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Figure 3: Reconstruction loss on noisy MNIST samples. Error bars (negligibly small) show one
standard deviation (in log-scale) in average loss (B=2, each containing 30 batched measurements),
over 2 random seeds and 2 random initializations per seed.

A APPENDIX

Subsection A.1 details additional experiments. Subsection A.2 and Subsection A.3 include complete
proofs of the results Theorem 5.2 and Theorem 5.3, whose outlines were included in the main body.

A.1 ADDITIONAL EXPERIMENTS

In this section, we first describe details of the experiments (Subsubsection A.1.1) before including
supplemental experiments (Subsubsection A.1.2 and Subsubsection A.1.3) that extend those in Sec-
tion 6. In Subsubsection A.1.2, we perform a denoising task on the original MNIST dataset itself. In
Subsubsection A.1.3, we include additional plots from the transfer learning setup with MNIST dig-
its. Again, both experiments demonstrate the practical value of incorporating a generative coefficient
prior G even when it is not explicitly part of the data-generating process.

A.1.1 EXPERIMENTAL DETAILS

All experiments were run on a NVIDIA Tesla V100SXM2 GPU from an internal cluster, and
each took no longer than 2 hours. Constant optimization parameters (e.g. learning rates)
were chosen by inspection on initial experiments such that losses converged, and used through-
out thereafter. n, m, and k parameters were determined largely by the choice of toy prob-
lems. The implementation of kSVD is available at https://github.com/nel215/ksvd under the
Apache License. For the pretrained MNIST VAE, the decoder architecture is S(W2ReLU(W1z)),
where S(·) is the sigmoid function, W1 2 R400⇥20, and W2 2 R784⇥400. In the case
of the transfer learning on MNIST setup, we perform a blur via ImageFilter.BoxBlur
with radius 2, a colorshift via torchvision.transforms.ColorJitter with hue
set to 0.4 and brightness, contrast, and saturation set to 1, or a horizontal flip via
torchvision.transforms.RandomHorizontalFlip with probability 1. The MNIST
VAE model and code were provided by a collaborator; acknowledgement and training code to be
added following anonymous submission.

A.1.2 MNIST DENOISING

In this section, we apply the generative prior G to denoise real MNIST images. In other words,
we draw noisy samples y = y

0 + ⌘, where y
0 is drawn from a training set of MNIST images and

⌘ ⇠ N(0,�2
I) with � = 0.05, and try to find A

⇤ such that y ⇠ A
⇤
G(·). As before, autodiff

and altmin are more effective at denoising than traditional dictionary learning methods. This again
validates the choice of model for the more realistic setting (corresponding to large, non-Gaussian
noise) in which the generative coefficient prior is chosen based on a related task, but its composition
with a linear transformation likely does not fully describe the data. Methods are trained using only
the training set, and their reconstruction error is evaluated using only the test set. Results are shown
in Figures 3 and 4. As before, latent variables are rounded to 4-digit precision.
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Figure 4: Example reconstructions of MNIST by each method; each row is a different sample.
The leftmost column shows the noiseless ground truth, and the rightmost column shows the noisy
measurements provided as input to each method.

In addition, all experiments thus far have used only the top k coefficients, each rounded to 4 digits,
to reconstruct the desired signal for the MOD and kSVD baselines. The motivation is that each
reconstruction method being compared is permitted to use k free parameters to reconstruct each
image, analogously to compressing images in the dataset via k bits. Since the only free parameter
for autodiff and altmin, z, is k-dimensional, this suggests that a fair comparison with baselines
should only allow for k-parameter descriptors as well. However, in Figures 5a and 5b, we confirm
that autodiff and altmin still provide much better reconstructions than MOD or kSVD without this
rounding or truncation, even when allowed to use n > k free parameters (coefficients).

A.1.3 TRANSFORMED MNIST DENOISING

The analogous figure to Figure 2 for the flipped dataset is included here in Figure 6b.

