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A DEFERRED PROOFS

A.1 PROPERTIES OF LOTKA-VOLTERRA SYSTEMS

Definition A.1 (Static policy equilibrium). Let λ(t), q(t) denote a Lokta-Volterra model character-
ized by parameters θ = (α, β, γ, δ) ∈ R4

+, as defined in Equation 2. Let p ∈ [0, 1], and denote by
πp the static policy corresponding to p. For λ(0), q(0) > 0, the static equilibrium of the system is
defined as:

λ∗(p; θ) = lim
t→∞

λ(t)

q∗(p; θ) = lim
t→∞

q(t)

We denote λ∗(p) = λ∗(p; θ) when θ is clear from the context. We denote λ∗(p;u) = λ∗(p; θu)
when a user u ∈ U characterized by parameters θu is given and clear from the context.
Proposition A.1 (Global stability). λ∗(p; θ) exists and uniquely defined for all θ ∈ R4

+, p ∈ [0, 1]
and for all initial conditions λ(0), q(0) > 0.

Proof. See (Takeuchi, 1996, Section 3.2).

Lemma A.1 (Equilibrium of LV behavioral model. Formal proof of Lemma 1). Assume a Lokta-
Volterra model characterized by θ = (α, β, γ, δ) ∈ R4

+, and let p ∈ [0, 1] denote the proportion
of interactions in which a forced break is served. The static equilibrium of the model under static
policy πp is given by:

λ∗(p) =

{
γ
δ

1
1−p

(
1− α

β
1

1−p

)
p ∈

[
0, 1− α

β

]

0 otherwise

q∗(p) =

{
α
β

1
1−p p ∈

[
0, 1− α

β

]

1 otherwise

Proof. The LV dynamical system is given by Equation 3:
dλ

dt
= −αλ+ β(1− p)λq

dq

dt
= γq(1− q)− δ(1− p)λq

when p ∈
[
0, 1− α

β

]
we equate dλ

dt = 0, dq
dt = 0 and obtain the result. The solution is guaranteed

to be valid, as both λ∗(p) > 0 and q∗(p) ∈ [0, 1].

Conversely, when p /∈
[
0, 1− α

β

]
, there exists ϵ > 0 such that d

dt log λ < −ϵ < 0 for all λ > 0,
q ∈ [0, 1]. From this we obtain that log λ(t) tends towards −∞, and therefore λ(t) tends towards
0, and λ∗(p) = 0 as required. When λ(t) is close to zero, the interaction terms vanish in the dq

dt
equation, and q(t) grows logistically towards 1.

Proposition A.2 (Equilibrium bounds). For a Lotka-Volterra model, the static equilibrium λ∗(p) is
bounded by:

0 ≤ λ∗(p) ≤ βγ

4αδ

Proof. Denote x = 1
1−p . From Lemma A.1, for x ∈

[
1, βα

]
the equilibrium consumption λ∗(x) is

given by:

λ∗(x) =
γ

δ
x

(
1− α

β
x

)

and is zero otherwise. The equilibrium is a quadratic function of x with roots x ∈
{
0, βα

}
, and

therefore attains its maximum at x = β
2α . Plugging back the maximizing x into λ∗ we obtain
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the upper bound. Lower bound is attained as the equilibrium in Lemma A.1 is clipped by 0 from
below.

Lemma A.2 (Optimal static policy. Formal proof of Lemma 2). The optimal static policy for a
Lotka-Volterra system is given by:

popt =

{
1− 2αβ

α
β ≤ 1

2

0 α
β >

1
2

And the optimal equilibrium engagement rate is given by:

λ∗opt =

{ βγ
4αδ

α
β ≤ 1

2
γ
δ

(
1− α

β

)
α
β >

1
2

Proof. Denote x = 1
1−p . From Proposition A.2, the global maximum of λ∗(x) is attained at x = β

2α .

