1,i2IQ (F ) = ϵi1IQ(F )− ϵi2IQ(F )

=
1

k − 1

∑
j ̸=i1

ϵi1jIQ −
∑
j ̸=i2

ϵi2jIQ


=

1

k − 1

2ϵi1i2IQ − 1 +
∑

j ̸=i1,i2

(ϵi1jIQ − ϵi2jIQ)

 .
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For compactness, let us introduce the differencing notation ϕ(·)|Fn

F = ϕ(Fn) − ϕ(F ). We seek a
CLT on

√
n(∆ε̂i1,i2IQ (Fn)−∆εi1,i2IQ (F )) =

√
n

k − 1

2ϵIQ(·, Fi2,n) +
∑

j ̸=i1,i2

ϵIQ(·, Fj,n)

∣∣∣∣∣∣
Fi1,n

Fi1

+

√
n

k − 1

2ϵIQ(Fi1 , ·)−
∑

j ̸=i1,i2

ϵIQ(·, Fj,n)

∣∣∣∣∣∣
Fi2,n

Fi2

+

√
n

k − 1

∑
j ̸=i1,i2

(ϵIQ(Fi1 , ·)− ϵIQ(Fi2 , ·))|
Fj,n

Fj

→w

√
n

k − 1

2ϵIQ(·, Fi2) +
∑

j ̸=i1,i2

ϵIQ(·, Fj)

∣∣∣∣∣∣
Fi1,n

Fi1︸ ︷︷ ︸
I

+

√
n

k − 1

2ϵIQ(Fi1 , ·)−
∑

j ̸=i1,i2

ϵIQ(·, Fj)

∣∣∣∣∣∣
Fi2,n

Fi2︸ ︷︷ ︸
II

+

√
n

k − 1

∑
j ̸=i1,i2

(ϵIQ(Fi1 , ·)− ϵIQ(Fi2 , ·))|
Fj,n

Fj︸ ︷︷ ︸
III

where we have used the uniform convergence of integrated quantiles. Note that I , II , and each term
in the sum in III are all independent.

Define

v
(1)
ij (t) = 2

(
dF−1

i (t)

dt

)(∫ 1

t

F
(−2)
i (p)− F

(−2)
j (p)dp

)
,

v
(2)
ij (t) = 2

(
dF−1

j (t)

dt

)(∫ 1

t

F
(−2)
i (p)− F

(−2)
j (p)dp

)
,

and v
(1)+
ij , v(2)+ij similarly. Then by the proof of Corollary 1, each term in III converges to

√
n

k − 1
(ϵIQ(Fi1 , ·)− ϵIQ(Fi2 , ·))|

Fj,n

Fj
→ −

αm,j(v
(2)+
i1j

)

(k − 1)d4IQ(Fi1 , Fj)
+

αm,j(v
(2)+
i2j

)

(k − 1)d4IQ(Fi2 , Fj)

=
1

k − 1
αm,j

(
−

v
(2)+
i1j

d4IQ(Fi1 , Fj)
+

v
(2)+
i2j

d4IQ(Fi2 , Fj)

)

→w N
(
0,

1

(k − 1)2
σ2
j (i1, i2)

)
, ∀j ̸= i1, i2.

where

σ2
j (i1, i2) =

1

(k − 1)2
Var

(
v
(2)+
i1j

(U)

d4IQ(Fi1 , Fj)
−

v
(2)+
i2j

(U)

d4IQ(Fi2 , Fj)

)
, ∀j ̸= i1, i2,

and U ∼ Unif([0, 1]). Similarly for I and II ,

I →w N
(
0,

1

(k − 1)2
σ2
i1(i1, i2)

)
II →w N

(
0,

1

(k − 1)2
σ2
i2(i1, i2)

)
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where8

σ2
i1(i1, i2) = Var

 2v
(1)−
i1i2

(U)

d4IQ(Fi1 , Fi2)
+
∑

j ̸=i1,i2

v
(1)−
i1j

(U)

d4IQ(Fi1 , Fj)

 ,

σ2
i2(i1, i2) = Var

 2v
(2)+
i1i2

(U)

d4IQ(Fi1 , Fi2)
−
∑

j ̸=i1,i2

v
(1)−
i2j

(U)

d4IQ(Fi2 , Fj)

 .