A.2 PROOFS AND DETAILS FOR THEOREM 5.2

Let’s start out with some basic manipulations that will come in handy. Note that these assumptions
hold at the start of the update step, as they draw upon the assumed behavior of the decode step.

Lemma A.1 (Closeness between y and AG(z).) Let A be an arbitrary matrix in B2(A⇤
,�), ⌃ =

A � A
⇤, and y = A

⇤
G(z⇤) + ⌘ for some unknown z

⇤. Since A 2 B2(A⇤
,�), we can apply the

optimization oracle to y with our current guess A to give an estimate z. The reconstruction error of
estimates A and z in explaining the measurement y is then bounded as follows:

||y �AG(z)||  ||A⇤ �A|| ·R+ ✓ + ||⌘|| = ||⌃||R+ ✓ + ||⌘||

By assumption on the optimization oracle, ||y�AG(z)||  min||z̃||R
L
|||y�AG(z̃)||+ ✓. We can

express the first term as a function of ||A�A
⇤||||⌃|| as follows:

min
||z̃||R

L

|||y �AG(z̃)||  ||y �AG(z⇤)||  ||y �A
⇤
G(z⇤)||| {z }

=||⌘||

+ ||(A⇤ �A)G(z⇤)||| {z }
||A⇤�A||·R

From this, the result follows. Note also that, by initialization and the projection step, we have that
||⌃||  n�.

Lemma A.2 (Closeness between G(z) and G(z⇤).) Let A be an arbitrary matrix and ⌃ = A �
A

⇤. Let z be the output of the optimization oracle corresponding to A with any fixed measurement
generated as y = A

⇤
G(z⇤) + ⌘. Then we have:

||G(z)�G(z⇤)||  2||⌃||R+ ✓ + � + ||⌘||
�
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(a) Reconstruction loss on noisy MNIST samples, where baseline reconstructions use
all n (not just k) coefficients. Error bars (negligibly small) show one standard deviation
(in log-scale) in average loss (B=2, each containing 30 batched measurements), over 2
random seeds and 2 random initializations per seed.

(b) Example reconstructions of MNIST, where baselines use all n > k coefficients, by each method;
each row is a different sample. The leftmost column shows the noiseless ground truth, and the
rightmost column shows the noisy measurements provided as input to each method.

Figure 5
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(a) Error bars show one standard deviation (in log-scale) over 4
trials, each with nB = 2 and B = 30.

(b) Example reconstructions on flipped dataset by each method; each row is a
different sample. The leftmost column shows the noiseless ground truth.

�||G(z)�G(z⇤)||� �  ||A⇤
G(z)�A

⇤
G(z⇤)|| by S-REC (1)

 ||AG(z)�A
⇤
G(z⇤)| {z }
y�⌘

||

| {z }
||⌃||R+✓+||⌘|| by A.1

+ ||A⇤
G(z)�AG(z)||| {z }

||⌃||R

(2)

 2||⌃||R+ ✓ + ||⌘|| (3)
Rearranging terms finishes the proof.

Remark 3 Theorem A.2 implies that, given a good estimate A of A⇤, the optimization oracle can
find a good estimate z of z⇤.

Lemma A.3 (Closeness between AE[G(z⇤)G(z⇤)T ]C�1 and A, for arbitrary A.)
||AE[G(z⇤)G(z⇤)T ]C�1 �A||  ||A|| · ||C⇤|| · ⌫

||AE[G(z⇤)G(z⇤)T ]C�1 �A|| = ||AE[G(z⇤)G(z⇤)T ]C�1 �AE[G(z⇤)G(z⇤)T ](C⇤)�1||
 ||A|| · ||E[G(z⇤)G(z⇤)T ]|| · ⌫
= ||A|| · ||C⇤|| · ⌫

Lemma A.4 (Non-centered vector Bernstein.) Suppose ~x1
, . . . , ~x

P are i.i.d. vector-valued random
variables such that, for all i, E[~xi] = ~m, ||~xi||  R, and E[||~xi||2]  �

