
Appendix

Organization. In Appendix A, we provide additional discussion on exponential family
Markov random fields, score-based methods, as well as review the related literature on Stein
discrepancy and latent variable graphical models. In Appendix B, we state and prove the smoothness
property of the loss function as well as provide the proof of Lemma 3.1. In Appendix C, we provide
the proof of Theorem 4.1. In Appendix D, we provide the proof of Theorem 4.2. In Appendix E, we
provide the restricted strong convexity property of the loss function. In Appendix F, we provide
bounds on the tensor maximum norm of the gradient of the loss function evaluated at the true natural
parameter. In Appendix G, we provide the proof of Theorem 4.3. In Appendix H, we provide the
computational cost for the example constraints on the natural parameter Θ. In Appendix I, we
provide a discussion on the examples of natural parameter and natural statistics from Section 2.1. In
Appendix J, we provide a discussion on Property 4.1.

Additional Notations. We denote the `p norm (p ≥ 1) of a vector v ∈ Rt by ‖v‖p :=

(
∑t
i=1 |vi|p)1/p and its `∞ norm by ‖v‖∞ := maxi∈[t] |vi|. For a matrix M ∈ Ru×v, we de-

note the spectral norm by ‖M‖ := maxi∈[min{u,v}] σi(M) and the Frobenius norm by ‖M‖F :=√∑
i∈[u],j∈[v]M

2
ij . For a tensor U ∈ Ru×v×w, we let ‖U‖1,1,1 :=

∑
i∈[u],j∈[v],l∈[w] |Uijl|.

A Related Works

In this Section, we review additional works on exponential family Markov random fields, score-based
methods, as well as the related literature on Stein discrepancy and latent variable graphical models.

A.1 Exponential Family Markov Random Fields

Having reviewed some of the works on sparse exponential family MRFs in Section 1.2, we present
here a brief overview of a few other works on the same.

Following the lines of [62], the authors in [48] proposed an `1 regularized node-conditional log-
likelihood to learn the node-conditional density in (5) for non-linear φ(·). They used an alternating
minimization technique and proximal gradient descent to solve the resulting optimization problem.
However, their analysis required restricted strong convexity, bounded domain of the variables, non-
negative node parameters, and hard-to-verify assumptions on gradient of the population loss.

In [63], the authors introduced a non-parametric component to the node-conditional density in (5)
while focusing on linear φ(·). More specifically, they focused on the following joint density:

fx(x) ∝ exp
(∑
i∈[p]

ηi(xi) +
∑
j 6=i

θijxixj

)
,

where ηi(·) is the non-parametric node-wise term. They proposed a node-conditional pseudo-
likelihood (introduced in [39]) regularized by a non-convex penalty and an adaptive multi-stage convex
relaxation method to solve the resulting optimization problem. However, their finite-sample bounds
require bounded moments of the variables, sparse eigenvalue condition on their loss function, and
local smoothness of the log-partition function. In [49], the authors investigated infinite dimensional
sparse pairwise exponential family MRFs where they assumed that the node and edge potentials lie
in a Reproducing Kernel Hilbert space (RKHS). They used a penalized version of the score matching
objective of [22]. However, their finite-sample analysis required incoherence and dependency
conditions (see [59, 24]). In [31], the authors considered the joint distribution in (8) restricting the
variables to be non-negative. They proposed a group lasso regularized generalized score matching
objective [21] which is a generalization of the score matching objective [22] to non-negative data.
However, their finite-sample analysis required the incoherence condition.

A.2 Score-based and Stein discrepancy methods

Having mentioned the principle behind and an example for the score-based method in Section 1.2,
we briefly review a few other score-based methods in relation to the Stein discrepancy.

Stein discrepancy is a quantitative measure of how well a predictive density q(·) fits the density of
interest p(·) based on the classical Stein’s identity. Stein’s identity defines an infinite number of
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identities indexed by a critic function f and does not require evaluation of the partition function
like the score matching method. By focusing on Stein discrepancy constructed from a RKHS, the
authors in [32] and [9] independently proposed the kernel Stein discrepancy as a test statistic to
access the goodness-of-fit for unnormalized densities. The authors in [32] and [3] showed that the
Fisher divergence, which was the minimization criterion used by the score matching method, can be
viewed a special case of the kernel Stein discrepancy with a specific, fixed critic function f . In [3],
the authors showed that a few other methods (including the contrastive divergence by [19]) can also
be viewed as a kernel Stein discrepancy with respect to a different class of critics. Despite the kernel
Stein discrepancy being a natural criterion for fitting computationally hard models, there is no clear
objective for choosing the right kernel and the kernels typically chosen (e.g. [49, 47, 46, 50] ) are
insufficient for complex datasets as pointed out by [61].

In [11], the authors exploited the primal-dual view of the MLE to avoid estimating the normalizing
constant at the price of introducing dual variables to be jointly estimated. They showed that many
other methods including the contrastive divergence by [19], pseudo-likelihood by [4], score matching
by [22] and minimum Stein discrepancy estimator by [32], [9], and [3] are special cases of their
estimator. However, this method results in expensive optimization problems since they rely on
adversarial optimization (see [42] for details). In [33], the authors proposed an inference method
for unnormalized models known as discriminative likelihood estimator. This estimator follows the
KL divergence minimization criterion and is implemented via density ratio estimation and a Stein
operator. However, this method requires certain hard-to-verify conditions.

A.3 Literature on Latent Variable Graphical Models

In recent years, sparse-plus-low-rank matrix recovery has received considerable attention in machine
learning and statistical inference, e.g., robust PCA [7], latent variable graphical models [8]. Latent
variable graphical models has a variety of applications including assessing the functional interactions
between neurons recorded from two brain areas [54, 38]. In latent variable graphical models, there
are variables not present in observations. The presence of such variables leads to a challenge in
learning the graphical model. The graphical model corresponding to the conditional distribution of
the observed variables conditioned on the latent variables is in general different from the graphical
model corresponding to the marginal distribution of the observed variables. The marginal graphical
model consists of dependencies that are induced due to marginalization over the latent variables
and typically consists of many more edges than the conditional graphical model. In [8], authors
considered latent variable Gaussian graphical models and exploited the observation that the precision
matrix of the marginal graphical model can be decomposed into the superposition of a sparse matrix
and a low-rank matrix. They provided a tractable convex program based on regularized maximum-
likelihood to estimate the precision matrix. While the authors in [8] focused on simultaneous model
selection consistency of both the sparse and low-rank components, the authors in [37] focused
on estimating the precision matrix of latent variable Gaussian graphical model. They consider a
regularized MLE estimator and utilize the almost strong convexity [27] of the log-likelihood to derive
non-asymptotic error bounds under the restricted Fisher eigenvalue and Structural Fisher Incoherence
assumptions. Compared to [37], our tensor norm error bounds are derived under mild condition.
Additionally, our framework captures various constraints on the natural parameters in addition to the
sparse-plus-low-rank constraint.

B Smoothness of the loss function and proof of Lemma 3.1

In this Section, we will prove the smoothness of Ln(·) as well as prove Lemma 3.1. However,
before either of this, we provide bounds on the absolute tensor inner product between Θ and Φ i.e.,∣∣〈〈Θ, Φ(x)

〉〉∣∣ for Θ ∈ Λ and x ∈ X .

B.1 Bounds on the absolute tensor inner product between Θ and Φ.