Putting everything together via independence,

√
n

(
∆ε̂i1,i2IQ (Fn)−∆εi1,i2IQ (F )

)
→w N

(
0,

1

(k − 1)2

k∑
i=1

σ2
i (i1, i2)

)
.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 STATISTICAL SIGNIFICANCE ON SYNTHETIC DATA

We examine the statistical properties of our tests as a function of sample size. We purposely de-
sign synthetic score distributions to represent challenging problems with large overlap between the
distributions and a considerable violation ratio, but where one would still like to have an ordering
among the variables. For this we consider the two Gaussian distributions with mean µ = 0 and
standard deviation σ = 1, and with mean µ = 0.5 and standard deviation σ = 2, respectively. In
the top panels of Figure 2 we show the PDF, CDF and integrated quantile function of these two
Gaussians, illustrating the large violation ratio. The orange distribution can be calculated to be 0.2-
FSD and 0.45-SSD over the blue distribution. Note that these ε values are not comparable, due to
the differences in definitions. In Figure 2, we conduct experiments illustrating the power of our
tests for the absolute tests of the hypotheses H0,FSD = 0.45-FSD and H0,SSD = 0.45-SSD. We
also use our relative tests, which in this 2-variable case (as noted in the main text) are equivalent
to testing H0,FSD = 0.5-FSD and H0,SSD = 0.5-SSD. The bottom left panel in Figure 2 show
the True Positive Rate for the different types of tests that we developed: relative test with quantile
function, relative test with Integrated Quantile Function, absolute test with quantile function, and
absolute test with Integrated Quantile Function. As expected, all tests quickly converge towards
True Positive Rate of 1.0 for growing sample sizes.

G.2 MIX-INSTRUCT

Results for the Mix-Instruct data are shown in Figures 3 and 4, as well as Table 3.

G.3 TOXICITY

Toxicity results are in Table 4.

G.4 FAT LEFT TAILS OF METRICS AND INCONSISTENCY OF MEAN-VARIANCE WITH SSD

When metrics evaluated have fat tails, the Mean-Variance ranking can be inconsistent with the SSD.
See Table 5.

8This U ∼ Unif([0, 1]) is drawn simply for this variance calculation and is not dependent on anything
outside of this equation.
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Figure 2: Comparing the True Positive Rate of our stochastic dominance methods on the test distri-
butions in the top panels for different sample sizes. Decisions are made using a confidence threshold
of α = 0.05 and τ = 0.45 (for the absolute tests). Note that the FSD and SSD curves should not be
compared due to differences in the underlying hypotheses.

Figure 3: Radar plot of mean – risk models of the portfolio on Mix-Instruct data. Note that the outer
models are indeed the ones preferred by SSD in Table 3.
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Figure 4: Empirical CDF and TvaR for portfolio on Mix-Instruct data

Open koala alpaca llama flan-t5 stablelm Vicuna Dolly Moss ChatGLM mpt-7b mpt-7b
assistant 7b (v2) 6b instruct