2. Then for 0 < ✏ <
�2

R ,

P

 ���
���
⇣ 1

P

PX

i=1

~x
i
⌘
� E[~xi]

���
��� � ✏

!
 exp

 
�P ✏

2

16�2
+

1

4

!
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We will use the vector Bernstein inequality from Lemma 18 of (Kohler & Lucchi, 2017). Let ~wi =
~x
i � E[~xi]. Then note that E[~wi] = 0 and ||~wi||  ||~xi||+ ||E[~xi]|| = 2R. Additionally, we have:

E[||~wi||2] = E[(~xi � E[~xi])T (~xi � E[~xi])]

= E[~xiT
~x
i � 2~xiTE[~xi] + E[~xi]TE[~xi]]

= E[||~xi||2]� 2||E[~xi]||2] + ||E[~xi]||2

= E[||~xi||2]� ||E[~xi]||2

 E[||~xi||2] + ||E[~xi]||2

 2E[||~xi||2]
 2�2

We then apply the cited vector Bernstein inequality to ~w
i and obtain the stated result. For the rest of

the proof, we will rely on certain definitions and results from Arora et al. (2015), included here for
completeness. We begin with a careful notion of vector correlation: ((↵,�, ✏)-correlated) Consider
an iterative algorithm with steps of the form v

s+1 = v
s � ⌘g

s and desired solution v
⇤. We say the

vector gs is (↵,�, ✏s)-correlated with v
s � v

⇤ if

hg, vs � v
⇤i � ↵||zs � z

⇤||2 + �||gs||2 � ✏s

In our case, we will think of vs as a column of iterate A
s, v⇤ as the corresponding column of A⇤,

and g
s and ĝ

s as they are already defined in Algorithm 1.

Lemma A.5 (gs is correlated with A
s�A

⇤) Let ⇣ = 10n ✓R
� . Then we have column-wise correlation

between matrices gs and A
s �A

⇤: (gs)i is ( 14 ,
1
25 , 4⇣

2)-correlated with (As)i � (A⇤)i.

For convenience, we write A in place of As. Also, note that since ⌘ is entrywise iid and zero-mean,
Ez,⌘[⌘G(z)T ] = 0. Then:

g
s = E[(AG(z)�A

⇤
G(z⇤))G(z)T ]C�1 (4)

= AE[G(z)G(z)T ]C�1 �A
⇤E[G(z⇤)G(z)T ]C�1 (5)

Consider E[G(z⇤)G(z)T ]C�1 alone to start.

E[G(z⇤)G(z)T ]C�1 = E[G(z⇤)G(z⇤)T ]C�1 + E[G(z⇤)(G(z)�G(z⇤))T ]C�1

By assumption, E[G(z⇤)G(z⇤)T ]C�1 is close to the identity, whereas E[G(z⇤)(G(z) �
G(z⇤))T ]C�1 is purely an error term we seek to bound as follows.

||E[G(z⇤)(G(z)�G(z⇤))T ]C�1||2  E[||G(z⇤)(G(z)�G(z⇤))T ||2] · ||C�1||2

 E[||G(z⇤)||2 · ||G(z)�G(z⇤)||2] · ||C�1||2

 R
2
⇣2||⌃||R+ ✓ + � + ||⌘||

�

⌘2
· ||C�1||2 by Lemma A.2

Thus,

||E[G(z⇤)(G(z)�G(z⇤))T ]C�1||  2||⌃||R2 + (✓ + � + ||⌘||)R
�

· ||C�1||

Now, consider

E[G(z)G(z)T ] = E[G(z⇤)G(z⇤)T ] + E[(G(z)�G(z⇤))G(z)T ] + E[G(z⇤)(G(z)�G(z⇤))T ]

Once again, we bound the “error terms”:

||E[(G(z)�G(z⇤))G(z)T ]C�1 + E[G(z⇤)(G(z)�G(z⇤))T ]C�1|| 
4||⌃||R2 + 2(✓ + � + ||⌘||)R