Consider two cases: When α
β ≤ 1

2 , we obtain that xopt = β
2α ≥ 1, and therefore popt = 1 − 1

x ∈
[0, 1]. From this we obtain that in this case the global maximum is attained on the simplex, and
given by the formula from Proposition A.2. Conversely, when α

β > 1
2 , we obtain p = 1 − 1

x < 0,
and therefore xopt translates to a negative value of p. As λ∗(p) is uni-modal, the optimal policy
restricted to the simplex [0, 1] in this case is attained on the closest boundary point p = 0.

Figure 2 provides graphical intuition for this proof (left and center subplots).

Proposition A.3 (Inference of α/β from two-treatment equilibrium data. Formal proof of Proposi-
tion 1). Let λ(t), q(t) be a Lokta-Volterra model, let p1, p2 ∈ [0, 1]. Denote by λ∗(p1), λ∗(p2) the
static equilibrium rates corresponding to static policies πp1 , πp2 , and assume λ∗(p1), λ∗(p2) > 0.
The parameter ratio α

β is given by the following formula:

α

β
=

(1− p2)λ∗(p2)− (1− p1)λ∗(p1)
1

1−p1 −
1

1−p2

Proof. From Lemma A.1, the equilibrium consumption λ∗(p) is given by:

λ∗(p) =
γ

δ

1

1− p

(
1− α

β

1

1− p

)

=
γ

δ

1

1− p −
α

β

γ

δ

(
1

1− p

)2

When λ∗(pi) is observed for different policies p1, . . . , pm ∈
[
0, 1− α

β

]
, we obtain a polynomial

regression problem for the parameters αβ and α
β
γ
δ , which can be solved e.g using Non-Negative Least

Squares.

When m = 2, we obtain a system of two linear equations. Apply Cramer’s rule to obtain:

γ

δ
=

λ∗(p2)
(1−p1)2 −

λ∗(p1)
(1−p2)2

1
(1−p1)(1−p2)2 −

1
(1−p1)2(1−p2)

=
(1− p2)2λ∗(p2)− (1− p1)2λ∗(p1)

p2 − p1
(11)

α

β

γ

δ
=

λ∗(p2)
(1−p1) −

λ∗(p1)
(1−p2)

1
(1−p1)(1−p2)2 −

1
(1−p1)2(1−p2)

= (1− p1)(1− p2)
(1− p2)λ∗(p2)− (1− p1)λ∗(p1)

p2 − p1
(12)

And therefore α
β is given by:

α

β
=

λ∗(p2)
(1−p1) −

λ∗(p1)
(1−p2)

λ∗(p2)
(1−p1)2 −

λ∗(p1)
(1−p2)2

= (1− p1)(1− p2)
(1− p2)λ∗(p2)− (1− p1)λ∗(p1)
(1− p2)2λ∗(p2)− (1− p1)2λ∗(p1)
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A.2 MODEL FITTING FROM ENGAGEMENT PREDICTIONS

Notations. In this section only, we use the common notation q = 1− p to denote complementary
probabilities.

Definition A.2 (Empirical value of α/β). For single-channel experiments with forced-break proba-
bilities p1, p2, denote λi = λ∗(pi), fi = fpi(u), qi = 1−pi. The empirical value of the α

β parameter
is given by the following formula:

α̂

β
=
q1q2 (q1f1 − q2f2)

q21f1 − q22f2

Proposition A.4 (α/β estimation error from prediction errors). Given a single-channel Lokta-

Volterra system with parameter α
β ≥ 1. Let p1, p2 ∈

[
1, αβ

]
, denote λ∗i = λ∗(pi) ∈ R+, and

let fi = λ∗i + εi be the predicted engagement rates corresponding to p1, p2. When |ε1|, |ε2| ≤ ε ≤
γ
δ
|p1−p2|

4 , the estimation error is bounded by:

∣∣∣∣
α

β
− α̂

β

∣∣∣∣ ≤
ε

|p1 − p2|
βδ

αγ

Proof. denote qi = 1− pi. The value of αβ is given by Proposition A.3:

α

β
=
q1q2 (q1λ

∗
1 − q2λ∗2)

q21λ
∗
1 − q22λ∗2

And the estimator for αβ is obtained by replacing the true value with their predictions:

α̂

β
=
q1q2 (q1f1 − q2f2)

q21f1 − q22f2

=
q1q2 (q1(λ

∗
1 + ε1)− q2(λ∗2 + ε2))

q21(λ
∗
1 + ε1)− q22(λ∗2 + ε2)

The estimation error is given by:

∣∣∣∣
α

β
− α̂

β

∣∣∣∣ =
∣∣∣∣

q21q
2
2(q1 − q2)(ε2λ∗1 − ε1λ∗2)

(q21λ
∗
1 − q22λ∗2)(q21λ∗1 − q22λ∗2 − (q21ε1 − q22ε2))

∣∣∣∣

= (q1q2)
2

︸ ︷︷ ︸
≡(i)

∣∣∣∣
q1 − q2

q21λ
∗
1 − q22λ∗2

∣∣∣∣
︸ ︷︷ ︸

≡(ii)

|ε2λ∗1 − ε1λ∗2|︸ ︷︷ ︸
≡(iii)

∣∣∣∣
1

q21λ
∗
1 − q22λ∗2 − (q21ε1 − q22ε2)

∣∣∣∣
︸ ︷︷ ︸

≡(iv)

We now proceed to bound each factor:

• For (i), the term (q1q2)
2 is bounded by 1 since q1, q2 ∈ [0, 1].

• For (ii), the term
∣∣∣ q1−q2
q21λ

∗
1−q22λ∗

2

∣∣∣ is equal to
(
γ
δ

)−1
by Eq. (11).

• For (iii), from Proposition A.2 we obtain the bound 0 ≤ λ∗i ≤ βγ
4αδ , and therefore the term

|ε2λ∗1 − ε1λ∗2| is bounded by 2
(
βγ
4αδ

)
ε = βγ

2αδ ε.
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• For (iv), the term
∣∣∣ 1
q21λ

∗
1−q22λ∗

2−(q21ε1−q22ε2)

∣∣∣ is equal to:

(iv) ≡
∣∣∣∣

1

q21λ
∗
1 − q22λ∗2 − (q21ε1 − q22ε2)

∣∣∣∣

=
1

|p1 − p2|

∣∣∣∣
q21λ

∗
1 − q22λ∗2 − (q21ε1 − q22ε2)

p1 − p2

∣∣∣∣
−1

=
1

|p1 − p2|

∣∣∣∣∣∣∣∣∣

q21λ
∗
1 − q22λ∗2
p1 − p2︸ ︷︷ ︸

Eq. (11)

−q
2
1ε1 − q22ε2
p1 − p2

∣∣∣∣∣∣∣∣∣

−1

=
1

|p1 − p2|

∣∣∣∣
γ

δ
− q21ε1 − q22ε2

p1 − p2

∣∣∣∣
−1

Note that
∣∣∣ q

2
1ε1−q22ε2
p1−p2

∣∣∣ ≤ 2ε
|p1−p2| . When ε is small enough, and specifically when the bound

ε ≤ γ
δ
|p1−p2|

4 holds, we obtain:
∣∣∣∣
γ

δ
− q21ε1 − q22ε2

p1 − p2

∣∣∣∣
−1

≤ δ

γ

∣∣∣∣1−
1

2

∣∣∣∣
−1

≤ 2
δ

γ

and therefore:

(iv) ≤ 2

|p1 − p2|
δ

γ

Aggregating results (i)-(iv) above, we obtain the overall bound:
∣∣∣∣
α

β
− α̂

β

∣∣∣∣ = (q1q2)
2

︸ ︷︷ ︸
≤1

∣∣∣∣
q1 − q2

q21λ
∗
1 − q22λ∗2

∣∣∣∣
︸ ︷︷ ︸

= δ
γ

|ε2λ∗1 − ε1λ∗2|︸ ︷︷ ︸
≤ βγ

2αδ ε

∣∣∣∣
1

q21λ
∗
1 − q22λ∗2 − (q21ε1 − q22ε2)