We have∣∣〈〈Θ, Φ(x)
〉〉∣∣ (a)

=
∣∣ k3∑
i=1

〈
Θ(i), Φ(i)(x)

〉∣∣ (b)

≤
k3∑
i=1

∣∣〈Θ(i), Φ(i)(x)
〉∣∣ (c)

≤
k3∑
i=1

Ri(Θ(i))×R∗i (Φ(i)(x))
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(d)

≤ rTd, (15)

where (a) follows from the definitions of a slice of a tensor, tensor inner product, and Frobenius inner
product, (b) follows from the triangle inequality, (c) follows from the definition of a dual norm, and
(d) follows from Assumptions 2.1 and 2.2.

B.2 Smoothness of the loss function

Now, we will state and prove our result for smoothness of Ln(Θ).
Proposition B.1. Under Assumptions 2.1, 2.2 and 2.3, Ln(Θ) is a k1k2k3φ

2
max exp(rTd) smooth

function of Θ.

Proof of Proposition B.1. To show k1k2k3φ
2
max exp(rTd) smoothness of Ln(Θ), we will show that

the largest eigenvalue of the Hessian5 of Ln(Θ) is upper bounded by k1k2k3φ
2
max exp(rTd).

First, we simplify the Hessian of Ln(Θ) i.e., ∇2Ln(Θ). The component of the Hessian of Ln(Θ)
corresponding to Θu1v1w1 and Θu2v2w2 for u1, u2 ∈ [k1], v1, v2 ∈ [k2] and w1, w2 ∈ [k3] is given
by

∂2Ln(Θ)

∂Θu1v1w1
∂Θu2v2w2

=
1

n

n∑
t=1

Φu1v1w1
(x(t))Φu2v2w2

(x(t)) exp
(
−
〈〈

Θ, Φ(x(t))
〉〉)

. (16)

From the Gershgorin circle theorem, we know that the largest eigenvalue of any matrix is upper
bounded by the largest absolute row sum or column sum. Let λmax(∇2Ln(Θ)) denote the largest
eigenvalue of∇2Ln(Θ). We have the following

λmax(∇2Ln(Θ)) ≤ max
u2,v2,w2

∑
u1,v1,w1

∣∣∣ ∂2Ln(Θ)

∂Θu1v1w1
∂Θu2v2w2

∣∣∣ (a)

≤ max
u2,v2,w2

∑
u1,v1,w1

φ2
max exp(rTd)

≤ k1k2k3φ
2
max exp(rTd),

where (a) follows from (16), (15), and Assumption 2.3. Therefore,Ln(Θ) is a k1k2k3φ
2
max exp(rTd)

smooth function of Θ.

B.3 Proof of Lemma 3.1

Next, we restate the Lemma 3.1 and provide the proof.
Lemma 3.1. Let Assumptions 2.1, 2.2 and 2.3 be satisfied. Let η = 1/k1k2k3φ

2
max exp(rTd). Then,

Algorithm 1 returns an ε-optimal solution Θ̂ε,n as long as

τ ≥ 2k1k2k3φ
2
max exp(rTd)

ε
‖Θ̂n‖2T. (12)

Further, ignoring the dependence on k3, φmax, r and d, τ in (12) scales as O
(
poly

(
k1k2
ε

))
.

Proof of Lemma 3.1. Let us recall Theorem 10.6 from [35].

[35, Theorem 10.6]: Let L be a c-smooth convex function of a parameter vector θ ∈ Λ. Consider the
following constrained optimization problem

min
θ∈Λ

L(θ). (17)

Let θ∗ be an optimal solution of (17). Let θ(1), · · · , θ(t) denote the iterates of the projected gradient
descent algorithm with step size η = 1/c. Let θ(0) denote the initialization of θ in the projected
gradient descent algorithm. Then,

L(θ(t))− L(θ∗) ≤ 2c

t
‖θ(0) − θ∗‖22. (18)

5Ideally, one would consider the Hessian of Ln(vec(Θ)). However, for the ease of the exposition we abuse
the terminology.
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We will make direct use of this theorem in our proof. From Proposition B.1, Ln(Θ) is c1 :=
k1k2k3φ

2
max exp(rTd) smooth. Using (18), we have

Ln(Θ(τ))− Ln(Θ̂n) ≤ 2c1
τ
‖Θ(0) − Θ̂n‖2T.

Plugging in c1 = k1k2k3φ
2
max exp(rTd), τ =

2k1k2k3φ
2
max exp(rTd)

ε
‖Θ̂n‖2T, and Θ(0) = 0 we

have

Ln(Θ(τ))− Ln(Θ̂n) ≤ ε.
Therefore, Θ(τ) is an ε-optimal solution.

We will now upper bound ‖Θ̂n‖2T. First let us upper bound this tensor norm in terms of tensor
maximum norm and therefore the matrix maximum norms. We have

‖Θ̂n‖2T ≤ k1k2k3‖Θ̂n‖2max = k1k2k3 max
i∈[k3]

‖Θ̂(i)
n ‖2max.

Now, observe that most matrix norms of interest including the entry-wise Lp,q norm (p, q ≥ 1), the
Schatten p-norm (p ≥ 1), and the operator p-norm (p ≥ 1) are bounded from below by the matrix
maximum norm i.e., the matrix maximum norm is upper bounded if either of these matrix norms are
upper bounded. Suppose ∀i ∈ [k3], Ri is either the entry-wise Lp,q norm (p, q ≥ 1), the Schatten
p-norm (p ≥ 1), or the operator p-norm (p ≥ 1). Then, ∀i ∈ [k3], ‖Θ̂(i)

n ‖max ≤ Ri(Θ̂(i)
n ). We have

Ri(Θ̂(i)
n ) ≤ ri from Assumption 2.1 because Θ̂

(i)
n ∈ Λ. Therefore, we have

‖Θ̂n‖2T ≤ k1k2k3 max
i∈[k3]

r2
i .

Summarizing and using the fact that φmax, r,d, k3 are O(1), we have

2k1k2k3φ
2
max exp(rTd)

ε
‖Θ̂n‖2T ≤

2k2
1k

2
2k

2
3φ

2
max exp(rTd)

ε
max
i∈[k3]

r2
i = O

(
k2

1k
2
2

ε

)
.

C Proof of Theorem 4.1

In this Section, we prove Theorem 4.1. We restate the Theorem below and then provide the proof.
Theorem 4.1. With D(· ‖ ·) representing the KL-divergence,

arg min
Θ∈Λ

L(Θ) = arg min
Θ∈Λ

D(UX (·) ‖ fx(·; Θ∗ −Θ)).

Further, the true parameter Θ∗ is the unique minimizer of L(Θ).

Proof of Theorem 4.1. We will first express fx(·; Θ∗ −Θ) in terms of L(Θ). We have

fx(x; Θ∗ −Θ) =
exp

(〈〈
Θ∗ −Θ,Φ(x)

〉〉)∫
y∈X exp

(〈〈
Θ∗ −Θ,Φ(y)

〉〉)
dy

(a)
=

exp
(〈〈

Θ∗ −Θ, Φ(x)
〉〉)∫

y∈X exp
(〈〈

Θ∗ −Θ, Φ(y)
〉〉)

dy

(b)
=

fx(x; Θ∗) exp
(
−
〈〈

Θ, Φ(x)
〉〉)∫

y∈X fx(x; Θ∗) exp
(
−
〈〈

Θ, Φ(y)
〉〉)

dy

(c)
=
fx(x; Θ∗) exp

(
−
〈〈

Θ, Φ(x)
〉〉)

L(Θ)
, (19)

where (a) follows because EUX [Φ(x)] is a constant, (b) follows by dividing the numerator and the
denominator by the constant

∫
y∈X exp

(〈〈
Θ∗, Φ(y)

〉〉)
dy and using the definition of fx(x; Θ∗), and

(c) follows from definition of L(Θ). We will now simplify the KL-divergence between UX (·) and
fx(·; Θ∗ −Θ).

