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ABSTRACT

Predicting physical properties of materials from their crystal structures is a fun-
damental problem in materials science. In peripheral areas such as the prediction
of molecular properties, fully connected attention networks have been shown to
be successful. However, unlike these finite atom arrangements, crystal structures
are infinitely repeating, periodic arrangements of atoms, whose fully connected
attention results in infinitely connected attention. In this work, we show that this
infinitely connected attention can lead to a computationally tractable formulation,
interpreted as neural potential summation, that performs infinite interatomic po-
tential summations in a deeply learned feature space. We then propose a simple
yet effective Transformer-based encoder architecture for crystal structures called
Crystalformer. Compared to an existing Transformer-based model, the proposed
model requires only 29.4% of the number of parameters, with minimal modifica-
tions to the original Transformer architecture. Despite the architectural simplicity,
the proposed method outperforms state-of-the-art methods for various property
regression tasks on the Materials Project and JARVIS-DFT datasets.

1 INTRODUCTION

Predicting physical properties of materials from their crystal structures without actually synthesizing
materials is important for accelerating the discovery of new materials with desired properties (Pollice
et al., 2021). While physical simulation methods such as density functional theory (DFT) calculations
can accurately simulate such properties, their high computational load largely limits their applicability,
for example, in large-scale screening of potentially valuable materials. Thus, high-throughput machine
learning (ML)-based approaches are actively studied (Pollice et al., 2021; Choudhary et al., 2022).

Since crystal structures and molecules are both 3D arrangements of atoms, they share similar
challenges in their encoding for property prediction, such as permutation invariance and SE(3)
invariance (i.e., rotation and translation invariance). Hence, similar approaches using graph neural
networks (GNNs) are popular for invariantly encoding these 3D structures (Reiser et al., 2022).

Against this mainstream of GNN variants, approaches based on Transformer encoders (Vaswani
et al., 2017) are emerging recently and showing superior performance in property prediction of
molecules (Ying et al., 2021; Liao & Smidt, 2023) and crystal structures (Yan et al., 2022) . Particu-
larly, Graphormer by Ying et al. (2021) adopts fully connected attention between atoms in a molecule,
by following the standard Transformer architecture, and showed excellent prediction performance.

Crystal structures, however, have a unique structural feature —periodicity— that produces infinitely
repeating periodic arrangements of atoms in 3D space. Because of the periodicity, fully connected
attention between atoms in a crystal structure leads to a non-trivial formulation, namely infinitely
connected attention (see Fig. 1), which involves infinite series over repeated atoms. The previous
method, called Matformer (Yan et al., 2022), avoids such a formulation and presents itself rather
as a hybrid of Transformer and message passing GNN. Thus, whether the standard Transformer
architecture is effectively applicable to crystal structure encoding is still an open question.

In this work, we interpret this infinitely connected attention as a physics-inspired infinite summation
of interatomic potentials performed deeply in abstract feature space, which we call neural potential
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Figure 1: 2D diagrams of crystal structure and infinitely connected attention.

summation. In this view, attention weights are formulated as interatomic distance-decay potentials,
which make the infinitely connected attention approximately tractable. By using this formulation,
we propose a simple yet effective Transformer encoder for crystal structures called Crystalformer,
establishing a novel Transformer framework for periodic structure encoding. Compared to the
previous work by Yan et al. (2022), we aim to develop the formalism for more faithful Transformer-
based crystal structure encoding. The resulting architecture is shown to require only 29.4% of the
total number of parameters of their Matformer to achieve better performance, while sharing useful
invariance properties. We also point out that a direct extension of Graphormer (Ying et al., 2021)
for periodic structures leads to inadequate modeling of periodicity, which the proposed framework
overcomes. We further show that the proposed framework using the infinitely connected attention
formulation is beneficial for efficiently incorporating long-range interatomic interactions.

Quantitative comparisons using Materials Project and JARVIS-DFT datasets show that the proposed
method outperforms several neural-network-based state-of-the-art methods (Xie & Grossman, 2018;
Schütt et al., 2018; Chen et al., 2019; Louis et al., 2020; Chen & Ong, 2022; Choudhary & DeCost,
2021; Yan et al., 2022) for various crystal property prediction tasks. We release our code online.

2 PRELIMINARIES

We begin with introducing the unit cell representation of crystal structures and recapping standard
self-attention in Transformer encoders with relative position representations.

2.1 CRYSTAL STRUCTURES

Assume a periodic structure system on a lattice in 3D space, which consists of finite sets of points and
their attributes, P = {p1,p2, ...,pN} and X 0 = {x0

1,x
0
2, ...,x

0
N}, in a unit cell as well as lattice

vectors, l1, l2, l3 ∈ R3, defining the unit cell translations. As a crystal structure, each pi ∈ R3 and
x0
i ∈ Rd represent the Cartesian coordinate and species of an atom in the unit cell, respectively. Any

point in the system is then located at a translated position, or an image, of a unit-cell point as

pi(n) = pi + n1l1 + n2l2 + n3l3, (1)

where three integers in n = (n1, n2, n3) ∈ Z3 define a 3D translation with l1, l2, l3. See Fig. 1 (left)
for an illustration. For brevity, let i denote the index of the i-th unit-cell point without translation,
and let i(n) denote the index of a translated image of i (including i itself as i(0)).

∑
n denotes the

infinite series over Z3. Indices j and j(n) are used similarly.

2.2 SELF-ATTENTION WITH RELATIVE POSITIONS

Self-attention (Vaswani et al., 2017) with relative position representations (Shaw et al., 2018) trans-
forms an ordered finite sequence of feature vectors to another, as (x1, ...,xN ) → (y1, ...,yN ):

yi =
1

Zi

N∑
j=1

exp
(
qTi kj/

√
dK + ϕij

)(
vj +ψij

)
, (2)
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where query q, key k, value v are linear projections of input x, Zi =
∑N

j=1 exp(q
T
i kj/

√
dK + ϕij)

is the normalizer of softmax attention weights, and dK is the dimensionality of k and q. Since
each input xi is position-agnostic and so are pairwise similarity qTi kj/

√
dK and value vj , they are

augmented with scalar ϕij and vector ψij biases that encode/embed the relative position, j − i.