∣∣∣∣
︸ ︷︷ ︸

≤ 2
|p1−p2|

δ
γ

≤ ε

|p1 − p2|
βδ

αγ

Proposition A.5 (Cost of α/β estimation error). Let α
β be the engagement ratio parameter of a

one-channel Lotka-Volterra system, and let
ˆ(α
β

)
be an estimate of these parameters. Let λ∗opt be the

engagement rate of the optimal static policy, and denote λ∗(x) = λ∗ (p̂(x)). When
∣∣∣∣αβ −

ˆ(α
β

)∣∣∣∣ ≤

min
{
α
2β , 1

}
The price of estimation error is bounded by:

λ∗opt − λ∗
(

ˆ(α
β

))
≤
(γ
δ

)
min

{(
2
α

β

)−2
∣∣∣∣∣
α

β
−

ˆ(α
β

)∣∣∣∣∣,
(
4
α

β

)−1
}

Proof. Denote r = α
β , x =

ˆ(α
β

)
, and assume without loss of generality that γδ = 1 and r ≤ 1. The

optimal equilibrium engagement rate is given by:

λ∗opt =

{
1
4r r ∈

(
0, 12

]

1− r r ∈
(
1
2 , 1
]

The chosen policy p̂(x) is given by:

p̂(x) =

{
1− 2x x ∈

[
0, 12

]

0 otherwise
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Figure 4: Graphical illustration of Proposition A.5. Cost of estimation error for different values of
α
β , and their corresponding upper bounds given by the claim.

Assume without loss of generality that x ∈
[
0, 12

]
, as values of x outside the interval can be clipped

to its edges without affecting the result. The equilibrium engagement rate of the selected policy is
given by:

λ∗(x) = λ∗ (p̂(x)) =

{
0 x ∈

[
0, r2

]
1
2x

(
1− r

2x

)
x ∈

(
r
2 ,

1
2

]

Denote ∆(x) = λ∗opt − λ∗(x). We obtain:

∆(x) = λ∗opt − λ∗(x) =





1
4r r ∈

(
0, 12

]
, x ∈

[
0, r2

]
(x−r)2
4x2r r ∈

(
0, 12

]
, x ∈

(
r
2 ,

1
2

]

(1− r) r ∈
(
1
2 , 1
]
, x ∈

[
0, r2

]

(1− r)− 1
2x

(
1− r

2x

)
r ∈

(
1
2 , 1
]
, x ∈

(
r
2 ,

1
2

]

Observe that 1
4r ≥ 1− r for all r ∈ (0, 1], and therefore we obtain for all x, r:

∆(x) ≤ 1

4r
(13)

From the convexity of ∆(x) in the region around x = r we obtain:

∆(x) ≤ 1

2r2
|x− r| (14)

Finally, combining the two bounds yields the final result. A geometric interpretation of this claim is
illustrated in Figure 4.

A.3 OPTIMAL STATIONARY POLICY FROM ENGAGEMENT PREDICTIONS

Definition A.3 (Expected observable rate). Let u ∈ U , p ∈ [0, 1], and T > 0. Let p ∈ [0, 1], denote
the corresponding static policy by πp. The expected observable rate λ̄u(p;T ) is defined as:

λ̄u(p;u) = Eπ
[
1

T

∣∣TPPπp
(u;T )

∣∣
]

where expectation is taken over the stochastic decisions of πp.
Definition A.4 (Lokta-Volterra approximation of TPP). Let u ∈ U , and T > 0. Denote by p∗ the
maximizer of expected observable rate:

p∗ = argmax
p∈[0,1]

λ̄u(p;u)

The LV approximation of TPP(u;T ) is defined as:

θ∗u = argmin
θ

max
p∈[0,1]

∣∣λ̄u(p;u)− λ∗(p; θ)
∣∣

such that argmaxp λ
∗(p; θ) = p∗. The corresponding approximation error is defined as:

εLV,u = max
p∈[0,1]

∣∣λ̄u(p;u)− λ∗(p; θ∗u)
∣∣

17
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Notations. When u is clear from the context, we denote θ∗ = θ∗u, εLV = εLV,u. We use α∗, β∗, . . .
to refer to the corresponding parts of the Lokta-Volterra parameters vector θ∗.