D(UX (·) ‖ fx(·; Θ∗ −Θ))
(a)
= EUX

[
log

(
UX (·)L(Θ)

fx(·; Θ∗) exp
(
−
〈〈

Θ, Φ(·)
〉〉))]
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(b)
= EUX

[
log

(
UX (·)
fx(·; Θ∗)

)]
+ EUX

[〈〈
Θ, Φ(·)

〉〉]
+ logL(Θ)

(c)
= EUX

[
log

(
UX (·)
fx(·; Θ∗)

)]
+
〈〈

Θ,EUX [Φ(·)]
〉〉

+ logL(Θ)

(d)
= EUX

[
log

(
UX (·)
fx(·; Θ∗)

)]
+ logL(Θ),

where (a) follows from (19) and the definition of KL-divergence, (b) follows because log(abc) =
log a + log b + log c and L(Θ) is a constant, (c) follows from the linearity of the expectation and
(d) follows because EUX [Φ(x)] = 0 from Definition 2.1. Observing that the first term in the above
equation is not dependent on Θ, we can write

arg min
Θ∈Λ

D(UX (·) ‖ fx(·; Θ∗ −Θ)) = arg min
Θ∈Λ

logL(Θ)
(a)
= arg min

Θ∈Λ
L(Θ),

where (a) follows because log is a monotonic function. Further, the KL-divergence between UX (·)
and fx(·; Θ∗ − Θ) is minimized when UX (·) = fx(·; Θ∗ − Θ). Recall that the natural statistic are
such that the exponential family is minimal. Therefore, UX (·) = fx(·; Θ∗−Θ) if and only if Θ = Θ∗.
Thus, Θ∗ ∈ arg minΘ∈Λ L(Θ), and it is a unique minimizer of L(Θ).

D Proof of Theorem 4.2

In this Section, we prove Theorem 4.2 by using the theory of M -estimation. In particular, observe
that Θ̂n is an M -estimator i.e., Θ̂n is a sample average. Therefore, we invoke Theorem 4.1.1 and
Theorem 4.1.3 of [1] to prove the consistency and normality of Θ̂n. We restate the Theorem below
and then provide the proof.

Theorem 4.2. Let Assumptions 2.1, 2.2, and 2.3 be satisfied. Let Θ̂n be a solution of (11). Then,
as n → ∞, Θ̂n

p→ Θ∗. Further, assuming Θ∗ ∈ interior(Λ) and B(Θ∗) is invertible, we have
√
n× vec(Θ̂n −Θ∗)

d→ N (vec(0), B(Θ∗)−1A(Θ∗)B(Θ∗)−1).

Proof of Theorem 4.2. We divide the proof in two parts.

Consistency. We will first show that Θ̂n is asymptotically consistent. In order to show this, let us
recall Theorem 4.1.1 of [1].

[1, Theorem 4.1.1]: Let z1, · · · , zn be i.i.d. samples of a random variable z . Let q(z ; θ) be some
function of z parameterized by θ ∈ Υ. Let θ∗ be the true underlying parameter. Define

Qn(θ) =
1

n

n∑
i=1

q(zi; θ) and θ̂n ∈ arg min
θ∈Υ

Qn(θ).

Let the following be true.

(a) Υ is compact,
(b) Qn(θ) converges uniformly in probability to a non-stochastic function Q(θ),
(c) Q(θ) is continuous, and
(d) Q(θ) is uniquely minimized at θ∗.

Then, θ̂n is consistent for θ∗ i.e., θ̂n
p→ θ∗ as n→∞.

Letting z := x, θ := Θ, θ̂n := Θ̂n, θ∗ := Θ∗, Υ = Λ, q(z; θ) := exp
(
−
〈〈

Θ, Φ(x)
〉〉)

, and
Qn(θ) := Ln(Θ), it is sufficient to show the following:

(a) Λ is compact,
(b) Ln(Θ) converges uniformly in probability to a non-stochastic function L(Θ),
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(c) L(Θ) is continuous, and
(d) L(Θ) is uniquely minimized at Θ∗.

Let us show these one by one.

(a) We have Λ = {Θ : R(Θ) ≤ r} which is bounded and closed. Therefore, Λ is compact.
(b) Recall [25, Theorem 2]: Let z1, · · · , zn be i.i.d. samples of a random variable z . Let g(z ; θ) be a

function of θ parameterized by θ ∈ Υ. Then, n−1
∑
t g(zt, θ) converges uniformly in probability

to E[g(z , θ)] if

(i) Υ is compact,
(ii) g(z , θ) is continuous at each θ ∈ Υ with probability one,

(iii) g(z , θ) is dominated by a function G(z) i.e., |g(z , θ)| ≤ G(z), and
(iv) E[G(z)] <∞.

Using this theorem with z := x, θ := Θ, Υ := Λ, g(z , θ) := exp
(
−
〈〈

Θ, Φ(x)
〉〉)

, G(z) :=

exp(rTd) and (15), we conclude that Ln(Θ) converges to L(Θ) uniformly in probability.

(c) exp
(
−
〈〈

Θ, Φ(x)
〉〉)

is a continuous function of Θ ∈ Λ. Further, fx(x; Θ∗) does not functionally
depend on Θ. Therefore, we have continuity of L(Θ) for all Θ ∈ Λ.

(d) From Theorem 4.1, L(Θ) is uniquely minimized at Θ∗.

Therefore, we have asymptotic consistency of Θ̂n.

Normality. We will now show that Θ̂n is asymptotically normal. In order to show this, let us recall
Theorem 4.1.3 of [1].

[1, Theorem 4.1.3]: Let z1, · · · , zn be i.i.d. samples of a random variable z . Let q(z ; θ) be some
function of z parameterized by θ ∈ Υ. Let θ∗ be the true underlying parameter. Define

Qn(θ) =
1

n

n∑
i=1

q(zi; θ) and θ̂n ∈ arg min
θ∈Υ

Qn(θ).

Let the following be true.

(a) θ̂n is consistent for θ∗,
(b) θ∗ lies in the interior of the parameter space Υ,
(c) Qn is twice continuously differentiable in an open and convex neighborhood of θ∗,

(d)
√
n∇Qn(θ)|θ=θ∗

d→ N (0, A(θ∗)), and

(e) ∇2Qn(θ)|θ=θ̂n
p→ B(θ∗) with B(θ) finite, non-singular, and continuous at θ∗,

Then, θ̂n is normal for θ∗ i.e.,
√
n(θ̂n − θ∗)

d→ N (0, B−1(θ∗)A(θ∗)B−1(θ∗)).

Letting z := x, θ := Θ, θ̂n := Θ̂n, θ∗ := Θ∗, Υ = Λ, q(z; θ) := exp
(
−
〈〈

Θ, Φ(x)
〉〉)

, and
Qn(θ) := Ln(Θ), it is sufficient to show the following:

(a) Θ̂n is consistent for Θ∗,
(b) Θ∗ lies in the interior of the parameter space Λ,
(c) Ln is twice continuously differentiable in an open and convex neighborhood of Θ∗,

(d)
√
n∇Ln(vec(Θ))|Θ=Θ∗

d→ N (0, A(Θ∗)), and

(e) ∇2Ln(vec(Θ))|Θ=Θ̂n

p→ B(Θ∗) with B(Θ) finite, non-singular, and continuous at Θ∗,
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Let us show these one by one.