�
· ||C�1||
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We used the same bound as before for both terms because, by assumption on the optimization, we
still have ||G(z)||  R. Let’s return to the original expression.

g
s = AE[G(z)G(z)T ]C�1 �A

⇤E[G(z⇤)G(z)T ]C�1

= AE[G(z⇤)G(z⇤)T ]C�1 +AE1 �A
⇤E[G(z⇤)G(z⇤)T ]C�1 +A

⇤
E2

= (A�A
⇤)E[G(z⇤)G(z⇤)T ]C�1 +AE1 +A

⇤
E2

= (A�A
⇤) +AE1 +A

⇤
E2 + E3

By Lemma A.3, ||E3||  ⌫||C⇤|| · ||A � A
⇤||. By the previous computations, ||E2|| 

2 ||⌃||R2+(✓+�+||⌘||)R
� ||C�1|| and ||E1||  4 ||⌃||R2+(✓+�+||⌘||)R

� ||C�1||. By assumption that the
true dictionary has unit columns, ||A⇤||  n, and by initialization and projections, ||A�A

⇤||  n�,
such that ||A||  n(1 +�). Combining all of these, we have

||AE1 +A
⇤
E2 + E3||  ⌫||C⇤|| · ||⌃||+ n(1 +�)||C�1||4||⌃||R

2 + 2(✓ + � + ||⌘||)R
�

+ n||C�1||2||⌃||R
2 + (✓ + �)R

�

= ||⌃||
⇣
⌫||C⇤||+ 4n�

R
2

�
||C�1||+ 6n

R
2

�
||C�1||

⌘

+ 2n(1 +�)||C�1|| (✓ + � + ||⌘||)R
�

+ n||C�1|| (✓ + � + ||⌘||)R
�

 ||⌃||
⇣
⌫||C⇤||+ 10n||C�1||R

2

�

⌘
+ 5n||C�1|| (✓ + � + ||⌘||)R

�

Without yet specifying exactly the required order � of the initialization, we have assumed that
� < 1 to simplify the expression in the final step. We now use the assumption governing the
interaction between these variables:

⇣
⌫||C⇤|| + 10n||C�1||R

2

�

⌘
 1

4 . Call the second term ⇣ =

5n||C�1|| (✓+�+||⌘||)R
� . Then we apply Lemma 15 of (Arora et al., 2015) with ↵ = 1

4 , making use
of our interplay of parameters assumption. Noting that all of the matrix bounds above suffice as
column-wise upper bounds too and applying Lemma 15, we have that gsi , the i

th column of gs, is
( 14 ,

1
25 , 4⇣

2)-correlated with A
s
i �A

⇤
i .

In practice, we don’t have access to g
s exactly; instead, we approximate the expectation with P fresh

i.i.d. samples, ĝs = 1
P

PP�1
p=0 (AG(zp) � y

p)G(zp)TC�1. If ĝs is close enough to g
s, however,

then ĝ
s will remain correlated-w.h.p. with the correct direction A

s �A
⇤:

We quantify this closeness in the following lemma.

Lemma A.6 (ĝs is close to g
s) For 0 < ✏ < (n�R

2 + ✓R) and µ = n�R
2||C�1|| + (✓ +

N)R||C�1||,

P

 ���
���ĝsi � g

s
i

���
��� � ✏

!
 exp

 
�P ✏

2

16µ2
+

1

4

!