We are now ready to state and prove the main theorem for this section:
Theorem A.1 (Regret bound for learned static policy. Formal version of Theorem 1). Let p1, p2 ∈
[0, 1] denote two static forced-break policies, and denote by U the set of users, and assume they re-
main engaged under the stationary policies π(p1) and π(p2). Assume Su(p;T ) ∼ TPPπp◦ψ(u;T ),

and let µ =
(
maxu∈U

γ̄u
δ̄u

)
·
(
maxu′∈U

δ̄u′
γ̄u′

)
, ν = maxu∈U

(
β̄u

ᾱu

)
.

Let fp1 , fp2 : U → R+ be functions predicting 1
T |Su (p1;T )|, 1

T |Su (p2;T )|, respectively. Denote
the learned policy by p̂, and the optimal policy by p∗.

If (i) the expected RMSE of fp1 , fp2 is bounded by εpred, (ii) the average absolute deviation of
1
T |TPP(u;T )| is bounded by εdev, and (iii) the expected LV approximation error of the system is
bounded by εLV, then the learned policy p̂ has bounded regret:

Eu,π
[∣∣ 1
T |Su (p∗;T )| − 1

T |Su (p̂;T )|
∣∣] ≤ ηTPP

|p1 − p2|
(εpred + εdev + εLV)

where expectation is taken over stochastic choices of policies, and ηTPP = g(µ, ν) ∈ poly(µ, ν).

Proof. By assumption (i), the functions fp1 , fp2 have bounded expected RMSE:

Eu
[(
fpi(u)− 1

T |Su (pi;T )|
)2] ≤ ε2pred (15)

Applying Jensen’s inequality with the convex function φ(x) = x2 yields:
(
Eu
[∣∣fpi(u)− 1

T |Su (pi;T )|
∣∣])2 ≤ Eu

[(
fpi(u)− 1

T |Su (pi;T )|
)2]

Combining with Eq. (15) and taking the square root, we obtain an upper bound on the expected
absolute error:

Eu
[∣∣fpi(u)− 1

T |Su (pi;T )|
∣∣] ≤ εpred (16)

Let ∆f = |fpi(u)− λ∗(pi)| apply the triangle inequality to obtain:

∆f = |fpi(u)− λ∗(pi)|
≤
∣∣fpi(u)− 1

T |Su (u;T )|
∣∣+
∣∣ 1
T |Su (u;T )| − λ̄(pi;u)

∣∣+
∣∣λ̄(pi;u)− λ∗(pi)

∣∣

Denote εf = εpred + εdev + εLV. Applying the triangle inequality and using the bounds in Eq. (16)
together with assumptions (ii), (iii), we obtain:

Eu,π[∆f ] ≤Eu
[∣∣fpi(u)− 1

T |Su (u;T )|
∣∣]

+ Eu,π
[∣∣ 1
T |Su (u;T )| − λ̄(pi;u)

∣∣]

+ Eu
[∣∣λ̄(pi;u)− λ∗(pi; θ∗u)

∣∣]

≤εpred + εdev + εLV = εf (17)

Denote θ∗u = (α, β, γ, δ). The empirical value
ˆ(α
β

)
of
(
α
β

)
is given by Definition A.2. Denote the

estimation error by ∆α
β
=

∣∣∣∣
ˆ(α
β

)
−
(
α
β

)∣∣∣∣.

By Proposition A.4, the following pointwise upper bound on ∆α
β

applies when ∆f ≤ γ
δ
|p1−p2|

4 :

∆α
β
≤ ∆f

|p1 − p2|
βδ

αγ
(18)

Plugging in the bound on the expected value of ∆f into Eq. (18), we obtain in expectation:

Eu,π
[
∆α

β
| ∆f ≤

γ

δ

|p1 − p2|
4

]
≤ Eu,π

[
∆f

|p1 − p2|
βδ

αγ
| ∆f ≤

γ

δ

|p1 − p2|
4

]

≤ εf
|p1 − p2|

max
u

βδ

αγ
(19)

18



Under review as a conference paper at ICLR 2023

Next, we apply Proposition A.5. Denote ∆λ∗ = λ∗(p∗)−λ∗(p̂), and define the following probability
event:

A =

(
∆f ≤

γ

δ

|p1 − p2|
4

)
and

(
∆α

β
≤ 1

2ν

)

Note that the bound in Proposition A.5 is represented as a minimum between two functions, one
linear in ε and one constant. To leverage this property, apply the law of total expectation:

Eu,π[∆λ∗ ] = Eu,π[∆λ∗ | A]P[A] + Eu,π
[
∆λ∗ | Ā

]
P
[
Ā
]

(20)

Under A, the first term in Eq. (20) can be bounded by the linear term in Proposition A.5. Taking
P[A] ≤ 1 and combining with equation Eq. (18):

Eu,π[∆λ∗ | A]P[A] ≤ Eu,π[∆λ∗ | A]

≤ Eu,π
[
β2γ

2α2δ
∆α

β
| A
]

≤ Eu,π
[
β2γ

2α2δ

∆f

|p1 − p2|
βδ

αγ
| A
]

≤ ν3

2|p1 − p2|
εf (21)

The expectation factor in the second term of Eq. (20) can be bounded by the constant term in Propo-
sition A.5:

Eu,π
[
∆λ∗ | Ā

]
≤ 1

4
max
u

βγ

αδ
≤ ν

4
max
u

γ

δ
(22)

Decompose the probability factor P
[
Ā
]

using the law of total probability:

P
[
Ā
]
= P

[
∆f >

γ

δ

|p1 − p2|
4

]
+ P

[
∆α

β
>

1

2ν
| ∆f ≤

γ

δ

|p1 − p2|
4

]
P
[
∆f ≤

γ

δ

|p1 − p2|
4

]

≤ P
[
∆f >

γ

δ

|p1 − p2|
4

]
+ P

[
∆α

β
>

1

2ν
| ∆f ≤

γ

δ

|p1 − p2|
4

]

Apply Markov’s inequality P[|X| ≥ a] ≤ E[|X|]
a on the probabilities to obtain:

P
[
∆f >

γ

δ

|p1 − p2|
4

]
≤ Eu,π[∆f ]

(
γ

δ

|p1 − p2|
4

)−1

≤
by Eq. (17)

εf
4

|p1 − p2|
max
u

δ

γ
(23)

P
[
∆α

β
>

1

2ν
| ∆f ≤

γ

δ

|p1 − p2|
4

]
≤ Eu,π

[
∆α

β
| ∆f ≤

γ

δ

|p1 − p2|
4

]

≤
by Eq. (19)

εf
|p1 − p2|

max
u

βδ

αγ

≤ εf
|p1 − p2|

νmax
u

δ

γ
(24)

Plugging back equations Eq. (21), Eq. (22),Eq. (23),Eq. (24) into equation Eq. (20), we obtain
bounds for each term:

Eu,π[∆λ∗ ] = Eu,π[∆λ∗ | A]P[A]︸ ︷︷ ︸
by Eq. (21)

+Eu,π
[
∆λ∗ | Ā

]
︸ ︷︷ ︸

by Eq. (22)

P
[
Ā
]

︸ ︷︷ ︸
by Eq. (23),Eq. (24)

(25)

we obtain:

Eu,π[∆λ∗ ] ≤ εf
|p1 − p2|

(
ν3

2
+

(
ν +

ν2

4

)
µ

)
= ελ∗

19
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To obtain the regret bound on the empirical rates, we apply assumptions (ii), (iii) once again to
bound the expected difference between λ∗(p) and 1

T |Su (p;T )|, and apply the triangle inequality:

Eu,π
[∣∣ 1
T |Su (p∗;T )| − 1

T |Su (p̂;T )|
∣∣] ≤ ελ∗ + 2(εdev + εLV)

Note that ν
|p1−p2| > 1, as β

α ≥ 1 since all the users are assumed to remain engaged in the
long term, and |p1 − p2| ≤ 1 as p1, p2 ∈ [0, 1]. Therefore, the function ηTPP = g(µ, ν) =(
ν3

2 +
(
ν + ν2

4

)
η + 2ν

)
satisfies:

Eu,π
[∣∣ 1
T |Su (p∗;T )| − 1

T |Su (p̂;T )|
∣∣] ≤ ηTPP

|p1 − p2|
(εpred + εdev + εLV)

B EXPERIMENTAL DETAILS

B.1 DATA

We base our experimental environment on the MovieLens 1M dataset, which is a standard bench-
mark dataset used widely in recommendation system research (Harper & Konstan, 2015). The
dataset includes 1,000,209 ratings provided by 6,040 users and for 3,540 movies. Rating are in
the range {1, . . . , 5}, and all users in the dataset have at least 20 reported ratings. The dataset is
publicly available at: https://grouplens.org/datasets/movielens/1m/.