(a) We have established that Θ̂n is consistent for Θ∗ in the first half of the proof.
(b) The assumption that Θ∗ ∈ interior(Λ) is equivalent to Θ∗ belonging to the interior of Λ.
(c) Fix u1, u2 ∈ [k1], v1, v2 ∈ [k2], and w1, w2 ∈ [k3]. We have

∂2Ln(Θ)

∂Θu1v1w1∂Θu2v2w2

=
1

n

n∑
t=1

Φu1v1w1(x(t))Φu2v2w2(x(t)) exp
(
−
〈〈

Θ, Φ(x(t))
〉〉)

.

Thus, ∂2Ln(Θ)/∂Θu1v1w1∂Θu2v2w2 exists. Using the continuity of Φ(·) and exp
(
−〈〈

Θ, Φ(·)
〉〉)

, we see that ∂2Ln(Θ)/∂Θu1v1w1
∂Θu2v2w2

is continuous in an open and convex
neighborhood of Θ∗.

(d) For any u ∈ [k1], v ∈ [k2] and w ∈ [k3], define the random variable

xuvw = −Φuvw(x) exp
(
−
〈〈

Θ∗, Φ(x)
〉〉)

.

The component of the gradient of Ln(vec(Θ)) corresponding to Θuvw evaluated at Θ∗ is given
by

∂Ln(Θ∗)

∂Θuvw
= − 1

n

n∑
t=1

Φuvw(x(t)) exp
(
−
〈〈

Θ∗, Φ(x(t))
〉〉)

.

Each term in the above summation is distributed as the random variable xuvw. The random
variable xuvw has zero mean (see Lemma F.1). Using this and the multivariate central limit
theorem [53], we have

√
n∇Ln(vec(Θ))|Θ=Θ∗

d−→ N (0, A(Θ∗)),

where A(Θ∗) is the covariance matrix of vec
(
Φ(x) exp

(
−
〈〈

Θ∗, Φ(x)
〉〉))

.

(e) We will start by showing that the following is true.

∇2Ln(vec(Θ))|Θ=Θ̂n

p−→ ∇2L(vec(Θ))|Θ=Θ∗ . (20)

To begin with, using the uniform law of large numbers [25, Theorem 2] for any Θ ∈ Λ results in

∇2Ln(vec(Θ))
p−→ ∇2L(vec(Θ)). (21)

Using the consistency of Θ̂n and the continuous mapping theorem, we have

∇2L(vec(Θ))|Θ=Θ̂n

p−→ ∇2L(vec(Θ))|Θ=Θ∗ . (22)

Let u1, u2 ∈ [k1], v1, v2 ∈ [k2], and w1, w2 ∈ [k3]. From (21) and (22), for any ε > 0, for any
δ > 0, there exists integers n1, n2 such that for n ≥ max{n1, n2} we have,

P(|∂2Ln(Θ̂n)/∂Θu1v1w1
∂Θu2v2w2

− ∂2L(Θ̂n)/∂Θu1v1w1
∂Θu2v2w2

| > ε/2) ≤ δ/2

and

P(|∂2L(Θ̂n)/∂Θu1v1w1
∂Θu2v2w2

− ∂2L(Θ∗)/∂Θu1v1w1
∂Θu2v2w2

| > ε/2) ≤ δ/2.

Now for n ≥ max{n1, n2}, using the triangle inequality we have

P(|∂2Ln(Θ̂n)/∂Θu1v1w1
∂Θu2v2w2

− ∂2L(Θ∗)/∂Θu1v1w1
∂Θu2v2w2

| > ε) ≤ δ/2 + δ/2 = δ.

Thus, we have (20). Using the definition of L(Θ), we have

∂2L(Θ∗)/∂Θu1v1w1∂Θu2v2w2 = E
[
Φu1v1w1(x)Φu2v2w2(x) exp

(
−
〈〈

Θ∗, Φ(x)
〉〉)]

(b)
= E

[
Φu1v1w1(x)Φu2v2w2(x) exp

(
−
〈〈

Θ∗, Φ(x)
〉〉)]
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− E
[
Φu1v1w1

(x)
]
E
[
Φu2v2w2

(x) exp
(
−
〈〈

Θ∗, Φ(x)
〉〉)]

= cov
(
Φu1v1w1

(x), Φu2v2w2
(x) exp

(
−
〈〈

Θ∗, Φ(x)
〉〉))

,

where (b) follows because E
[
Φu2v2w2(x) exp

(
−
〈〈

Θ∗, Φ(x)
〉〉)]

= 0 for any u2 ∈ [k1],
v2 ∈ [k2], and w2 ∈ [k3] from Lemma F.1. Therefore, we have

∇2Ln(vec(Θ))|Θ=Θ̂n

p−→ B(Θ∗),

whereB(Θ∗) is the cross-covariance matrix of vec(Φ(x)) and vec
(
Φ(x) exp

(
−
〈〈

Θ∗, Φ(x)
〉〉))

.
Finiteness and continuity of Φ(x) and Φ(x) exp

(
−
〈〈

Θ∗, Φ(x)
〉〉)

implies the finiteness
and continuity of B(Θ∗). By assumption, the cross-covariance matrix of vec(Φ(x)) and
vec
(
Φ(x) exp

(
−
〈〈

Θ∗, Φ(x)
〉〉))

is invertible.

Therefore, we have the asymptotic normality of Θ̂n.

E Restricted strong convexity of the loss function

In this Section, we will show that, with enough samples, the loss function obeys the restricted strong
convexity property with high probability. This result will in turn allow us to prove Theorem 4.3 in
Appendix G

We will first state the main result of this Section (Proposition E.1). Next, we will introduce the notion
of correlation for the centered natural statistics and provide a supporting Lemma wherein we will
bound the deviation between the true correlation and the empirical correlation. Finally, we will prove
Proposition E.1.

Consider any Θ ∈ Λ. Let ∆ = Θ−Θ∗. Define the residual of the first-order Taylor expansion as

δLn(∆,Θ∗) = Ln(Θ∗ + ∆)− Ln(Θ∗)− 〈〈∇Ln(Θ∗),∆〉〉. (23)

Proposition E.1. Let Assumptions 2.1, 2.2, 2.3 and 4.1 be satisfied. For any δ3 ∈ (0, 1), the residual
defined in (23) satisfies

δLn(∆,Θ∗) ≥ λmin exp(−rTd)

4(1 + rTd)
‖∆‖2T,

with probability at least 1− δ3 as long as

n >
8φ4

maxk
2
1k

2
2k

3
3

λ2
min

log
(2k2

1k
2
2k

3
3

δ3

)
.

E.1 Correlation between centered natural statistics

For any u1, u2 ∈ [k1], v1, v2 ∈ [k2], and w1, w2 ∈ [k3], let Hu1v1w1u2v2w2
denote the correlation

between Φu1v1w1
(x) and Φu2v2w2

(x) defined as

Hu1v1w1u2v2w2
= E

[
Φu1v1w1

(x)Φu2v2w2
(x)
]
, (24)

and let H = [Hu1v1w1u2v2w2
] ∈ R[k1]×[k2]×[k3]×[k1]×[k2]×[k3] be the corresponding correlation

tensor. Similarly, we define Ĥ based on the empirical estimates of the correlation

Ĥu1v1w1u2v2w2
=

1

n

n∑
t=1

Φu1v1w1
(x(t))Φu2v2w2

(x(t)). (25)

The following lemma bounds the deviation between the true correlation and the empirical correlation.
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Lemma E.1. Consider any u1, u2 ∈ [k1], v1, v2 ∈ [k2], and w1, w2 ∈ [k3]. Let Assumption 2.3 be
satisfied. Then, we have for any ε2 > 0,

|Ĥu1v1w1u2v2w2
−Hu1v1w1u2v2w2

| < ε2,

with probability at least 1− δ2 as long as

n >
2φ4

max

ε22
log
(2k2

1k
2
2k

2
3

δ2

)
.