3 CRYSTALFORMER

We consider a problem of estimating physical properties of a given crystal structure. Following Xie
& Grossman (2018) and Schütt et al. (2018), we represent a physical state of the whole structure as a
finite set of abstract state variables for the atoms in the unit cell, X = {x1,x2, ...,xN}, assuming that
any atom in the structure shares the state with its corresponding unit-cell atom, as xi(n) = xi . Given
input state X 0 that only symbolically represents the species of the unit-cell atoms, we evolve state X 0,
through repeated interactions between atom-wise states, to another X ′ reflecting the target properties
for prediction. To this end, we propose an attention operation for state X , which is induced by the
input structure specified with the unit cell points {p1,p2, ...,pN} and lattice vectors {l1, l2, l3}.

3.1 INFINITELY CONNECTED ATTENTION AS NEURAL POTENTIAL SUMMATION

Inspired by Graphormer (Ying et al., 2021)’s fully connected attention for atoms in a molecule,
we formulate similar dense attention for a crystal structure for its state evolution. Compared to
finite graph representations in GNNs, this dense formulation more faithfully represents the physical
phenomena occurring inside crystal structures and should provide a good starting point for discussion.
Because of the crystal periodicity, such attention amounts to pairwise interactions between the unit-
cell atoms i as queries and all the infinitely repeated atoms j(n) in the structure as keys/values as

yi =
1

Zi

N∑
j=1

∑
n

exp
(
qTi kj(n)/

√
dK + ϕij(n)

) (
vj(n) +ψij(n)

)
, (3)

where Zi =
∑N

j=1

∑
n exp(qTi kj(n)/

√
dK + ϕij(n)). Notice kj(n) = kj and vj(n) = vj since

xj(n) = xj . Fig. 1 (right) illustrates these dense connections. We regard this infinitely connected
attention in Eq. (3) as a neural potential summation. In physical simulations, energy calculations
typically involve infinite summation

∑
j(n) ̸=i Φ(∥pj(n) − pi∥)vj(n) for potential function Φ(r) and

physical quantity v (e.g., electric charge). Analogously, Eq. (3) computes the state of each unit-cell
atom, yi, by summing abstract influences, (vj(n) + ψij(n)), from all the atoms in the structure,
j(n), with their weights provided by abstract interatomic scalar potentials, exp(qTi kj(n)/

√
dK +

ϕij(n))/Zi. Since qTi kj(n)/
√
dK and vj(n) are position-agnostic, they are augmented with relative

position encodings, ϕij(n) and ψij(n), to reflect the interatomic spatial relation (i.e., pj(n) − pi).
Thus, exp(ϕij(n)) is interpreted as a spatial dependency factor of the interatomic potential between i
and j(n), and ψij(n) as an abstract position-dependent influence on i from j(n).

Compared to the standard finite-element self-attention in Eq. (2), the main challenge in computing
Eq. (3) is the presence of infinite series

∑
n owing to the crystal periodicity.

Pseudo-finite periodic attention. With simple algebra (see Appendix A), we can rewrite Eq. (3) as

yi =
1

Zi

N∑
j=1

exp
(
qTi kj/

√
dK + αij

) (
vj + βij

)
, (4)

where

αij = log
∑
n

exp
(
ϕij(n)

)
, (5)

βij =
1

Zij

∑
n

exp
(
ϕij(n)

)
ψij(n), (6)

and Zij = exp(αij). Eq. (4) now resembles the standard finite-element attention in Eq. (2), if αij

and βij are viewed as quantities encoding the relative position between i and j in finite element set
{1, 2, ..., N}. In reality, αij is the log-sum of spatial dependencies exp(ϕij(n)) between i and the j’s

3



Published as a conference paper at ICLR 2024

Linear Linear Linear

Scaled dot product

Softmax

+

𝑋𝑋 = [𝒙𝒙1 … 𝒙𝒙𝑁𝑁]

𝑄𝑄  𝐾𝐾  𝑉𝑉  

𝑄𝑄𝑇𝑇𝐾𝐾/ 𝑑𝑑𝐾𝐾

𝐴𝐴

𝑌𝑌 = [𝒚𝒚1 … 𝒚𝒚𝑁𝑁]

∑𝑗𝑗 𝑃𝑃𝑖𝑖𝑗𝑗𝑽𝑽𝑖𝑖𝑗𝑗
′

𝑩𝑩

𝑃𝑃

+
𝑽𝑽 ′  

𝜷𝜷𝑖𝑖𝑗𝑗𝛼𝛼𝑖𝑖𝑗𝑗

1 2 3 4 5
1

2

3

4

5

Periodic edge encoding
using 𝒫𝒫 and 𝒍𝒍1, 𝒍𝒍2, 𝒍𝒍3Broadcast

𝑽𝑽 

Query 𝑖𝑖

Key/Value 𝑗𝑗

Periodic spatial encoding
using 𝒫𝒫 and 𝒍𝒍1, 𝒍𝒍2, 𝒍𝒍3

Matrix

Rank-3 tensor

𝒍𝒍3

𝒍𝒍2

Fe

Fe

N
Fe

Fe
(Fe Fe Fe Fe N)

Spatial info
(𝒫𝒫, 𝒍𝒍1, 𝒍𝒍2, 𝒍𝒍3)

Species info

𝒍𝒍1

Crystal
structure

Spatial info
(𝒫𝒫, 𝒍𝒍1, 𝒍𝒍2, 𝒍𝒍3)

Figure 2: Pseudo-finite periodic attention with periodic spatial and edge encoding in a matrix-
tensor diagram. Scalar αij and vector βij integrate the spatial relations between unit-cell atom i
and the j’s all repeated atoms, allowing the infinitely connected attention to be performed as standard
fully connected attention for finite unit-cell atoms. (Unlike usual notation, X,Q,K, V, Y here denote
column-vector-based feature matrices for better consistency with the notation in the main text.)

all images. Likewise, βij is the softmax-weighted average of position-dependent influences ψij(n)

on i from the j’s all images, weighted by their spatial dependencies. We call αij and βij the periodic
spatial encoding and periodic edge encoding, respectively, and call the infinitely connected attention
with these encodings the pseudo-finite periodic attention. If αij and βij are tractably computed, this
attention can be performed similarly to the standard finite-element attention, as shown in Fig. 2.

