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This document contains the proof for Lemma 1, Lemma 2, Lemma 3, Lipschitz continuity, convexity,1

and some additional experiments on real datasets highlighting the performance of the proposed2

algorithms. The "code" folder containing the Python code for all the experiments is attached as a3

separate folder.4

1 Proof of Lemma, Theorem, Definition and Lipschitz continuity5

Lemma 1. (Lemma 2 in the paper) By using KKT optimality condition we can obtain the optimal6

solution of eq.(10 in the paper) as7

C(t+1) =

(
C(t) − 1

L
∇f

(
C(t)

))+

(1)

where (x)+ = max(x, 0)8

Proof . The Lagrangian function of eq.(10 in the paper) is9

L(C, X̃,µ1) =
1

2
C⊤C − C⊤A− µ⊤

1 C (2)

where µ1 is the dual variable. The KKT conditions of eq.(10 in the paper) is10

C −A− µ1 = 0, (3)

µ⊤C = 0, (4)
C ≥ 0, (5)
µ1 ≥ 0 (6)

The optimal solution of C that satisfies all KKT conditions (3-6) is11

Ct+1 = (A)+ (7)

=

(
C(t) − 1

L
∇f

(
C(t)

))+

(8)

This concludes the proof.12

Lemma 2. The function f(C) = −γlog det(C⊤ΘC + J) + λ
2 ∥C

⊤∥21,2+αh(ΘC) is L- Lipschitz13

continuous.14

Proof. The functions −γlog det(C⊤ΘC+J) λ
2 ∥C

⊤∥21,2 are L1 and L2 Lipschitz continuous function15

respectively [3].16
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Consider h(Θc) = ∥C⊤ΘC∥2F17 ∣∣∣∥C⊤
1 ΘC1∥2F−∥C⊤

2 ΘC2∥2F
∣∣∣ ≤ ∥C⊤

1 ΘC1 − C⊤
2 ΘC2∥2F (9)

≤ ∥C⊤
1 ΘC1 − C⊤

2 ΘC1 + C⊤
2 ΘC1 − C⊤

2 ΘC2∥2F (10)

≤ ∥(C1 − C2)
⊤ΘC1 + C⊤

2 Θ(C1 − C2)∥2F (11)

≤ ∥(C1 − C2)
⊤ΘC1∥2F+∥C⊤

2 Θ(C1 − C2)∥2F (12)

≤ ∥C1 − C2∥2F (∥ΘC1∥2F+∥C⊤
2 Θ∥2F ) (13)

≤ ∥C1 − C2∥2F ∥Θ∥2F ∥C1∥2F+∥C⊤
2 ∥2F ∥Θ∥2F ) (14)

≤ 2p∥Θ∥2F ∥C1 − C2∥2F= L3∥C1 − C2∥2F (15)

Eq. (9) is obtained using the reverse triangle inequality. Applying ∥AB∥F≤ ∥A∥F ∥B∥F in (12) to18

get (13) and same applied in (13) to get (14). Finally, using ∥C1∥2F= ∥C2∥2F= p in (14) to get (15)19

which concludes that ∥CTΘC∥2F is L3 Lipschitz continuous function.20

Next, The function h(Θc) = ∥C⊤ACδ1k×1∥1+∥C⊤DCβ1k×1∥1 is also Lipschitz continuous and21

proof is similar to proof of ∥C⊤ΘC∥2F .22

Furthermore, the addition of Lipschitz continuous functions is Lipschitz continuous, so we can say23

that f(C) is L- Lipschitz continuous function where L = max{L1.L2, L3}.24

Lemma 3. The function f(C) = λ
2 ||C

⊤||21,2 + β
2 ||C

⊤ΘC − UΛU⊤||2F defined in eq.(12 in the25

paper) is a convex function.26

Proof . The function λ
2 ||C

⊤||21,2 ia convex [3] and consider the function ||C⊤ΘC − UΛU⊤||2F :27

||C⊤ΘC − UΛU⊤||2F= ∥C⊤ΘC∥2F−2tr(C⊤ΘCUΛU⊤) + const. (16)

Since ∥C⊤ΘC∥2F is a convex function and28

tr(C⊤ΘCUΛU⊤) = tr(Λ(1/2)⊤U⊤C⊤Θ(1/2)⊤Θ(1/2)CUΛ(1/2)) = tr(M⊤M) = ∥M∥2F (17)

