
A1. 3D Mesh Reconstruction Details
As described in the main paper (Sec. 3.1.1), we reconstruct
3D human motion in the form of SMPL-X meshes by opti-
mizing over multi-view, third-person camera observations in
an iterative loop. Our goal is to recover the optimal SMPL-X
parameters at each time step t

Θt = {θt, β, τt},

where θt ∈ R66 are the 3D joint angles for the 22 body
joints, β ∈ R10 is the shape vector, and τt ∈ R6 denotes the
global root orientation and translation. Following SMPLify-
X [3], we do not optimize the joint angles θt directly. Instead,
we optimize a low-dimensional latent pose vector zt, and
recover the full pose via a pretrained VAE decoder:

θt = V (zt) .

At each iteration, we synthesize the fitted mesh

Mt = S
(
V (zt), β, τt

)
,

where S(·) is the differentiable SMPL-X forward function
that maps parameters to a detailed full-body mesh. We
then obtain the 3D keypoints positions by applying a fixed
regression matrix J to the mesh vertices:

x̂3D
t = J Mt .

Finally, these 3D keypoints are projected into each cam-
era’s image plane via the standard pinhole model:

x̂2D
t = Π

(
x̂3D
t | P

)
,

where Π(·) is the projection operation and P is the camera
projection matrix. The optimization is formulated as

ẑ, β̂, τ̂ = arg max
z, β, τ

(
λ3D L3D + λ2D L2D + λz Lz

+ λβ Lβ + λsmooth Lsmooth

)
.

L3D is the 3D keypoint loss that computes the euclidean
distance between the observed 3D keypoints x3D and the
fitted keypoints x̂3D

L3D =
1

T K

T−1∑
t=0

K−1∑
k=0

∥x3D
t,k − x̂3D

t,k ∥,

where T and K are the number of frames and keypoints, re-
spectively. 2D keypoint loss L2D is robustified using the
Geman–McClure function [1, 2] ϕ(r; ρ) = r2

r2+ρ2 , with hy-
perparameter ρ > 0. Specifically:

L2D =
1

T K C

T−1∑
t=0

K−1∑
k=0

C−1∑
c=0

ϕ
(
∥x2D

t,k,c − x̂2D
t,k,c∥; ρ

)
,

where C is the number of cameras. Pose and shape priors
use simple ℓ2 regularization:

Lz =
1

T

T−1∑
t=0

||zt||22, Lβ = ||β||22.

Finally, the temporal smoothing term Lsmooth penalizes ac-
celeration in both the 3D keypoint trajectories and the joint-
angle sequence of J = 22 body joints. Concretely,

Lsmooth =

1
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Lθ
smooth

.

Our implementation follows a three-stage pipeline. First,
we initialize the root parameters τt by aligning unposed
template keypoints (shoulders and hips) to the triangulated
3D targets. In Stage 1, we optimize parameters over the
first 100 frames where the subjects are particularly doing a
simple pose (such as A or T-pose) using λ3D = 5.0, λ2D =
0.0, λsmooth = 0.1, λz = 0.005, and λβ = 0.04. In the
subsequent stages, we freeze β as the value optimized from
Stage 1. In Stage 2, we optimize the latent pose vectors
zt and τt across all frames with λ3D = 5.0, λ2D = 0.0,
λsmooth = 2.5, and λz = 0.1. Finally, in Stage 3, we refine
zt and τt using smaller priors with λ3D = 1.6, λ2D = 0.5,
λsmooth = 10.0, and λz = 0.01. For Stage 2 and Stage 3,
we crop each sequence into 500-frames chunks and optimize
separately.

A2. Sensor Signal Processing
Video and contact sensor synchronization. To synchronize
the contact-sensor recordings with the video, each trial be-
gins and ends with the subject performing hand claps. These
claps generate large, easily identifiable peaks in the sensor
signal (see Figure 1), which we mark as the start and end
synchronization events. For each marked peak, we then
manually locate the corresponding video frame in which the
subject’s hands are in the clapping pose. By matching the
timestamps of these sensor-signal peaks to the video-frame
indices, we can synchronize and resample contact sensor
signals corresponding to the video frames.
Analog-to-binary contact mask conversion. The raw con-
tact signals were acquired using an Arduino microcontroller,
which reads the voltage across each FSR sensor as a 10-bit
integer in the range 0–1023. Although the resistor on each
sensor defines a sensitivity, optimal thresholds must be tuned
for each contact point according to its placement and the
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Figure 1. Synchronization of contact sensor and video via hand-clap events. The sensor trace shows pronounced peaks at the start and end of
each sequence, corresponding to the subject’s hand claps. These peaks allow manual alignment of the sensor data with the matching video
frames.
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Figure 2. Raw analog contact-sensor signals from three FSR channels over a representative trial. Each trace shows the Arduino-measured
voltage (0–1023) for one sensor. Shaded regions highlight distinct motion segments with characteristic signal patterns, and dashed horizontal
lines indicate the per-sensor thresholds used to binarize contact events.



characteristics of the performed motion. To this end, we
plot exemplar recordings from three sensors (see Fig. 2),
identify segments corresponding to distinct motions, and
visually select per-sensor thresholds that cleanly separate
true contact events from baseline noise. Samples exceeding
these thresholds are binarized into a frame-by-frame contact
mask. Because point-based sensors can still miss contacts
in adjacent uninstrumented areas or register spurious peaks
due to clothing pressure, we manually inspect and correct
any frames with obvious misclassifications. This procedure
produces reliable binary contact labels for downstream anal-
ysis.
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