
7 Appendix505

7.1 Details for Problem Setups506

Baselines. While our method aims to solve the QAT problem, we extensively compare our BiTAT507

against various Post-training Quantization (PTQ)- or QAT methods: BRECQ [18] is a PTQ method508

that considers weight dependencies using the Hessian of the task loss. DBQ [8] is a QAT method based509

on continuous relaxation of the quantizer function. EBConv [3] conditionally selects appropriate510

binarized weights based on the task information. Bi-Real Net [20] adds residual connections to511

propagate full-precision values, preventing information loss to activation quantization. Real-to-512

Bin [22] constrains a loss term at the end of each convolution to minimize the output discrepancy513

between the full-precision and the quantized model. LCQ [35] devises a trainable quantization514

function in order to reduce the quantization error. MeliusNet [2] proposes a new architecture that515

better propagates full-precision values throughout the network. ReActNet [21] is the state-of-the-art516

binary quantization method, which additionally adopts residual connections, and element-wise shift517

operations before/after the activation and the sign operation. Note that DBQ, LCQ, and MeliusNet518

keep some crucial layers of MobileNet in full-precision, leading to inefficiency at evaluation time.519

Training. Following the setup from ReActNet [21], we quantize all layers’ weights and activations520

except the initial and final layers. We use the Adam optimizer [16]. For the ImageNet experiment,521

a learning rate is 0.002 and 0.0002 for quantization training and the fine-tuning, respectively, with522

linear learning rate decay. We set batch size as 512 both the quantization phase and the fine-tuning523

phase is done for 5 epochs per layer. For the CIFAR-100 experiment, a learning rate is 3× 10−4 for524

quantization training and the fine-tuning with linear learning rate decay. We set batch size as 800 and525

both the quantization and fine-tuning are done with 40 epochs per layer. For all experiments, we set526

λ = 100, and γ = 10−5, which notes that simple choice of the hyperparameters for our regularization527

terms is sufficient to show impressive performance. The number of input dimension groups is set528

k = 256, applying the grouped weight correlation to layers with input dimensions smaller than k.529

Inference. In deployment, the highly efficient XNOR-Bitcounting operations can be used for the530

convolutional layers, also used in existing neural network binarization works [5, 30, 21].531

7.2 Extension to Convolutional Layers532

Let us consider a convolutional layer of size nout × nin × k× k, where nin and nout are the number533

of input and output channels, respectively, and k is the kernel size. We define the set Px as the set of534

all patches of size nin × k × k extracted from the training image x. This patch-extracting operation535

is sometimes called im2col or F.unfold in PyTorch.536

A convolutional layer applied to x can be thought of as a fully-connected layer individually applied537

to all patches in Px and then concatenated:538

w ∗ x = {Reshape(nink2)×(nout)(w)⊤vec(p)}p∈Px , (14)

where ∗ denotes the convolution operation, Reshapeshape(·) denotes the reshaping of the tensor into539

the specified shape, and vec(·) denotes the flattening operation. Each pixel of the output feature map540

corresponds to a matrix multiplication between a patch and the weight matrix. Therefore, we can541

analogically apply the same transformation as explained in Section 3 to convolutional layers.542

7.3 Details on Cross-layer Dependency543

In this section, we further explain the detailed experimental setting for Figure 3. We take the standard544

MobileNetV2 [31] model and train it to convergence on the CIFAR-100 dataset with standard SGD545

with a weight decay. Then, we add noise to the same pretrained model parameters before evaluating546

the test accuracy based on the following two different ways:547

1. Layer-dependent noise addition. We first compute the covariance of the input to the first548

layer and perform PCA using obtained covariance values to compute w̃(1) in Equation 4.549

Now, we add independent gaussian noise with varying scales to the top five rows of w̃(1).550

Next, we sequentially repeat the process to the consecutive layers, and after that, we evaluate551

14



METHOD Accuracy (%) Qorig Qours

REACTNET [21] 65.51 ± 0.74 13.35 475.94
BITAT (Ours) 68.36 ± 0.45 39.77 434.92

0 25 50 75 100 125
ReActNet Epoch

10

20

30

40

Q
ou

rs
/Q

or
ig

ReActNet
Ours

Figure 8: Additional ablation studies. Left: The comparison of the final Qorig (Equation 2) and Qours