Since |M∥2F is a convex function with respect to M and M = Θ(1/2)⊤Θ(1/2)CUΛ(1/2) is a affine29

transformation of C. Hence it is also convex in C. Moreover, the sum of two convex functions is30

convex indicating that f(C) is a convex function.31

Lemma 4. The function f(C) = −γ log det(C⊤ΘC + J) + λ
2 ||C

⊤||21,2 + β
2 ||C⊤AC − VΨV ⊤||2F32

defined in eq.(18 in the paper) is a convex function.33

Proof . The functions −γ log det(C⊤ΘC + J) and λ
2 ||C

⊤||21,2 are convex [3]. The function34

β
2 ||C

⊤AC −VΨV ⊤||2F is also convex and proof is similar to proof provided in Lemma 3. Moreover,35

the sum of convex functions indicates that f(C) is a convex function.36

Lemma 5. By using KKT condition we can obtain the solution of convex optimization problem (15 in37

the paper) is38

λi =
1

2
(di +

√
d2i + 4/β) ∀i = 1, 2, . . . , q (18)

Proof: The proof is similar to the proof of Lemma 16 in the paper [4].39

2 Additional Experiment40

We apply the proposed structured graph coarsening algorithms in the following experiments on real41

benchmark datasets. These results show that the proposed methods perform outstandingly on real42

benchmark datasets. Next, we will illustrate the generalizability of the learning structured coarsened43

graph from the proposed algorithms MGC and BI_GC by using different architectures to train the44

GNN. Specifically, we have used GNN architectures like GCN [2], APPNP [1], and GAT [6] to train45

our GNN and perform the node classification task. Table 1 and 2 demonstrates that the proposed46
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methods for learning structured coarsened graph is compatible with different widely used GNN47

architectures, giving almost similar Node Classification accuracy across all the datasets.48

Furthermore, we have also shown the efficacy of the proposed SFCG algorithm by comparing the49

average degree and density of the original scale-free graphs, e.g., Amazon photos and Barabasi Albert,50

with the coarsened graph generated using the proposed SFCG algorithm. It is evident in Table (4)51

that the density of the original graph and coarsened graph are the same, while as the coarsening ratio52

decreases, the average degree is decreasing which implies that the original scale-free structure is53

preserved in the coarsened graph.

Data set GCN GAT APPNP
Cora 78.41/89.50 73.18/83.98 78.15/82.2
Citeseer 68.59/78.09 63.79/72.5 66.45/70.0
Pubmed 80.79/88.89 75.84/79.00 78.8/79.73
Co-Phy 91.84/96.22 89.36/90.5 90.36/93.1
Co-CS 88.08/93.32 84.09/92.5 86.58/91.1
DBLP 80.79/85.35 77.95/80.27 78.92/84.17

Table 1: Node classification accuracy (%) obtained using different GNN structures like GCN, GAT, and APPNP
on different datasets using the proposed BI-GC algorithm for a coarsening ratio of 0.1 and using the original
graph. In the table, x/y, where x represent the node classification accuracy obtained using the proposed BI-GC
algorithm and y represents the accuracy obtained using the original graph. It is evident that the proposed BI-GC
method is suitable for all GNN architecture.

54

Data set GCN GAT APPNP
Cora 76.02/89.50 68.79/83.98 79.24/82.2
Citeseer 70.57/78.09 63.43/72.05 69.86/70.0
Pubmed 84.81/88.89 81.96/79.00 81.39/79.73
Co-Phy 94.71/96.22 92.40/90.05 91.49/93.1
Co-CS 91.67/93.32 88.41/92.5 88.37/91.1
DBLP 81.82/85.35 77.07/80.27 79.71/84.17

Table 2: Node classification accuracy (%) obtained using different GNN structures like GCN, GAT, and APPNP
on different datasets using the proposed MGC algorithm for a coarsening ratio of 0.1 and using the original
graph. In the table, x/y, where x represent the node classification accuracy obtained using the proposed MGC
algorithm and y represents the accuracy obtained using the original graph.. It is evident that the proposed MGC
method is suitable for all GNN architecture.