Distance decay attention. In the physical world, spatial dependencies between two atoms tend to
decrease as their distance increases. To approximate such dependencies with exp(ϕij(n)), we adopt
the following Gaussian distance decay function as a simple choice among other possible forms.

exp(ϕij(n)) = exp
(
−∥pj(n) − pi∥2/2σ2

i

)
(7)

Here, σi > 0 is a scalar variable controlling the Gaussian tail length. When σi is not too large,
series

∑
n in Eqs. (5) and (6) converges quickly as ∥n∥ grows with a provable error bound (see

Appendix B), thus making αij and βij computationally tractable. To ensure the tractability, we model
σi as a function of current state qi with a fixed upper bound, as σi < σub (see Appendix C for the
complete definition of σi). We found that, although allowing relatively long tails (e.g., σub = 7Å)
is still tractable, the use of a shorter tail bound (e.g., 2Å) empirically leads to better results. The
methodology to eliminate the bound for σi is further discussed in Sec. 6.

Value position encoding for periodicity-aware modeling. Value position encoding ψij(n) in Eq. (3)
represents position-dependent influences on i from j(n), and is another key to properly encoding
periodic structures. In fact, attention without ψij(n) cannot distinguish between crystal structures
consisting of the same single unit-cell atom with different lattice vectors. This is obvious since Eq. (3)
with ψij(n) = 0 and N = 1 degenerates to y1 = v1, which is completely insensible to the input
lattice vectors (see Appendix D for more discussions). As a simple choice forψij(n), we borrow edge
features used by existing GNNs (Schütt et al., 2017; Xie & Grossman, 2018). These edge features
are Gaussian radial basis functions b(r) = (b1, b2, ..., bK)T defined as

bk(r) = exp
(
−(r − µk)

2/2(rmax/K)2
)
, (8)

where µk = krmax/K, and K and rmax are hyperparameters. Intuitively, vector b(r) quantizes scalar
distance r via soft one-hot encoding using K bins equally spaced between 0 and rmax. We provide
ψij(n) as a linear projection of b(r) with trainable weight matrix WE as

ψij(n) =WEb
(
∥pj(n) − pi∥

)
. (9)

Implementation details. When computing αij and βij in Eqs. (5) and (6), the Gaussian functions in
series

∑
n mostly decays rapidly within a relatively small range of ∥n∥∞ ≤ 2 (i.e., supercell of 53
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Figure 3: Network architecture of Crystalformer.

unit cells), but structures with small unit cells often require larger ranges. We thus adaptively change
the range of n for each i to sufficiently cover a radius of 3.5σi in Å. This is done by setting the range
of n1 as −max(R1, 2) ≤ n1 ≤ max(R1, 2) where R1 = ⌈3.5σi∥l2 × l3∥/ det(l1, l2, l3)⌉ (⌈·⌉ is
the ceiling function) and doing similarly for n2 and n3. For Eq. (8) we use K = 64 and rmax = 14Å.

3.2 NETWORK ARCHITECTURE

As illustrated in Fig. 3, the Crystalformer architecture basically follows the original Transformer
encoder architecture (Vaswani et al., 2017) with stacked self-attention blocks, each consisting of two
residual blocks connecting a multi-head attention (MHA) layer and a shallow feed-forward network
(FFN). As an important difference from the original architecture, our self-attention block entirely
removes Layer Normalization. We found that a normalization-free architecture with an improved
weight initialization strategy proposed by Huang et al. (2020) is beneficial to stabilize the training.

Given a set of trainable embedding vectors (atom embeddings) representing the species of the unit-
cell atoms as initial state X 0, Crystalformer transforms it to abstract state X ′ through four stacked
self-attention blocks using the attention formulation provided in Sec. 3.1. The atom-wise states
in X ′ are then aggregated into a single vector via the global average pooling. This material-wise
feature is further converted through a FFN of linear, ReLU, and final linear layers to predict the target
properties. More architectural details are provided in Appendix E.

4 RELATED WORK

Invariant encoders. Crystal structure encoders for property prediction must satisfy various invariance
properties against artificial differences in data representations. The most elementary one is the
permutation invariance, which was initially studied by Zaheer et al. (2017) and Qi et al. (2017)
and is widely adopted into the GNN framework. Our method is permutation-invariant thanks to
the Transformer architecture. The translation and rotation invariance, or the SE(3) invariance, are
also essential for ML on 3D point clouds, including molecules and materials. Our method simply
employs the fully distance-based modeling (Xie & Grossman, 2018) to ensure the SE(3) invariance.
Recent point-cloud encoders, such as convolution-based (Zhang et al., 2019; KIM et al., 2020;
Xu et al., 2021) and Transformer-based (Qin et al., 2022; Yu et al., 2023) methods, exploit richer
information while maintaining the SE(3) invariance. These techniques can be possibly incorporated
to our framework with proper extensions for crystal structures. Lastly, the periodic invariance (i.e.,
supercell invariance and periodic-boundary shift invariance) has recently been pointed out by Yan
et al. (2022) as a property particularly important for crystal structure encoders. Our formalism
provides a periodic-invariant encoder, if α and β are computed until convergence (see Appendix F).
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GNNs for crystal structure encoding. The initial successful work on encoding crystal structures
with neural networks can be traced back to CGCNN by Xie & Grossman (2018). Their multi-
edge distance graph represents crystal structures as finite graphs, and has provided a foundation
for the GNN framework for crystal structures. Almost concurrently, Schütt et al. (2018) extended
their molecular encoder, SchNet, for crystal structures using a similar approach. Subsequently,
several GNNs adopting similar approaches have been proposed for universal property prediction not
limited to energy prediction. MEGNet (Chen et al., 2019) proposed to sequentially update atom,
bond, and global state attributes through GNN layers. GATGNN (Louis et al., 2020) incorporated
attention mechanisms into convolution and pooling layers of the GNN framework. iCGCNN (Park &
Wolverton, 2020) and ALIGNN (Choudhary & DeCost, 2021) proposed 3-body interaction GNNs
to exploit interatomic angular information, while GeoCGNN (Cheng et al., 2021) used rotation-
invariant plane-wave-based edge features to encode directional information. Kosmala et al. (2023)
recently proposed Ewald message passing for exploiting long-range interatomic interactions with
GNNs. PotNet (Lin et al., 2023) proposed a new type of physics-informed edge feature that embeds
the infinite summation value of several known interatomic potentials and allows a standard fully-
connected GNN to be informed of crystal periodicity. (We more discuss PotNet in Appendix G.)
Apart from material-level property prediction, M3GNet (Chen & Ong, 2022) extended MEGNet
for interatomic potential prediction. Our focus is apart from the line of these studies in the GNN
framework, and we aim to establish an effective Transformer framework for crystal structure encoding
in a standard fashion of the Transformer using fully connected attention.