Data partitioning. To learn latent user and item features, 30% of all ratings were drawn at random.
Stratified sampling was applied to ensure that all users and items were covered, and so that each users
have roughly the same proportion of ratings used for this step. These ratings were only used only for
learning a CF model, and were discarded afterwards. The remaining 70% data points were used for
training and testing. For these, we first randomly sampled 1,000 users to form the test set. Then, the
remaining users were partitioned into the main train set S, which included 70% (≈3,528) of these
users, and the experimental treatment sets S(j), each including 10% (≈504) users for N = 3. This
procedure was repeated 10 times, and we report average results and standard errors.

B.2 IMPLEMENTATION DETAILS

• Hardware: All experiments were run on a single laptop, with 16GB of RAM, M1 Pro processor,
and with no GPU support.

• Runtime: A single run consisting the entire pipeline (data loading and partitioning, collaborative
filtering, training classifiers, simulating dynamics, learning policies, measuring and comparing
performance) takes roughly 17 minutes. The main bottleneck is the discrete LV simulation, taking
roughly 70% of runtime to compute, mostly due to bookkeeping necessary for the non-stationary
baselines. Simulation code was optimized using the NUMBA jit compiler, which improves run-
time.

• Optimization packages:
– Collaborative filtering (CF): We use the SURPRISE package (Hug, 2020), which includes an

implementation of the SVD algorithm for CF. All parameters were set to default values.
– Regression: We use the SCIKIT-LEARN implementation of linear regression for predicting

long-term engagement from user features (i.e the prediction models fj(u) in Eq. (8)). All
parameters were set to default values.

– Non-Negative Least Squares (NNLS): We use the SCIPY.OPTIMIZE implementation of NNLS.
The algorithm was used with its default parameters.

• Code: Code for reproducing all of our figures and experiments is available in the following anony-
mous repository: https://github.com/lvml-iclr-2023/lvml.

B.3 OTHER BASELINES

• Safety: In each step of the TPP simulation, look k step back, and calculate the empirical rate
λ̃i =

k
ti−ti−k

. If this rate exceeds the threshold λ̃i > τ , the policy enters a ‘cool-down’ policy
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Figure 5: Example discrete sequence Su ∼ TPP(u;T ), compared to continuous LV dynamics. Our
TPP produces discrete sequences that are qualitatively different from their continuous-time analogs
(blue lines), Nonetheless, it captures the general properties of our proposed behavioral model: note
how cumulative averaging behavior (orange dashes) exhibits ‘habit formation’, which our equi-
librium approach targets (blue dots). For the same initial conditions λ(0), q(0), the figure shows
how varying the number of recommended items per step (B) ‘smooths’ the discrete behavior (left:
B = 1, center: B = 10). For fixed βu(t) = βu, when B →∞, and when ∆t→ 0, TPP sequences
approach a continuous LV trajectory; in general, and particularly when βu(t) varies by step and per
recommended items—this is not the case.

state, serving only forced breaks until the next time period. In our experiments, we used thresholds
τ ∈ {14, 16}, k = 10 look-behind steps, and defined the cool-down period as 0.5 time units.

• Oracle: To estimate the effect of perfect predictions, we implement an oracle predictor foraclep (u)
which has access to the latent user parameters. For a given u and for each p, the predictor
outputs the infinite-horizon LV equilibrium for u, namely foraclep (u) = λ∗(p; θ̃u). We define
θ̃u = (αu, β̃u, γu, δu), where αu, γu, δu are the unobserved parameters for the given user, and β̃u
is the expected value of βux induced by the distribution over recommended items x induced by
the recommendation policy ψ. We view θ̃u as a useful proxy for the otherwise unattainable θ̄u.