Proof of Lemma E.1. Fix u1, u2 ∈ [k1], v1, v2 ∈ [k2], and w1, w2 ∈ [k3]. The random variable
defined as Yu1v1w1u2v2w2

:= Φu1v1w1(x)Φu2v2w2(x) satisfies |Yu1v1w1u2v2w2 | ≤ φ2
max (from As-

sumption 2.3). Using the Hoeffding inequality we get

P
(
|Ĥu1v1w1u2v2w2

−Hu1v1w1u2v2w2
| > ε2

)
< 2 exp

(
− nε22

2φ4
max

)
.

The proof follows by using the union bound over all u1, u2 ∈ [k1], v1, v2 ∈ [k2], and w1, w2 ∈
[k3].

E.2 Proof of Proposition E.1

Proof of Proposition E.1. First, we will simplify the gradient of Ln(Θ)6 evaluated at Θ∗. For any
u ∈ [k1], v ∈ [k2] and w ∈ [k3], the component of the gradient of Ln(Θ) corresponding to Θuvw

evaluated at Θ∗ is given by

∂Ln(Θ∗)

∂Θuvw
= − 1

n

n∑
t=1

Φuvw(x(t)) exp
(
−
〈〈

Θ∗, Φ(x(t))
〉〉)

. (26)

We will now provide the desired lower bound on the residual. Substituting (10) and (26) in (23), we
have

δLn(∆,Θ∗) =
1

n

n∑
t=1

exp
(
−
〈〈

Θ∗, Φ(x(t))
〉〉)
×
[

exp
(
−
〈〈

∆, Φ(x(t))
〉〉)
−1+

〈〈
∆, Φ(x(t))

〉〉]

(a)

≥ exp(−rTd)× 1

n

n∑
t=1

[
exp

(
−
〈〈

∆, Φ(x(t))
〉〉)
− 1 +

〈〈
∆, Φ(x(t))

〉〉]
(b)

≥ exp(−rTd)× 1

n

n∑
t=1

∣∣〈〈∆, Φ(x(t))
〉〉∣∣2

2 +
∣∣〈〈∆, Φ(x(t))

〉〉∣∣
(c)

≥ exp(−rTd)

2 + 2rTd
× 1

n

n∑
t=1

∣∣〈〈∆, Φ(x(t))
〉〉∣∣2

(d)
=

exp(−rTd)

2 + 2rTd
×

k1∑
u1=1

k2∑
v1=1

k3∑
w1=1

k1∑
u2=1

k2∑
v2=1

k3∑
w2=1

∆u1v1w1Ĥu1v1w1u2v2w2∆u2v2w2

=
exp(−rTd)

2 + 2rTd
×

k1∑
u1=1

k2∑
v1=1

k3∑
w1=1

k1∑
u2=1

k2∑
v2=1

k3∑
w2=1

∆u1v1w1×

[Hu1v1w1u2v2w2
+ Ĥu1v1w1u2v2w2

−Hu1v1w1u2v2w2
]∆u2v2w2

,

where (a) follows because −
〈〈

Θ, Φ(x)
〉〉

≥ −rTd from (15), (b) follows because
e−z − 1 + z ≥ z2

2+|z| for any z ∈ R, (c) follows from (15), and (d) follows from (25).

6Ideally, one would consider the gradient of Ln(vec(Θ)). However, for the ease of the exposition we abuse
the terminology.
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Let the number of samples satisfy

n >
8φ4

maxk
2
1k

2
2k

2
3

λ2
min

log
(2k2

1k
2
2k

2
3

δ3

)
.

Using Lemma E.1 with ε2 = λmin

2k1k2k3
and δ2 = δ3, and the triangle inequality, we have the following

with probability at least 1− δ3

δLn(∆,Θ∗) ≥ exp(−rTd)

2 + 2rTd
×
[ k1∑
u1=1

k2∑
v1=1

k3∑
w1=1

k1∑
u2=1

k2∑
v2=1

k3∑
w2=1

∆u1v1w1Hu1v1w1u2v2w2∆u2v2w2

− λmin

2k1k2k3
‖∆‖21,1,1

]
(a)

≥ exp(−rTd)

2 + 2rTd
×
[ k1∑
u1=1

k2∑
v1=1

k3∑
w1=1

k1∑
u2=1

k2∑
v2=1

k3∑
w2=1

∆u1v1w1Hu1v1w1u2v2w2∆u2v2w2

− λmin

2
‖∆‖2T

]
(b)
=

exp(−rTd)

2 + 2rTd
×
[
vec(∆)E[vec(Φ(x))vec(Φ(x))T ]vec(∆)T − λmin

2
‖∆‖2T

]
(c)

≥ exp(−rTd)

2 + 2rTd
×
[
λmin‖vec(∆)‖22 −

λmin

2
‖∆‖2T

]
(d)
=

exp(−rTd)

2 + 2rTd
× λmin

2
‖∆‖2T,

where (a) follows because ‖∆‖1,1,1 ≤
√
k1k2k3‖∆‖T, (b) follows from (24), (c) follows from the

Courant-Fischer theorem (because E[vec(Φ(x))vec(Φ(x))T ] is a symmetric matrix) and Assumption
4.1, and (d) follows because ‖vec(∆)‖2 = ‖∆‖T.

F Bounds on the tensor maximum norm of the gradient of the loss function

In this Section, we will show that, with enough samples, the tensor maximum norm of the gradient of
the loss function evaluated at the true natural parameter is bounded with high probability. This result
will allow us to prove Theorem 4.3 in Appendix G.

We will first state the main result of this Section (Proposition F.1). Next, we will provide a supporting
Lemma wherein we show that the expected value of a random variable of interest is zero. Finally, we
will prove Proposition F.1.
Proposition F.1. Let Assumptions 2.1, 2.2 and 2.3 be satisfied. For any δ4 ∈ (0, 1), any ε4 > 0, the
components of the gradient of the loss function Ln(Θ)7 evaluated at Θ∗ are bounded from above as

‖∇Ln(Θ∗)‖max ≤ ε4,

with probability at least 1− δ4 as long as

n >
2φ2

max exp(2rTd)

ε24
log
(2k1k2k3

δ4

)
.

F.1 Supporting Lemma for Proposition F.1

Lemma F.1. For any u ∈ [k1], v ∈ [k2] and w ∈ [k3], define the random variable

xuvw = −Φuvw(x) exp
(
−
〈〈

Θ∗, Φ(x)
〉〉)

. (27)

7Ideally, one would consider the gradient of Ln(vec(Θ)). However, for the ease of the exposition we abuse
the terminology.
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We have

E[xuvw] = 0,

where the expectation is with respect to fx(x; Θ∗).