(Equation 6) values in ReActNet and BiTAT. Right: The evolution of the ratio of Qours to Qorig in ReActNet,
in comparison to the final ratio in our BiTAT. Cross-layer dependencies not considered in both computations.

the model performance, which is shown in solid red lines. The same process is done but552

with the bottom five rows of each layer instead of the top five, shown in solid blue lines.553

2. Layer-independent noise addition. Before adding noise to model parameters, we compute554

the covariance of the input values for all layers. Next, we perform PCA and compute w̃(l)555

with Equation 4 per layer using these initial covariance values. That is, a layer cannot556

reflect the weight change through noise addition in others layers, as different from the first557

approach. Independent gaussian noise with varying scales is added to the top five rows of558

w̃(l) for each layer, and then the performance of the model is evaluated, shown in red dashed559

lines. The same is done with the bottom five rows of w̃(l), shown in blue dashed lines.560

7.4 Additional Analysis561

This paper suggests that the proposed quantization loss on disentangled weights is a better indicator562

for prediction accuracy than the general quantization loss (Equation 2), which is evident in multiple563

validation analyses and the superior model performance in our BiTAT as described in the main564

text. Here, we provide the quantitative analysis to show that ReActNet [21] fails to minimize the565

quantization loss on disentangled weights while our BiTAT successfully does. In Figure 8 Left, we566

show the Qorig (Equation 2) and Qours (Equation 6 w/o ℓ1 norm) between the initial full-precision567

weights of the pre-trained model and the obtained binarized weights from ReActNet and BiTAT.568

Qorig represents the naive MSE between the full-precision weights and the binarized weights. Qours569

represents the dependency-weighted MSE between the full-precision weights and the binarized570

weights. Note that, in this analysis, we obtain s and V for each layer from the initial pre-trained571

model by Equation 10 to compute Qours and neglect the weight dependency across different layers,572

which is hard to be computed analytically.573

We observe that while the value of Qorig is lower in ReActNet than in BiTAT, Qours is higher in574

ReActNet than in BiTAT. As shown in Figure 8 Right, the ratio r = Qours/Qorig in ReActNet (Red)575

drastically increases at the beginning stage and is maintained in a high degree until the completion576

of the quantization-aware training, compared to the r value of the model obtained by BiTAT (Blue577

dashed). While disregarding the first few epochs of ReActNet training, where the accuracy is very low,578

ReActNet’s r value dominates that of BiTAT. The value slowly decreases as the ReActNet training579

proceeds, but never reaches the level of BiTAT, demonstrating the inefficiency of the ReActNet580

training procedure compared to ours.581

7.5 Limitations582

We consider two limitations of our work in this section. First, our BiTAT framework is built based on583

a sequential quantization strategy, which progressively quantizes the layers from the bottom to the584

top. Therefore, the training time of our algorithm depends on the number of layers in the backbone585

network architecture. While we have already validated the cost-efficiency of our proposed method586

against ReActNet using MobileNet (26 stacked layers) in Figure 7 Left, we might spend more training587

time quantizing all layer weights for the backbones, composed of much more layers like ResNet-1001588

(1001 stacked layers). Next, our method focuses on the cross-layer weight dependency within each589

neural block, including a few consecutive layers. We thereby avoid the excessive computational590

cost of obtaining the relationship across all layers in the backbone architecture, yet we consider it a591

tradeoff between accurate dependency and computation budgets.592

15


	Introduction
	Related Work
	Weight Importance for Quantization-aware Training
	Problem Statement
	Disentangling Weight Dependencies via Input-dependent Orthornormal Transformation
	Cross-layer Weight Correlation Impacts Model Performance

	Task-dependent Weight Transformation for Neural Network Binarization
	Layer-progressive Quantization with Block-wise Weight Dependency
	Cost-efficient BiTAT via Aggregated Weight Correlation using Reduction Matrix

	Experiments
	Quantitative Analysis
	Qualitative Analysis

	Conclusion
	Appendix
	Details for Problem Setups
	Extension to Convolutional Layers
	Details on Cross-layer Dependency
	Additional Analysis
	Limitations