B.4 HYPERPARAMETERS

• Collaborative filtering: We used d = 8 latent factors and enabled bias terms, which ensured per-
formance is close to the benchmark of RMSE = 0.873 reported in the SURPRISE documentation.
We used the vanilla SVD solver, with all hyper-parameters set to their default values.

• Recommendation policy: Softmax temperature was set to 0.5.

• Prediction: We trained regressors f(u) on input feature vectors u ∈ Rd+2 consisting of: (i) SVD
latent user factors, (ii) SVD user bias terms, (iii) an additional feature consisting of the average
predicted ratings for unseen items (exponentiated and normalized), which we found to slightly
improve predictive performance. We chose to focus on linear models since the treatment datasets
are relatively small (each |S(j)| ≈ 500), and since other model classes (including boosted trees
and MLPs) did not perform significantly better.

• Discrete TPP: Interaction sequences for each user were generated according to an LV discretiza-
tion scheme, described in detail in the next section. Latent sates were initialized randomly with
relative uniform noise around the theoretical LV equilibrium point (λ0, q0) = ((1 + ξλ)λ

∗, (1 +
ξq)q

∗), where ξλ, ξq ∼ Uniform(−0.1, 0.1). Latent states were updated each B = 10 recom-
mendations to stabilize noise (see Figure 5). When x is recommended to u at time t, latent states
and ∆t are set according to βu(t), which depends on ratings rux (true or mixed with predictions
u⊤x via κ). Specifically, we use βu(t) = r2ux/5 ∈ {0.2, 0.8, 1.8, 3.2, 5}, which is convex, to
accentuate the role of low ratings since they are underrepresented in the data. For B ≥ 1, we
take the effective βu(t) to be the average over the B items recommended in that step. We set
α = 1.3, and chose γ = 0.2, δ = 0.01 (which together determine scale) so that typical values for
engagement rate 1

T |Su| are on the order of ≈ 10 for the chosen T = 100.
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B.5 DISCRETE TPP

The TPP we use for simulating user behavior is based on a discretization of the LV system described
in Eq. (2), based on the forward Euler method with variable step sizes.

Each user is associated with discrete latent states λi, qi, and parameters αu, γu, δu. Initial states
λ0, q0 are set randomly. At each step, and in time ti, the system recommends xi = x(ti), which
triggers updates in latent states, and determines the next time of interaction ti+1. As noted, these
update depend on item-specific parameters βu,xi .

Under stationary policy π(p), the system recommends an item with probability (1−p), and suggests
a break with probability p. The simulator considers B recommendation opportunities at each step.
For each k ∈ {1, . . . , B}, denote by Ik ∈ {0, 1} the break indicator, equal to 0 when a break
is recommended at the k-th slot in the batch. Denote by x ∼ ψ the item recommended by the
underlying policy ψ, and by β(x) = r2ux/5 the corresponding LV hyperparameter as defined above.
For a given horizon T , the TPP process generating Su is described by Algorithm 1:

Algorithm 1: Discrete TPP for user u
Input: Break probability p ∈ [0, 1]

Stationary content recommendation probability ψ
Time horizon T > 0

Output: Interaction sequence Su ∼ TPPπ(p)◦ψ(u;T )
Initialize i = 0, t0 = 0, Su = {};
while ti < T do

foreach k ∈ {1, . . . , B} do
Ik ∼ Bernoulli(1− p);
xk ∼ ψ;
βk ←− β(ruxk

);
end
∆ti = λ−1

i ;

λi+1 ←− λi +
(
−α+

∑B
k=1 Ikβk

B qi

)
λi∆ti ;

qi+1 ←− qi +
(
γ(1− qi)−

∑B
k=1 Ikδ

B λi

)
qi∆ti ;

ti+1 ←− ti + λ−1
i+1 ;

Su ←− Su ∪ {(ti, (x1, . . . , xB), (I1, . . . , IB))} ;
i←− i+ 1 ;

end
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