Proof of Lemma F.1. Fix any u ∈ [k1], v ∈ [k2] and w ∈ [k3]. Using (27), we have

E[xuvw] = −
∫
x∈X

fx(x; Θ∗)Φuvw(x) exp
(
−
〈〈

Θ∗, Φ(x)
〉〉)

dx
(a)
=

−
∫
x∈X Φuvw(x)dx∫

y∈X exp
(〈〈

Θ∗, Φ(y)
〉〉)

dy

(b)
= 0,

where (a) follows from the definition of fx(x; Θ∗), and because EUX [Φ(x)] is a constant, and (b)
follows because

∫
x∈X Φ(x)dx = 0 from Definition 2.1

F.2 Proof of Proposition F.1

Proof of Proposition F.1. Fix u ∈ [k1], v ∈ [k2] and w ∈ [k3]. We will start by simplifying the
gradient of the Ln(Θ) evaluated at Θ∗. The component of the gradient of Ln(Θ) corresponding to
Θuvw evaluated at Θ∗ is given by

∂Ln(Θ∗)

∂Θuvw
= − 1

n

n∑
t=1

Φuvw(x(t)) exp
(
−
〈〈

Θ∗, Φ(x(t))
〉〉)

.

Each term in the above summation is distributed as the random variable xuvw (see (27)). The
random variable xuvw has zero mean (see Lemma F.1) and satisfies |xuvw| ≤ φmax exp(rTd) (from
Assumption 2.3 and (15)). Using the Hoeffding’s inequality, we have

P
(∣∣∣∣∂Ln(Θ∗)

∂Θuvw

∣∣∣∣ > ε4

)
< 2 exp

(
− nε24

2φ2
max exp(2rTd)

)
. (28)

The proof follows by using (28) and the union bound over all u ∈ [k1], v ∈ [k2] and w ∈ [k3].

G Proof of Theorem 4.3

In this Section, we will prove Theorem 4.3. We restate the Theorem below and then provide the proof.

Theorem 4.3. Let Θ̂ε,n be an ε-optimal solution of Θ̂n obtained from Algorithm 1 for ε of the order
O(α2λmin). Let Assumptions 2.1, 2.2, 2.3, and 4.1 be satisfied. Recall Property 4.1. Then, for any
δ ∈ (0, 1), we have ‖Θ̂ε,n −Θ∗‖T ≤ α with probability at least 1− δ as long as

n ≥ O
(

k2
1k

2
2

α4λ2
min

log
(k1k2

δ

))
. (13)

The computational cost scales as O
(
k1k2
α2 max

(
k1k2n, c(Λ)

))
where c(Λ) is the cost of projection

onto Λ. Further, ignoring the dependence on δ, λmin, and c(Λ), n in (13) (as well as the associated
computational cost) scales as O

(
poly

(
k1k2
α

))
.

Proof of Theorem 4.3. Let the number of samples satisfy

n ≥ max

{
8φ4

maxk
2
1k

2
2k

2
3

λ2
min

log
(4k2

1k
2
2k

2
3

δ

)
,

29φ2
maxk

2
1k

2
2(rTg)2(1 + rTd)2 exp(4rTd)

α4λ2
min

log
(4k1k2k3

δ

)}
(a)
≈ O

( k2
1k

2
2

α4λ2
min

log
(k1k2

δ

))
≈ O

(
poly

(k1k2

α

))
.
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where (a) follows because k3, φmax, r, g,d = O(1).

Let ∆ = Θ̂ε,n −Θ∗. Define the residual of the first-order Taylor expansion as

δLn(∆,Θ∗) = Ln(Θ∗ + ∆)− Ln(Θ∗)− 〈〈∇Ln(Θ∗),∆〉〉. (29)

Let ∇L(i)
n (Θ∗) denote the ith slice of ∇Ln(Θ∗). From the definition of an ε-optimal solution of Θ̂n,

we have

ε ≥ Ln(Θ̂ε,n)−min
Θ∈Λ
Ln(Θ)

≥ Ln(Θ̂ε,n)− Ln(Θ∗)

(a)
= 〈〈∇Ln(Θ∗), Θ̂ε,n −Θ∗〉〉+ δLn(∆,Θ∗)

(b)
=

k3∑
i=1

〈∇L(i)
n (Θ∗), Θ̂(i)

ε,n −Θ∗(i)〉+ δLn(∆,Θ∗)

(c)

≥ −
k3∑
i=1

R∗i (∇L(i)
n (Θ∗))×R(Θ̂(i)

ε,n −Θ∗(i)) + δLn(∆,Θ∗)

(d)

≥ −2

k3∑
i=1

R∗i (∇L(i)
n (Θ∗))× ri + δLn(∆,Θ∗)

(e)

≥ −2k1k2

k3∑
i=1

gi ××‖∇L(i)
n (Θ∗)‖max × ri + δLn(∆,Θ∗)

(f)

≥ −2k1k2‖∇Ln(Θ∗)‖max

k3∑
i=1

gi × ri + δLn(∆,Θ∗),

where (a) follows from (29), (b) follows from the definitions of a slice of a tensor, tensor inner
product, and Frobenius inner product, (c) follows from the definition of a dual norm, (d) follows
because R(Θ̂

(i)
ε,n − Θ∗(i)) ≤ R(Θ̂

(i)
ε,n) +R(Θ∗(i)) ≤ 2ri from Assumption 2.1, (e) follows from

Property 4.1 in Section 4, and (f) follows because ‖∇L(i)
n (Θ∗)‖max ≤ ‖∇Ln(Θ∗)‖max ∀i ∈ [k3].

Using Proposition E.1 with δ3 = δ
2 , and Proposition F.1 with δ4 = δ

2 , we have the following with
probability at least 1− δ.

ε ≥ −2k1k2ε4 × rTg +
λmin exp(−rTd)

4(1 + rTd)
‖∆‖2T.

This can be rearranged

‖∆‖2T ≤
ε+ 2k1k2ε4 × rTg

λmin
× 4(1 + rTd) exp(rTd). (30)

Now, let

ε =
α2λmin

8(1 + rTd) exp(rTd)
and ε4 =

α2λmin

16k1k2 × rTg × (1 + rTd)× exp(rTd)
. (31)

Plugging in ε and ε4 from (31) in (30), we obtain that

‖∆‖T ≤ α.
The computational cost of the operation Θ(t)−η∇Ln(Θ(t))−Θ in Algorithm 1 is of the order k1k2n
(because k3 = O(1)). Therefore, the computational cost of the step Θ(t+1) ← arg minΘ∈Λ ‖Θ(t) −
η∇Ln(Θ(t)) − Θ‖ of Algorithm 1 is of the order max{k1k2n, c(Λ)}. From Lemma 3.1, with

ε = O(α2λmin), Algorithm 1 returns an ε-optimal solution Θ̂ε,n as long as τ = O
(

poly
(

k1k2
α2λmin

))
.

Therefore, the total computational cost scales as O
(

k1k2
α2λmin

max
(
k1k2n, c(Λ)

))
. Whenever the

cost of projection onto Λ is O
(
poly(k1k2)

)
, we have the total computational cost scaling as

O
(

poly
(
k1k2
α

))
.
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H Computational cost for the example constraints on the natural
parameters

In this Section, we provide Corollary H.1, Corollary H.2, and Corollary H.3. These Corollaries
provide the computational cost to produce an ε-optimal solution of Θ̂n for sparse decomposition of
Θ, low-rank decomposition of Θ, and sparse-plus-low-rank decomposition of Θ. respectively. Recall
the convex relaxations of these constraints from Section 2.1.

H.1 Sparse Decomposition

Corollary H.1. (Sparse decomposition) Suppose Θ∗ has a sparse decomposition i.e., Θ∗ = (Θ∗(1))
and ‖Θ∗(1)‖1,1 ≤ r1. Let Assumptions 2.1, 2.2, 2.3, and 4.1 be satisfied. Let

n ≥ O
(

k2
1k

2
2

α4λ2
min

log
(k1k2

δ

))
.