Dataset BA Amazon Photos
Method SPGC LVN SPGC LVN

r=1 50.0/ 0.050 50.0/ 0.050 15.5 / 0.002 15.5 / 0.002
r=0.3 14.3/0.04 68.6/0.09 6.7/0.002 95.9/0.04
r=0.5 20.7/0.04 217.1/0.43 7.9/0.002 438.0/0.11
r=0.7 26.8/0.03 236.1/0.33 8.9/0.002 312.8/0.05

Table 4: The table summarizes the structural properties e.g. average degree and density of proposed SFCG and
LVN [5]. The average degree/density of the original scale-free graphs e.g. Barabasi Albert(BA) and Amazon
Photos are written in the first row(r=1). It can be observed that SFCG produces scale-free graphs with a density
closer to the original as compared to LVN.
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Data set(ACC) r=k/p GCOND SCAL Proposed SCG Whole data

CORA 0.5 81.02± 0.37 82.7 ± 0.50 86.96 ± 1.30
0.3 81.56± 0.6 79.42 ± 1.71 85.65 ± 1.16 89.50 ± 1.2

CITESEER 0.5 74.28± 1.45 72.0± 0.5 74.39 ± 5.27
0.3 72.43± 0.94 74.54 ± 1.34 72.67± 1.11 78.09 ± 1.9

CO-PHY
0.3 93.79 ± 0.3 92.52 ± 0.9 88.94 ± 6.31

0.05 93.05 ± 0.26 73.09 ± 7.41 80.09 ± 0.33 96.22 ± 0.7
0.03 92.81 ± 0.31 63.65 ± 9.65 79.10 ± 0.44

PUBMED
0.3 77.77 ± 0.63 75.67 ± 2.57 84.48 ± 0.97

0.05 78.16 ± 0.30 72.82 ± 2.62 78.67 ± 0.57 88.89 ± 0.5
0.03 78.04 ± 0.47 70.24 ± 2.63 74.67 ± 0.67

CO-CS
0.3 88.02 ± 0.34 78.65 ± 3.90 92.75 ± 0.25

0.05 86.29 ± 0.63 34.45 ± 10.07 87.25 ± 0.90 93.32 ± 0.6
0.03 86.32 ± 0.45 26.06 ± 9.29 81.38 ± 0.11

DBLP
0.3 80.65 ± 0.50 74.50 ± 1.90 82.53 ± 0.86

0.05 79.15 ± 0.20 76.52 ± 2.88 76.27 ± 1.82 85.35 ± 0.8
0.03 78.42 ± 1.26 75.49 ± 2.84 76.13 ± 1.49

Table 3: The table summarizes the node classification accuracy on real benchmark datasets for the proposed
SCG algorithm against the GCOND and SCAL. For small datasets, we have taken coarsening ratio r = 0.3
and 0.5; for large datasets, we have taken r = 0.3, 0.05 and 0.03. It is evident that enforcing sparisty in the
coarsened graph improves the node classification accuracy.

Figure 2: The figure shows the degree distribution for Amazon (left) and Erdos Renyi (right) datasets for
three cases (i) original degree distribution, (ii) coarsened graph degree distribution(r=0.5) by LVN [5] and (iii)
coarsened graph degree distribution by proposed SFCG. It is evident that the proposed SFCG algorithm learns
coarsened graphs that preserve the structural properties and closely resemble the degree distribution of the
original graph.
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(a) ϕ matrix of G (b) Bipartite Gc (c) ϕ matrix of Gc

(d) Multi-comp Gc (e) ϕ matrix of Gc (f) Sparsity Gc

(g) ϕ matrix of Gc

Figure 1: The figures presented here depict the ϕ matrices of four different graph representations: the original
graph, the bipartite coarsened graph, the multi-component coarsened graph, and the sparse coarsened graph.
Additionally, a histogram showcases the sparsity levels within each row of the coarsened graphs, focusing on
data from the Citeseer dataset. Notably, these visualizations illustrate a critical point: the sparser the heat map of
the coarsened graph, the more informative it becomes. Specifically, the node classification accuracy achieved
using the bipartite coarsened graph is 77.11%. Meanwhile, the multi-component and sparse coarsened graphs
yield a node classification accuracy of 74.68% and 72.67% for a coarsening ratio of 0.3.
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