We will apply Lemma A.4 with ~x
p =

⇣
(AG(zp)� y

p)G(zp)TC�1
⌘

i

�����

�����

⇣
(AG(zp)� y

p)G(zp)TC�1
⌘

i

�����

�����  ||(AG(zp)� y
p)G(zp)TC�1|| (6)

 (||⌃||R+ ✓ +N)R||C�1|| by Lemma A.1 (7)

 n�R
2||C�1||+ (✓ +N)R||C�1|| = µ (8)

19



Under review as a conference paper at ICLR 2022

Applying Lemma A.4 with ||~xi||  µ, ||~xi||2  µ
2, we have that for 0 < ✏ < µ,

P

 ���
���
⇣ 1

P

PX

i=1

~x
i
⌘
� E[~xi]

���
��� � ✏

!
 exp

 
�P ✏

2

16µ2
+

1

4

!
(9)

! P

 ���
���ĝsi � g

s
i

���
��� � ✏

!
 exp

 
�P ✏

2

16µ2
+

1

4

!
(10)

Finally, we require the probabilistic version of correlation introduced by Arora et al. (2015):
((↵,�, ✏)-correlated-w.h.p.) Again consider an iterative algorithm with steps of the form v

s+1 =
v
s � ⌘g

s and desired solution v
⇤. Now, assume gs is a random vector. We say the random vector gs

is (↵,�, ✏s)-correlated-w.h.p. with v
s � v

⇤ if with probability at least 1� n
�!(1)

hg, vs � v
⇤i � ↵||zs � z

⇤||2 + �||gs||2 � ✏s

We now apply Equation A.2 to show that ĝs is correlated-w.h.p. with A
s �A

⇤.

Theorem A.7 (ĝs is correlated-w.h.p. with A
s � A

⇤) Draw P = n
2L log2 n fresh, i.i.d.

samples at every iteration, and assume initialization A
0 2 B2(A⇤

,�). Then ĝ
s
i is

( 14 ,
1
25 , 100n

2||C�1||2 (✓+�+||⌘||)2R2

�2 + (n�R+✓+N)R||C�1||
nL )-correlated-w.h.p. with A

s
i �A

⇤
i .

Recall that ⇣ = 5n||C�1|| (✓+�+||⌘||)R
� and µ = n�R

2||C�1||+ (✓+N)R||C�1||. For a particular
setting of ✏ and number of samples per iteration P plugged into Lemma A.6, we will obtain that

ĝ
s
i is ( 14 ,

1
25 , 4⇣

2 + ✏)-correlated with A
s
i � A

⇤
i with probability 1 � exp

 
�P ✏2

16µ2 + 1
4

!
. To be

“correlated-w.h.p.” in the language of Arora et al. (2015), we require n
�!(1) � exp

 
�P ✏2

16µ2 + 1
4

!
.

One way to achieve this is by setting ✏ = (n�R+✓+N)R||C�1||
nL = µ

nL and P = n
2L log2 n. Then

�P ✏2

16µ2 = �n2L log2 n
n2L = � log2 n

16  log(n�!(1)) as desired, since P satisfies P � !(1) log n.

Theorem A.8 (Geometric optimization convergence.) With the conditions of Theorem A.7 and with
step size ⌘ = 2

25 , alternating minimization converges geometrically, but with a bias:

E[||At
i �A

⇤
i ||2] (1� 1

25
)t||A0

i �A
⇤
i ||2+

⇣400n2||C�1||2(✓ + � +N)2R2

�2
+

4(n�R+ ✓ +N)R||C�1||
nL

⌘

This theorem follows as a direct application of Theorem 40 of Arora et al. (2015) to our Theo-
rem A.7.

Unfortunately, this bias term is non-negligible; even if A⇤ is invertible s.t. � = 0, we can only reduce
by assuming a more powerful optimization oracle, which decreases ✓. It is an open problem to find
a different update rule, or a refined analysis, with lower bias analogously to e.g. Appendix B.2 of
(Arora et al., 2015).