Transformers. The Transformer was originally proposed by Vaswani et al. (2017) for machine
translation in natural language processing (NLP), as a sequence-to-sequence model in an encoder-
decoder architecture. Since then, it has been widely applied to various tasks in many fields, such
as NLP, computer vision, and speech processing (Lin et al., 2022), using its encoder-decoder or
encoder-only architecture. Compared to standard convolutional neural network encoders, Transformer
encoders have an outstanding ability to model complex interdependencies among input elements (e.g.,
resolving ambiguous meanings of words in sentence context) and have great flexibility in handling
irregularly structured or unordered data such as point clouds (Zeng et al., 2022). These capabilities
should benefit the encoding of crystal structures and molecules because atoms in these structures
interact with each other in complex ways to determine their states, and also they are structured in 3D
space rather than regularly ordered. While there have been attempts to partly replace key modules
of GNNs with attention mechanisms, Ying et al. (2021) first presented a complete Transformer
architecture (Graphormer) for graph encoding and showed state-of-the-art performance for molecular
property prediction. Later, Yan et al. (2022) proposed Matformer as a Transformer-inspired encoder
for crystal structures. Matformer fixes the periodic invariance break in existing GNNs by using radius
nearest neighbors (radius-NN) instead of k-NN for graph construction. Note that works on language
models for materials by Wei et al. (2022) and Fu et al. (2023) are clearly distinguished from ours.

Graphormer (Ying et al., 2021) is specifically designed for finite graphs such as molecules and
does not ensure distance-decay attention, which leads to its inapplicability to periodic structures.
Moreover, even an extended model mending this problem suffers from another modeling problem
of periodicity, such as discussed in Sec.3.1. The problem is that Graphormer encodes all the spatial
information, including distance edge features, as only softmax biases (i.e., ϕij in Eq. (2)) and does
not use value position encoding (i.e., ψij). Such a formulation is fine for molecules but fails to
distinguish between crystal structures of the same single atom in differently sized unit cells. We will
show that this modeling issue leads to performance degradation in Sec. 5.4.

Matformer (Yan et al., 2022) employs finite graphs with radius-NN edges similarly to GNNs. Their
abstract feature-based attention does not ensure distance decay and is thus inapplicable to the infinitely
connected edges. Moreover, they modify the original Transformer in various ways, by extending
query/key/value by concatenation as qij = (qi|qi|qi),kij = (ki|kj |eij),vij = (vi|vj |eij) (eij an
edge feature), changing the scaled dot product to Hadamard product, softmax to sigmoid function, etc.
We consider that the lack of explicit distance decay attention required such modifications, as they
report worse results with standard softmax attention. They also propose self-connecting edges (i.e.,
a part of the orange dashed edges in Fig. 1 (right)) although unsuccessful. By contrast, we employ
much denser edges made possible by explicit distance-decay attention. This formulation leads to an
architectural framework closely following the original Transformer (see Figs. 2 and 3), specifically
its relative-position-based (Shaw et al., 2018) and normalization-free (Huang et al., 2020) variants.
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5 EXPERIMENTS

We perform regression tasks of several important material properties, comparing with several neural-
network-based state-of-the-art methods (Xie & Grossman, 2018; Schütt et al., 2018; Chen et al.,
2019; Louis et al., 2020; Chen & Ong, 2022; Choudhary & DeCost, 2021; Yan et al., 2022; Lin et al.,
2023). Following our most relevant work by Yan et al. (2022), we use the following datasets with
DFT-calculated properties.

Materials Project (MEGNet) is a collection of 69,239 materials from the Materials Project database
retrieved by Chen et al. (2019). Following Yan et al. (2022), we perform regression tasks of formation
energy, bandgap, bulk modulus, and shear modulus.

JARVIS-DFT (3D 2021) is a collection of 55,723 materials by Choudhary et al. (2020). Following
Yan et al. (2022), we perform regression tasks of formation energy, total energy, bandgap, and energy
above hull (E hull). For bandgap, the dataset provides property values obtained by DFT calculation
methods using the OptB88vdW functional (OPT) or the Tran-Blaha modified Becke-Johnson potential
(MBJ). While MBJ is considered more accurate (Choudhary et al., 2020), we use both for evaluation.

Thanks to the great effort by Choudhary & DeCost (2021) and Yan et al. (2022), many relevant
methods are evaluated on these datasets with consistent and reproducible train/validation/test splits.
We partly borrow their settings and results for a fair comparison. Doing so also helps to reduce the
computational load needed for comparisons.

5.1 TRAINING SETTINGS

For each regression task in the Materials Project dataset, we train our model by optimizing the mean
absolute error loss function via stochastic gradient descent (SGD) with a batch size of 128 materials
for 500 epochs. We initialize the attention layers by following Huang et al. (2020). We use the Adam
optimizer (Kingma & Ba, 2015) with weight decay (Loshchilov & Hutter, 2019) of 10−5 and clip
the gradient norm at 1. For the hyperparameters of Adam we follow Huang et al. (2020); we use the
initial learning rate α of 5× 10−4 and decay it according to α

√
4000/(4000 + t) by the number of

total training steps t, and use (β1, β2) = (0.9, 0.98). For test and validation model selection, we use
stochastic weight averaging (SWA) (Izmailov et al., 2018) by averaging the model weights for the
last 50 epochs with a fixed learning rate. For the JARVIS-DFT dataset, we use increased batch size
and total epochs, as specified in Appendix H, for its relatively smaller dataset size.