Let η = 1/k1k2k3φ
2
max exp(r1d1) and Θ(0) = 0. Then, Algorithm 1 is guaranteed to produce an

ε-optimal solution Θ̂ε,n such that ‖Θ̂ε,n−Θ∗‖T ≤ α, with probability at least 1−δ and with number
of computations of the order

O

(
k4

1k
4
2

α6λ3
min

log
(k1k2

δ

))
.

Proof of Corollary H.1 . The computational cost of projecting on the L1,1 ball is O(k1k2) (see [15]
and note k3 = O(1)). The computational cost of the operation Θ(t)− η∇Ln(Θ(t))−Θ is O(k1k2n)
(because k3 = O(1)). Therefore, the computational cost of the step Θ(t+1) ← arg minΘ∈Λ ‖Θ(t) −
η∇Ln(Θ(t))−Θ‖ of Algorithm 1 is O(k1k2n).

From Lemma 3.1, Algorithm 1 returns an ε-optimal solution Θ̂ε,n as long as

τ ≥ 2k1k2φ
2
max exp(rTd)

ε
‖Θ̂n‖2T.

Also, ‖Θ̂n‖2T = ‖Θ̂(1)
n ‖2F ≤ ‖Θ̂

(1)
n ‖21,1 ≤ r2

1. Combining everything, the computational cost scales as

O
(
k21k

2
2n
ε

)
. Using Theorem 4.3, and plugging in n = O

(
k21k

2
2

α4λ2
min

log
(
k1k2
δ

))
and ε = O(α2λmin)

completes the proof.

H.2 Low-rank decomposition

Corollary H.2. (Low-rank decomposition) Suppose Θ∗ has a low-rank decomposition i.e., Θ∗ =
(Θ∗(1)) and ‖Θ∗‖? ≤ r1. Let Assumptions 2.1, 2.2, 2.3, and 4.1 be satisfied. Let

n ≥ O
(

k2
1k

2
2

α4λ2
min

log
(k1k2

δ

))
.

Let η = 1/k1k2k3φ
2
max exp(r1d1) and Θ(0) = 0. Then, Algorithm 1 is guaranteed to produce an

ε-optimal solution Θ̂ε,n such that ‖Θ̂ε,n−Θ∗‖T ≤ α, with probability at least 1−δ and with number
of computations of the order

O

(
k4

1k
4
2

α6λ3
min

log
(k1k2

δ

))
.

Proof of Corollary H.2 . The computational cost of projecting on the nuclear ball is
O(k1k2 min{k1, k2}) (see [23] and note k3 = O(1)). The computational cost of the opera-
tion Θ(t) − η∇Ln(Θ(t)) − Θ is O(k1k2n) because (k3 = O(1)). Therefore, the computa-
tional cost of the step Θ(t+1) ← arg minΘ∈Λ ‖Θ(t) − η∇Ln(Θ(t)) − Θ‖ of Algorithm 1 is
O(k1k2 max{min{k1, k2}, n}).
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From Lemma 3.1, Algorithm 1 returns an ε-optimal solution Θ̂ε,n scales as

τ ≥ 2k1k2φ
2
max exp(rTd)

ε
‖Θ̂n‖2F.

Also, ‖Θ̂n‖2F ≤ ‖Θ̂n‖2? ≤ r2
1. Combining everything, the computational cost is of the order

O
(
k21k

2
2 max{min{k1,k2},n}

ε

)
. Using Theorem 4.3, and plugging in n = O

(
k21k

2
2

α4λ2
min

log
(
k1k2
δ

))
and ε = O(α2λmin) completes the proof.

H.3 Sparse-plus-low-rank decomposition

Corollary H.3. (Sparse-plus-low-rank decomposition) Suppose Θ∗ has a sparse-plus-low-rank
decomposition i.e., Θ∗ = (Θ∗(1),Θ∗(2)) such that ‖Θ∗(1)‖1,1 ≤ r1 and ‖Θ∗(2)‖? ≤ r2. Let
Assumptions 2.1, 2.2, 2.3, and 4.1 be satisfied. Let

n ≥ O
(

k2
1k

2
2

α4λ2
min

log
(k1k2

δ

))
.

Let η = 1/k1k2k3φ
2
max exp(r1d1 +r2d2) and Θ(0) = 0. Then, Algorithm 1 is guaranteed to produce

an ε-optimal solution Θ̂ε,n such that ‖Θ̂ε,n − Θ∗‖T ≤ α, with probability at least 1 − δ and with
number of computations of the order

O

(
k4

1k
4
2

α6λ3
min

log
(k1k2

δ

))
.

Proof of Corollary H.3 . The proof follows directly from the proofs of Corollary H.1 and Corollary
H.2.

I Examples

In this Section, we provide a more elaborate discussion on the examples of natural parameters and
statistics from Section 2.1.

I.1 Sparse-plus-low-rank decomposition

The natural statistic Φ of an exponential family is such that for any i1 6= i2 ∈ [k1], j1 6= j2 ∈
[k2], l1 6= l2 ∈ [k3], Φi1j1l1 6= Φi2j2l2 . Further, an exponential family is minimal if there does
not exist a non-zero tensor U ∈ Rk1×k2×k3 such that

∑
i∈[k1],j∈[k2],l∈[k3] UijlΦijl(x) is equal to

a constant for all x ∈ X . However, for the sparse-plus-low-rank decomposition, it is desirable to
let Φ(1) = Φ(2) (see [8, 37]). In this scenario, there exists a non-zero tensor U ∈ Rk1×k2×k3 such
that

∑
i∈[k1],j∈[k2],l∈[k3] UijlΦijl(x) = 0 for all x ∈ X for e.g., this is true if U(1) = −U(2). In

this situation, we say an exponential family is minimal if there does not exist a non-zero tensor
U ∈ Rk1×k2×k3 such that

∑
l∈[k3] U

(l) 6= 0 as well as
∑
i∈[k1],j∈[k2],l∈[k3] UijlΦijl(x) is equal to

a constant for all x ∈ X . Therefore, it is often convenient to represent the tensor U in terms of a
matrix and define minimality of an exponential family in terms of this new matrix.

I.2 Assumptions 2.1 and 2.2

While we expect the constants r in Assumption 2.1 and d in Assumption 2.2 to be O(1) for most
applications, the sample complexity and the computational complexity in Theorem 4.3 would still be
O
(

poly
(
k1k2
α

))
as long as r and d are O

(
log(k1k2)

)
.

I.3 Polynomial natural statistic

Suppose the natural statistics are polynomials of x with maximum degree l, i.e.,
∏
i∈[p] x

li
i such that

li ≥ 0 ∀i ∈ [p] and
∑
i∈[p] li ≤ l.

28



• Let X = [0, b] for b ∈ R. We will first show that φmax = 2bl. We have

‖Φ(x)‖max = max
u∈[k1],v∈[k2],w∈[k3]

|Φuvw(x)|

(a)
= max

u∈[k1],v∈[k2],w∈[k3]

∣∣∣Φuvw(x)− EUX [Φuvw(x)]
∣∣∣

(b)

≤ max
u∈[k1],v∈[k2],w∈[k3]

∣∣∣Φuvw(x)
∣∣∣+ max

u∈[k1],v∈[k2],w∈[k3]

∣∣∣EUX [Φuvw(x)]
∣∣∣

≤ 2 max
x∈X

max
u∈[k1],v∈[k2],w∈[k3]

∣∣∣Φuvw(x)
∣∣∣ ≤ 2bl.

where (a) follows from Definition 2.1 and (b) follows from the triangle inequality.
• Suppose Θ∗ has a sparse decomposition i.e., Θ∗ = (Θ∗(1)) and ‖Θ∗(1)‖1,1 ≤ r1. The dual norm

of the matrix L1,1 norm is the matrix maximum norm. Then, if X = [0, b] for b ∈ R,

R∗1(Φ(1)(x)) = ‖Φ(1)(x)‖max = ‖Φ(x)‖max ≤ φmax = 2bl.