A.3 PROOFS AND DETAILS FOR THEOREM 5.3

The full terms of the Weight Distribution Condition of (Hand & Voroninski, 2018) are as follows:
(Weight Distribution Condition) A matrix W 2 Rn⇥k with i

th row wi satisfies the Weight Distribu-
tion Condition (WDC) if 8x, y 6= 0 2 Rk,

���
���

nX

i=1

1wix>01wiy>0 · wiw
T
i �Qx,y

���
���  ✏, with Qx,y =

⇡ � ✓

2⇡
Ik +

sin ✓0
2⇡

M x
||x||$

y
||y||

where Ma$b 2 Rk⇥k is the matrix such that Ma = b, Mb = a, and Mz = 0 8z 2 span(x, y)?.
Recall that we wish to learn A

⇤, and at each iteration we minimize a modified loss function f =
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||AG(z) � A
⇤
G(z⇤)||2 where A ⇡ A

⇤. We will show that the optimization landscape of f closely
resembles that of f̄(z) = ||AG(z) � AG(z⇤)||2 when A is a good approximation of A⇤, and use
this to prove Theorem 5.3. We begin with the following crucial lemma, as described:

Lemma A.9 (A close to A
⇤ satisfies the RRIC) If A⇤ satisfies the RRIC with respect to G with

constant ✏, then any A sufficiently close to A
⇤ satisfies the RRIC with constant c✏ + 2||A⇤ � A|| ·

||A⇤||+ ||A⇤ �A||2

��hA(G(x1)�G(x2)), A(G(x3)�G(x4))i � hA⇤(G(x1)�G(x2)), A
⇤(G(x3)�G(x4))i

�� 
��h(A⇤ �A)(G(x1)�G(x2)), A

⇤(G(x3)�G(x4))i
��+

��hA⇤(G(x1)�G(x2)), (A
⇤ �A)(G(x3)�G(x4))i

��+
��h(A⇤ �A)(G(x1)�G(x2)), (A

⇤ �A)(G(x3)�G(x4))i
�� 

(2||A⇤ �A|| · ||A⇤||+ ||A⇤ �A||2) · ||(G(x1)�G(x2))|| · ||(G(x3)�G(x4))||

Then, in order to reduce to the setting of (Hand & Voroninski, 2018), we will argue that the gradients
of ||AG(x) � A

⇤
G(x⇤)||2 are close to the gradients of ||AG(x) � AG(x⇤)||2. We now know that

A satisfies the RRIC with respect to G with constant c. Furthermore, their original proof applied
immediately to objective function ||AG(x) � AG(x⇤)||2 relies on making approximations to the
objective function’s gradient. We will show that the order of error in the approximation to the
gradient is unchanged when adding an additional error term, which comes from using the gradient
of the objective function ||AG(x)�A

⇤
G(x⇤)||2 instead of that of ||AG(x)�AG(x⇤)||2. Thus, the

original proof will go through. We also know that G satisfies the WDC with constant c > ✏ and
proceed by substituting ✏ in their paper with c.

Observe that if G(z) = (
Q1

i=d Wi,+,z)z, then the gradient of 1
2 ||AG(z)�A

⇤
G(z⇤)||2 with respect

to z (letting W =
Q1

i=d Wi,+,z) is

W
T
A

T
AWz �W

T
A

T
A

⇤
Wz

⇤

This expression is “close” to the gradient of ||AG(z)�AG(z⇤)||2 with respect to z, WT
A

T
AWz�

W
T
A

T
AWz

⇤ (i.e. where the A
⇤ is replaced with A), with error term

||WT
A

T (A�A
⇤)Wz

⇤||  ||W ||2||A|| · ||A�A
⇤|| · ||z⇤||

By assumption that G satisfies the WDC with constant c, ||W ||2  ( 12 + c)d. If ||A�A
⇤||  c

||A|| ,
then equation (26) in the Hand/Voroninski paper holds with constant 3 instead of 2. The effect of
this change in constant percolates down to equation (30), but merely increases the universal constant
K̃. The rest of the proof then holds identically. The final statement is that, if G and A

⇤ each satisfy
the WCD and RRIC respectively with constants ✏, and if

||A�A
⇤||  c

||A|| =
✏+ 2||A⇤ �A|| · ||A⇤||+ ||A⇤ �A||2

||A||

then Theorem 4 of (Hand & Voroninski, 2018) holds with ✏
0 = c instead of the original ✏. This

yields Theorem 5.3 as desired.
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