5.2 CRYSTAL PROPERTY PREDICTION

Tables 1 and 2 summarize the mean absolute errors (MAEs) for totally nine regression tasks of the
Materials Project and JARVIS-DFT datasets, comparing our method with eight existing methods 1.
Our method consistently outperforms all but PotNet in all the tasks, even without SWA (i.e., evaluating
a model checkpoint with the best validation score). Meanwhile, our method is competitive to PotNet.
This is rather remarkable, considering that 1) PotNet exploits several known forms of interatomic
potentials to take advantage of a strong inductive bias while we approximate them with simple
Gaussian potentials, and that 2) our model is more efficient as shown in the next section. It is also
worth noting that our method performs well for the bulk and shear modulus prediction tasks, even
with limited training data sizes without any pre-training, which supports the validity of our model.

5.3 MODEL EFFICIENCY COMPARISON

Table 3 summarizes the running times 2 and model sizes, comparing with PotNet (Lin et al., 2023)
and Matformer (Yan et al., 2022) as the current best GNN-based and Transformer-based models.
Notably, the total number of parameters in our model is only 48.6% and 29.4% of the number in

1Except for M3GNet, their MAEs are cited from previous works (Choudhary & DeCost, 2021; Yan et al.,
2022; Lin et al., 2023). We ran M3GNet by using the code provided in Materials Graph Library (https:
//github.com/materialsvirtuallab/matgl).

2We evaluated the running times of all the methods by using a single NVIDIA RTX A6000 and a single CPU
core on the same machine. We used the codes of PotNet and Matformer in the AIRS OpenMat library (Zhang
et al., 2023). The inference time of PotNet is dominated by the precomputation of potential summations (309 ms).
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Table 1: MAE comparison on the Materials Project (MEGNet) dataset. The three numbers below
each property name indicate the sizes of training, validation, and testing subsets. The results of the
proposed method without stochastic weight averaging (SWA) are also shown. The numbers in bold
indicate the best results and the numbers with underline indicate the second best results.

Formation energy Bandgap Bulk modulus Shear modulus
60000 / 5000 / 4239 60000 / 5000 / 4239 4664 / 393 / 393 4664 / 392 / 393

Method eV/atom eV log(GPa) log(GPa)

CGCNN (Xie & Grossman, 2018) 0.031 0.292 0.047 0.077
SchNet (Schütt et al., 2018) 0.033 0.345 0.066 0.099
MEGNet (Chen et al., 2019) 0.030 0.307 0.060 0.099
GATGNN (Louis et al., 2020) 0.033 0.280 0.045 0.075
M3GNet Chen & Ong (2022) 0.024 0.247 0.050 0.087
ALIGNN (Choudhary & DeCost, 2021) 0.022 0.218 0.051 0.078
Matformer (Yan et al., 2022) 0.021 0.211 0.043 0.073
PotNet (Lin et al., 2023) 0.0188 0.204 0.040 0.065

Crystalformer (proposed) 0.0186 0.198 0.0377 0.0689
Crystalformer w/o SWA 0.0198 0.201 0.0399 0.0692

Table 2: MAE comparison on the JARVIS-DFT 3D 2021 dataset. The bandgap prediction is
evaluated with the ground truth values provided by two DFT calculation methods, OPT and MBJ.

Form. energy Total energy Bandgap (OPT) Bandgap (MBJ) E hull
44578 / 5572 / 5572 44578 / 5572 / 5572 44578 / 5572 / 5572 14537 / 1817 / 1817 44296 / 5537 / 5537

Method eV/atom eV/atom eV eV eV

CGCNN 0.063 0.078 0.20 0.41 0.17
SchNet 0.045 0.047 0.19 0.43 0.14
MEGNet 0.047 0.058 0.145 0.34 0.084
GATGNN 0.047 0.056 0.17 0.51 0.12
M3GNet 0.039 0.041 0.145 0.362 0.095
ALIGNN 0.0331 0.037 0.142 0.31 0.076
Matformer 0.0325 0.035 0.137 0.30 0.064
PotNet 0.0294 0.032 0.127 0.27 0.055

Crystalformer (proposed) 0.0306 0.0320 0.128 0.274 0.0463
Crystalformer w/o SWA 0.0319 0.0342 0.131 0.275 0.0482

Table 3: Efficiency comparison. We show the average training time per epoch, total training time,
and average testing time per material, all evaluated on the JARVIS-DFT formation energy dataset
using a single NVIDIA A6000 GPU. We also show the total and number of parameters and number
of parameters per self-attention or graph convolution block.

Model Type Time/Epoch Total Test/Mater. # Params. # Params./Block

PotNet GNN 43 s 5.9 h 313 ms 1.8 M 527 K
Matformer Transformer 60 s 8.3 h 20.4 ms 2.9 M 544 K
Crystalformer Transformer 32 s 7.2 h 6.6 ms 853 K 206 K
—– w/o ψ / β Transformer 12 s 2.6 h 5.9 ms 820 K 198 K

Table 4: Ablation studies on the validation sets of the JARVIS-DFT 3D 2021 dataset.
Settings ψ # Blocks Form. E. Total E. Bandgap (OPT) Bandgap (MBJ) E hull

Proposed ✓ 4 0.0301 0.0314 0.133 0.287 0.0487
Simplified 4 0.0541 0.0546 0.140 0.308 0.0517

PotNet and Matformer, respectively. We believe that our neural potential summation induces a strong
inductive bias and leads to a more compact model. Although our total training time is relatively long,
our inference speed is the fastest. Note that PotNet reduces its training time by precomputing infinite
potential summations for training data. For reference, we also show the efficiency of our model
without ψ/β, indicating that the computations for β largely dominate the entire training process.

5.4 ABLATION STUDIES

We compare the proposed model with its simplified version removing value position encoding ψ, as a
variant close to Graphormer (Ying et al., 2021). Table 4 shows consistent performance improvements
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by the inclusion of ψ, most notably on the formation and total energy predictions but less so on the
others. In Appendix I, we discuss this behavior in terms of the definitions of these metrics, and also
show further performance improvements by changing the number of self-attention blocks.