Mean Win Rates

RA(MWR @ M) 1 6 2 8 5 7 3 10 9 4 11 12

MWR @ P 1 5 2 7 6 8 3 9 10 4 11 12

Relative FSD

RA(R-FSD @ M) 1 6 2 5 8 11 4 10 7 3 9 12

R-FSD @ P 1 6 2 5 11 10 4 8 7 3 9 12

Relative SSD

RA(R-SSD @ M) 1 7 2 5 12 10 4 9 6 3 8 11

R-SSD @ P 1 6 3 5 12 11 4 7 8 2 9 10

Absolute FSD

ε-FSD @ P ε=0.08 1 6 2 5 10 11 4 7 8 3 9 12

ε-FSD @ P ε=0.25 1 6 2 5 12 10 4 7 8 3 9 11

ε-FSD @ P ε=0.4 1 6 2 5 12 10 4 8 7 3 9 11

Absolute SSD

ε-SSD @ P ε = 0.08 1 6 3 5 12 11 4 7 8 2 9 10

ε-SSD @ P ε = 0.25 1 6 3 5 12 11 4 8 7 2 9 10

ε-SSD @ P ε=0.4 1 6 3 5 12 11 4 7 8 2 9 10

Mean-Risk Models

RA(µX − rX ) @ P 1 6 3 5 12 11 4 7 8 2 9 10

Table 3: Mix instruct Extended Results.
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Scenario Llama 2 7b Llama 2 13b Llama 2 70b MosaicML MPT 30b Tiiuae Falcon 40b

Toxic Prompts

RA(R-FSD @M ) (Gen Only) 3 2 4 1 5
R-FSD @ P(Gen Only) 2 3 4 1 5
RA(R-SSD @M ) (Gen Only) 3 2 4 1 5
R-SSD@P (Gen Only) 3 2 4 1 5

RA(R-FSD @M) (Prompt + Gen) 2 3 1 4 5
R-FSD @P(Prompt + Gen) 2 3 1 4 5
RA(R-SSD @M) (Prompt + Gen) 2 3 1 4 5
R-SSD @P (Prompt + Gen) 2 3 1 4 5

Non-Toxic Prompts

RA(R-FSD @M) (Gen Only) 1 2 4 3 5
R-FSD @P (Gen Only) 1 2 3 4 5
RA(R-SSD @M) (Gen Only) 1 2 3 4 5
R-SSD @P (Gen Only) 1 2 3 4 5

RA( R-FSD @M) (Prompt + Gen) 3 2 4 1 5
R-FSD @ P (Prompt + Gen) 1 2 4 3 5
RA(R-SSD @M) (Prompt + Gen) 1 2 3 4 5
R-SSD @P (Prompt + Gen) 1 2 4 3 5

All Combined (Toxic + Non-Toxic Prompts)

RA(R-FSD @M) (Gen Only) 2 3 5 1 4
R-FSD @P (Gen Only) 2 3 5 1 4
RA(R-SSD @M) (Gen Only) 2 3 5 1 4
R-SSD @P (Gen Only) 2 3 5 1 4

RA(R-FSD @M) (Prompt + Gen) 3 4 5 1 2
RA(R-SSD @M) (Prompt + Gen) 3 4 5 1 2
R-FSD @P (Prompt + Gen) 3 4 5 1 2
R-SSD @P (Prompt + Gen) 3 4 5 1 2

Table 4: Toxicity Ranking

Scenario Llama 2 7b Llama 2 13b Llama 2 70b MosaicML MPT 30b Tiiuae Falcon 40b

Non Toxic Prompts

Identity Attack Metric
Gen evaluation

Mean - Sigma 1 3 4 2 5
Mean - Gamma 2 3 4 1 5
Mean - nTvAR 2 3 4 1 5
SSD 2 3 4 1 5

Threat Metric
Prompt + Gen evaluation

Mean - Sigma 1 3 2 4 5
Mean - Gamma 1 2 3 5 4
Mean - nTvAR 1 2 3 5 4
SSD 1 2 3 5 4

Table 5: Inconsistency of Mean - Sigma on Toxicity Metrics with SSD and other mean-risk models.
This is a due to the fact the metric evaluated may a have a fat left tail see Figures 5 and 7.
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Figure 5: Identity Attack Metric distribution computed on Prompt+Generation output of Highly
Toxic Prompts

Figure 6: Threat Metric distribution computed on Prompt+Generation output of Less Toxic Prompts
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Figure 7: Identity Attack Metric distribution computed on Generation output of Less Toxic Prompts
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