• Suppose Θ∗ has a low-rank decomposition i.e., Θ∗ = (Θ∗(1)) and ‖Θ∗‖? ≤ r1. The dual norm
of the matrix nuclear norm is the matrix spectral norm. Then,

R∗1(Φ(1)(x)) = ‖Φ(1)(x)‖.

Let l = 2, and X = B(0, b). Observe that by writing Φ(1)(x) = x̃ x̃T where x̃ = (1, x1, · · · , xp),
we have

‖Φ(1)(x)‖ ≤ 2
(

1 +
∑
i∈[p]

x2
i

)
≤ 2(1 + b2).

• Suppose Θ∗ has a sparse-plus-low-rank decomposition i.e., Θ∗ = (Θ∗(1),Θ∗(2)) such that
‖Θ∗(1)‖1,1 ≤ r1 and ‖Θ∗(2)‖? ≤ r2. The dual norm of the matrix L1,1 norm is the matrix
maximum norm and the dual norm of the matrix nuclear norm is the matrix spectral norm. Let
l = 2, and X = B(0, b). Then,

R∗(Φ(x)) ≤ (‖Φ(1)(x)‖max, ‖Φ(2)(x)‖) ≤ (2b2, 2 + 2b2).

I.4 Trigonometric natural statistic

Suppose the natural statistics are sines and cosines of x with l different frequencies, i.e.,
sin(

∑
i∈[p] lixi) ∪ cos(

∑
i∈[p] lixi) such that li ∈ [l] ∪ {0}.

• Let X ⊂ Rp. We will first show that φmax = 2. We have

‖Φ(x)‖max = max
u∈[k1],v∈[k2],w∈[k3]

|Φuvw(x)|

(a)
= max

u∈[k1],v∈[k2],w∈[k3]

∣∣∣Φuvw(x)− EUX [Φuvw(x)]
∣∣∣

(b)

≤ max
u∈[k1],v∈[k2],w∈[k3]

∣∣∣Φuvw(x)
∣∣∣+ max

u∈[k1],v∈[k2],w∈[k3]

∣∣∣EUX [Φuvw(x)]
∣∣∣

≤ 2 max
x∈X

max
u∈[k1],v∈[k2],w∈[k3]

∣∣∣Φuvw(x)
∣∣∣ ≤ 2.

where (a) follows from Definition 2.1 and (b) follows from the triangle inequality.
• Suppose Θ∗ has a sparse decomposition i.e., Θ∗ = (Θ∗(1)) and ‖Θ∗(1)‖1,1 ≤ r1. The dual norm

of the matrix L1,1 norm is the matrix maximum norm. Then, for any X ⊂ Rp,

R∗1(Φ(1)(x)) = ‖Φ(1)(x)‖max = ‖Φ(x)‖max ≤ φmax = 2.
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I.5 Combinations of polynomial and trigonometric statistics

Suppose the natural statistics are combinations of polynomials of x with maximum degree l, i.e.,∏
i∈[p] x

li
i such that li ≥ 0 ∀i ∈ [p] and

∑
i∈[p] li ≤ l as well as sines and cosines of x with l̃ different

frequencies, i.e., sin(
∑
i∈[p] lixi) ∪ cos(

∑
i∈[p] lixi) such that li ∈ [l̃] ∪ {0}.

• Let X = [0, b] for b ∈ R. From Appendix I.3 and Appendix I.4, it is easy to verify that
φmax = max{2, 2bl}.

• Suppose Θ∗ has a sparse decomposition i.e., Θ∗ = (Θ∗(1)) and ‖Θ∗(1)‖1,1 ≤ r1. The dual norm
of the matrix L1,1 norm is the matrix maximum norm. Then, if X = [0, b] for b ∈ R, it is easy to
verify that

R∗1(Φ(1)(x)) = ‖Φ(1)(x)‖max = ‖Φ(x)‖max ≤ φmax = max{2, 2bl}.

J Property 4.1 for norms of interest

In this Section, we show that the g defined in Property 4.1 in Section 4 is 1 for the entry-wise Lp,q
norm (p, q ≥ 1), the Schatten p-norm (p ≥ 1), and the operator p-norm (p ≥ 1).

J.1 The entry-wise Lp,q norm

Let R̃(·) denote the entry-wise Lp,q norm for some p, q ≥ 1. We will show that for any matrix
M ∈ Rk1×k2

R̃(M) ≤ ‖M‖max × k
1
p

1 k
1
q

2 .

By the definition of the entry-wise Lp,q norm, we have

R̃(M) =

( ∑
j∈[k2]

( ∑
i∈[k1]

|Mij |p
) q

p
) 1

q

≤
( ∑
j∈[k2]

( ∑
i∈[k1]

‖M‖pmax

) q
p
) 1

q

= k
1
p

1 k
1
q

2 ‖M‖max ≤ k1k2‖M‖max.

J.2 The Schatten p-norm

Let R̃(·) denote the Schatten p-norm for some p ≥ 1. We will show that for any matrix M ∈ Rk1×k2

R̃(M) ≤ ‖M‖max ×
√

min{k1, k2}k1k2.

Let the rank of M be denoted by r and the singular values of M be denoted by σi(M) for i ∈ [r].
By the definition of the Schatten p-norm, we have

R̃(M) =

(∑
i∈[r]

σpi (M)

) 1
p (a)

≤
∑
i∈[r]

σi(M)
(b)

≤
√
rk1k2‖M‖max

(c)

≤
√

min{k1, k2}k1k2‖M‖max ≤ k1k2‖M‖max

where (a) follows because of the monotonicity of the Schatten p-norms, (b) follows because ‖M‖? ≤√
rk1k2‖M‖max, and (c) follows because r ≤ min{k1, k2}.

J.3 The operator p-norm

Let R̃(·) denote the operator p-norm for some p ≥ 1. We will show that for any matrix M ∈ Rk1×k2

R̃(M) ≤ ‖M‖max × k
1
p

1 k
1− 1

p

2 .

Let q = p
p−1 . For i ∈ k1, let [M]i denote the ith row of M. By the definition of the operator p-norm,

we have

R̃(M) = max
y:‖y‖p=1

‖My‖p
(a)

≤ k
1
p

1 max
y:‖y‖p=1

‖My‖∞
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(b)

≤ k
1
p

1 max
y:‖y‖p=1

max
i∈[k1]

‖[M]i‖q‖y‖p

≤ k
1
p

1 max
i∈[k1]

‖[M]i‖q

(c)

≤ k
1
p

1 k
1
q

2 max
i∈[k1]

‖[M]i‖∞

= k
1
p

1 k
1− 1

p

2 ‖M‖max ≤ k1k2‖M‖max

where (a) follows because ‖v‖p ≤ m
1
p ‖v‖∞ for any vector v ∈ Rm and p ≥ 1, (b) follows from the

definition of the infinity norm of a vector and using the Hölder’s inequality, and (c) follows because
‖v‖q ≤ m

1
q ‖v‖∞ for any vector v ∈ Rm and q ≥ 1.
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