6 LIMITATIONS AND DISCUSSION

Angular and directional information. We currently adopt fully distance-based formulations for
position econdings ϕ and ψ to ensure SE(3) invariance. Although straightforward, such formulations
limit the expressive power and the addition of angular/directional information is preferred (Pozd-
nyakov & Ceriotti, 2022). Some existing works on SE(3)-invariant GNNs explore this direction by
using 3-body interactions (Park & Wolverton, 2020; Choudhary & DeCost, 2021; Chen & Ong, 2022)
or plane-wave-based edge features (Cheng et al., 2021). Others propose SE(3)-equivariant encoding
techniques for a similar purpose (Liao & Smidt, 2023; Duval et al., 2023). Extending Crystalformer
to a 3-body, higher-order Transformer (Kim et al., 2021), incorporating plane wave features into ψ,
or introducing SE(3)-equivariant transformations are possible future directions.

Forms of interatomic potentials. Explicitly exposing distance-decay functions in attention helps the
physical interpretation of our model. Our current setting limits them to the Gaussian decay function,
intending to approximate the sum of various potentials in the real world, such as the Coulomb
potential (1/r) and the van der Waals potential (1/r6). Despite the simplicity, the experiments show
empirically good results, and we believe that the overall Transformer architecture (i.e., MHA, FFN,
and repeated attention blocks) helps to learn more complex potential forms than the Gaussian function.
Still, we can explore other choices of functions by explicitly incorporating known potential forms
into our model. This can be done by assigning different forms of exp(ϕ) for different heads of MHA,
which possibly leads to further performance gains or model efficiency. We leave it as our future work.

Attention in Fourier space for long-range interactions. Gaussian tail length σi in Eq. (7) is
upper-bounded by a certain constant, σub ≃ 2Å, to avoid excessively long-tailed functions, thus
making α and β computationally tractable. Despite the empirical success, such a bound possibly
overlooks the presence of long-range interactions, such as the Coulomb potential. Here, our infinite-
series formulation becomes advantageous for computing such long-range interactions, with the help
of reciprocal space. Reciprocal space, or Fourier space, is analogous to the frequency domain of
time-dependent functions, and appears in the 3D Fourier transform of spatial functions. When Eq. (5)
is written as αij = log f(pj − pi) with spatial function f(r), f is a periodic function that can be
expressed in reciprocal space via Fourier series. In reciprocal space, f ’s infinite series of Gaussian
functions of distances in real space becomes an infinite series of Gaussian functions of spatial
frequencies. (See Appendix J for detailed formulations.) These two expressions are complementary
in that short-tail and long-tail potentials decay rapidly in real and reciprocal space, respectively. We
use these two expressions for parallel heads of each MHA, by computing their α and β differently in
real or reciprocal space. To ensure the tractability in reciprocal space, σi should be lower-bounded as
σi > σlb. By setting the bounds for the two spaces as σlb < σub, this dual-space MHA can cover the
entire range of interactions in theory. As a tentative experiment, we evaluate this dual-space variant of
Crystalformer on the JARVIS-DFT dataset. Results in Table A6 in Appendix J.4 show that adding the
reciprocal-space attention results in worse performance for formation and total energy, comparable
for bandgap, and much better for E hull predictions. Adaptively switching each MHA head between
the two attention forms depending on the task will lead to stable improvements.

7 CONCLUSIONS

We have presented Crystalformer as a Transformer encoder for crystal structures. It stands on fully
connected attention between periodic points, namely infinitely connected attention, with physically-
motivated distance-decay attention to ensure the tractability. The method has shown successful
results in various property prediction tasks with high model efficiency. We have further discussed
its extension to a reciprocal space representation for efficiently computing long-range interatomic
interactions. We hope that this simple and physically-motivated Transformer framework provides a
perspective in terms of both ML and materials science to promote further interdisciplinary research.
As Transformer-based large language models are revolutionizing AI, how Crystalformer with large
models can absorb knowledge from large-scale material datasets is also an ambitious open question.
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A DERIVATION OF PSEUDO-FINITE PERIODIC ATTENTION

Starting from Eq. (3), we can show that

yi =
1

Zi

N∑
j=1

∑
n

exp
(
qTi kj(n)/

√
dK + ϕij(n)

)(
vj(n) +ψij(n)

)
(A1)

=
1

Zi

N∑
j=1

∑
n

exp
(
qTi kj/

√
dK + ϕij(n)

)(
vj +ψij(n)

)
(A2)

=
1

Zi

N∑
j=1

exp
(
qTi kj/

√
dK

)∑
n

exp(ϕij(n))(vj +ψij(n)) (A3)

=
1

Zi

N∑
j=1

exp
(
qTi kj/

√
dK

)
exp(αij)(vj +

∑
n exp(ϕij(n))ψij(n)

exp(αij)
) (A4)

=
1

Zi

N∑
j=1

exp
(
qTi kj/

√
dK + αij

)
(vj + βij), (A5)

which equals Eq. (4).

B BOUND FOR APPROXIMATION ERROR

The computations of αij and βij involve the following infinite summation:

Zij =
∑
n

exp

(
−∥pj + Ln− pi∥2

2σ2
i

)
(A6)

where L = [ℓ1, ℓ2, ℓ3]. As explained in the implementation details (Sec. 3.1), we approximate Zij by
finite summation:

Z̃ij =

R1∑
n1=−R1

R2∑
n2=−R2

R3∑
n3=−R3

exp

(
−∥pj + Ln− pi∥2

2σ2
i

)
, (A7)

where ranges R1, R2, R3 ∈ Z+ are adaptively determined so that the summed points (i.e., pj +
Ln − pi) sufficiently cover a spherical radius of cσi in 3D space (c is set to 3.5) while ensuring
R1, R2, R3 ≥ 2. This derives an upper bound for the residual error between Zij and Z̃ij as

ϵij ≜ Zij − Z̃ij ≤
∑

r∈Λij ,∥r∥≥R

exp
(
−∥r∥2

)
, (A8)

where Λij = { 1√
2σi

(Ln+ pj − pi)|n ∈ Z3}, R = max(c/
√
2, R′), R′ = min{ 1√

2σi
∥pj + Ln−

pi∥ |n ∈ Z3,max(|n1|, |n2|, |n3|) > 2}.
Here, Deconinck et al. (2004) prove the following inequality:∑

r∈Λ,∥r∥≥R

∥r∥p exp
(
−∥r∥2

)
≤ d+ p

2

(
2

ρ

)d

Γ

(
d

2
,
(
R− ρ

2

)2
)
, (A9)

where Λ = {Xn + x|n ∈ Zd}, X ∈ Rd×d is a full-rank matrix, x ∈ Rd, ρ = min{∥Xn∥ |n ∈
Zd,n ̸= 0}, and Γ(z, x) =

∫∞
x
tz−1e−tdt, the incomplete Gamma function.

Substituting p = 0, d = 3, and X = 1√
2σi
L into this inequality derives a bound for our residual error:

ϵij ≤
3

2

(
2

ρ

)3

Γ

(
3

2
,
(
R− ρ

2

)2
)
, (A10)

where ρ = min{ 1√
2σi
∥Ln∥ |n ∈ Zd,n ̸= 0}.
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C DEFINITION OF σi.

To increase the expressive power of the model, we treat tail length σi of the Gaussian potential in
Eq. (7) as a variable parameterized via current state qi. Here, the exponent of the Gaussian function,
ϕij(n) = −∥pj(n) − pi∥2/2σ2

i , is intended to represent the relative position encoding by Shaw et al.
(2018), whose original form is ϕij = qTi aij with embedding aij of relative position j − i. As such a
linear form of qi should ease the training of the network, we model σ−2

i instead of σi as a function:
σ−2
i = r−2

0 ρ((qTi w −m)/s) (A11)

where r0 is a hyperparameter determining a distance scale of spatial dependencies in Å, w is a
trainable weight vector, m and s are constant parameters, and ρ : R→ R+ is a function to ensure a
positive value for σ−2

i .

The adjustment of r0 could be difficult, since it has to bridge between network’s internal states (i.e.,
qTi w) and physical distances (i.e., σi) across different scales. To ease it, we design ρ so that the initial
values of ρ and hence σi are distributed around 1 and r0, respectively. To this end, we initialize m
and s as the mean and standard deviation of the values of qTi w computed for the mini-batch samples
at the initial training step. Then, for ρ we introduce a shifted exponential linear unit (shifted ELU):

ρ(x; a, b) = (1− b)ELU(ax/(1− b)) + 1, (A12)
where ELU(x) = exp(x) − 1 if x < 0 and ELU(x) = x otherwise. Assuming that x initially
followsN (0, 1), shifted ELU ρ(x; a, b) is designed to be 1) ρ(0) = 1 so that σi is initially distributed
around r0, 2) lower-bounded as ρ(x) > b so that σi < r0/

√
b to avoid excessively long tails, and 3)

linear response with derivative a for x ≥ 0 to increase the training stability. We empirically set the
hyperparameters to (r0, a, b) = (1.4, 0.1, 0.5).

D NECESSITY OF VALUE POSITION ENCODING

Shaw et al. (2018) discuss that value position encoding is required depending on the application, and
we show that crystal structure encoding is indeed such a case.

As mentioned in the main texts, Eq. (3) without value position encoding ψij(n) cannot distinguish
between crystal structures of the same single atom in differently sized unit cells. This can be
confirmed by substituting X = {x1} or N = 1 into Eq. (4) as below.

y1 =
1

Z1
exp

(
qT1 k1/

√
dK + α11

)
(v1 + β11) (A13)

= v1 + β11 (A14)

= v1 +

∑
n exp(ϕ11(n))ψ11(n)∑

n exp(ϕ11(n))
(A15)

Note that the lattice information (i.e., ℓ1, ℓ2, ℓ3) is used only in key position encoding ϕ11(n) and
value position encoding ψ11(n) for α11 and β11, and does not exist in q,k,v in the initial state. The
above equations show that when N = 1, the weight of (v1+β11) is canceled out by Z1 and therefore
the lattice information is only present in β11. Without value position encoding (i.e., ψ11(n) = 0), the
attention formula becomes y1 = v1, showing that result y1 does not reflect how the atom is repeated
in 3D space by ℓ1, ℓ2, ℓ3.

From a materials science perspective, crystal structures of single unit-cell atoms are called monatomic
structures and represent an important class of existing materials. Well-known monatomic structures
of the same atom include graphite and diamond. They have the single unit-cell atom of Carbon but
have different lattice vectors and thus different crystal structures. These differences make graphite a
soft substance used for pencil tops while making diamond the hardest substance in the world. The
value position encoding is thus required to distinguish such important materials.

E DETAILED NETWORK ARCHITECTURE

Table A1 shows the detailed specifications of the proposed Crystalformer architecture. Note that
changing the ReLU activation function to GELU in the FFNs of the self-attention blocks did not lead
to meaningful performance improvements.
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Table A1: Detailed network architecture.

Blocks Output dims Specifications

Atom embedding (128, N) {eatom
k |k = AtomicNumber(i), i = 1, 2, ..., N}

where eatom’s are initialized by N (0, 128−0.5)
Self-attention block × 4 (128, N) Model dim d: 128

Number of heads: 8
Query/Key/Value dims: 16
FFN: Linear-ReLU-Linear (dims: 128 → 512 → 128)
Activation func: ReLU
Normalization: No

Pooling 128 Global average pooling

Feed forward 1
Linear with output dim: 128
ReLU
Linear with output dim: 1 (target property dim.)

F INVARIANCE PROPERTIES

F.1 DEFINITIONS

Following notation by Yan et al. (2022), we represent a crystal structure with a tuple of three matrices,
(X,P,L), where X = [x1, ...,xN ] ∈ Rd×N is the states of N unit-cell atoms, P = [p1, ...,pN ] ∈
R3×N is the 3D Cartesian coordinates of these atoms, and L = [ℓ1, ℓ2, ℓ3] ∈ R3×3 is the lattice
vector matrix. The coordinates of the N unit-cell points are defined to be within the unit cell region
defined by L, that is, they have fractional coordinates of L−1P ∈ [0, 1)3×N . When the overall
network architecture is seen as function f(X,P,L) → X , they satisfy the following invariance
properties.

Definition 1: Unit cell permutation invariance. A function f : (X,P,L)→ X is unit cell per-
mutation invariant such that for any permutation function σ : {1, 2, .., N} → {1, 2, .., N}, we have
f(X,P,L) = f(σ(X), σ(P ), L), where σ(X) = [xσ(1), ...,xσ(N)] and σ(P ) = [pσ(1), ...,pσ(N)].

Definition 2: Unit cell E(3) invariance. A function f : (X,P,L)→ X is unit cell E(3) invariant
such that for all R ∈ R3×3, RT = R−1, det(R) = ±1, and b ∈ R3, we have f(X,P,L) =
f(X,T P̄ ,RL), where T = [R, b] ∈ R3×4 is a rigid transformation, R is a rotation matrix, b is a
translation vector, and P̄ ∈ R4×N is the homogeneous coordinates of P in 3D space. (Note that the
definition gives unit cell SE(3) invariance when R is restricted to rotation matrix, as det(R) = 1.)

Due to the arbitrary choice of extracting a unit cell structure from the infinitely expanding crystal
structure in 3D space, there is an infinite number of invariants (X̂, P̂ , L̂) that represent the same
crystal structure as (X,P,L). Similarly to the notation by Yan et al. (2022), we define such a unit-cell
slice of a given crystal structure as

(X̂, P̂ , L̂) = Φ(X,P,L,k,p). (A16)

The slice is parameterized via a periodic boundary scale, k ∈ Z3
+, that defines a supercell of L as

L̂ = [k1ℓ1, k2ℓ2, k3ℓ3], (A17)

and a periodic boundary shift, p ∈ R3, that provides a corner point of the periodic boundaries. The
unit-cell atoms in the slice are then provided as a collection of the atoms contained in new unit cell L̂
with the scaled and shifted periodic boundaries as

P̂ = {pi + Ln− p|L̂−1(pi + Ln− p) ∈ [0, 1)3, i ∈ {1, ..., N},n ∈ Z3}, (A18)

X̂ = {xi|L̂−1(pi + Ln− p) ∈ [0, 1)3, i ∈ {1, ..., N},n ∈ Z3}. (A19)

The periodic invariance described by Yan et al. (2022) is then summarized as follow.
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Definition 3: Periodic invariance. A unit cell E(3) invariant function f : (X,P,L) → X is
periodic invariant if f(X,P,L) = f(Φ(X,P,L,k,p)) holds for all k ∈ Z3

+ and p ∈ R3.

F.2 PROOFS OF INVARIANCE

Proof of unit cell permutation invariance. Let us represent overall network transformation f as

f(X,P,L) = o(h(g(X,P,L))), (A20)

where X ′ = g(X,P,L) is the transformation by stacked self-attention blocks, z = h(X ′) is a
global pooling operation, and o(z) is the final output network given global feature vector z. We can
easily show that g is permutation equivariant such that σ(X ′) = g(σ(X), σ(P ), L) holds for any
permutation σ. (This is obvious from that fact that substituting i← σ(i) and j(n)← σ(j)(n) into
the right-hand side of Eq. (3) yields yσ(i) and thus the attention operation by Eq. (3) is permutation
equivariant.) We can then prove that f(σ(X), σ(P ), L) = o(h(σ(X ′))) = o(h(X)) = f(X,P,L)
holds if h is a permutation invariant pooling operation such as the global mean or max pooling.

Proof of unit cell E(3) invariance. In f , the spatial information (i.e., unit-cell atom positions P
and lattice vectors L) is only used by the position encodings, ϕij(n) and ψij(n), in Eq. (3). Currently,
they are defined to simply encode relative distances as

ϕij(n) = ϕ(∥pi − pj(n)∥), (A21)

ψij(n) = ψ(∥pi − pj(n)∥), (A22)

thus invariant to rigid transformation (P ′, L′)← (T P̄ ,RL) as

∥p′i − p′j(n)∥ = ∥p
′
i − (p′j + L′n)∥ (A23)

= ∥(Rpi + b)− (Rpj + b+RLn)∥ (A24)
= ∥R(pi − pj(n))∥ (A25)

= ∥pi − pj(n)∥. (A26)

Note that our framework allows the use of directional information by using relative position (pi −
pj(n)) instead of relative distance ∥pi − pj(n)∥, provided that ϕ(r) and ψ(r) are rotation invariant.

Proof of periodic invariance. It is sufficient to show that Eq. (3) is invariant for minimum repeatable
unit-cell representation (X,P,L) and its invariant representation (X̂, P̂ , L̂) = Φ(X,P,L,k,p).
Periodic invariance of Eq. (3) is intuitively understandable, because Eq. (3) recovers the original,
infinitely expanding crystal structure from its unit cell representation and attends to all the atoms in it
with relative position encoding. A formal proof is provided below.

Comparing (X,P,L) and (X̂, P̂ , L̂), each unit-cell point i ∈ {1, ..., N} in (X,P,L) is populated
to k1k2k3 unit-cell points in (X̂, P̂ , L̂), which we index by i[m] wherem = (m1,m2,m3)

T ∈ Z3

and 0 ≤ m1 ≤ k1 − 1, 0 ≤ m2 ≤ k2 − 1, 0 ≤ m3 ≤ k3 − 1 (or simply 0 ≤ m ≤ k − 1). These
populated points i[m] in (X̂, P̂ , L̂) have the same state:

x̂i[m] = xi, (A27)

and periodically shifted positions:

p̂i[m] = pi + L(m+ ci)− p, (A28)

where ci ∈ Z3 is a constant chosen appropriately for each i so that p̂i[m] for allm: 0 ≤m ≤ k − 1

reside within the unit cell region of L̂ (i.e., L̂−1p̂i[m] ∈ [0, 1)3).

By simply applying Eq. (3) for (X̂, P̂ , L̂), we obtain

ŷi =
1

Ẑi

k1k2k3N∑
j=1

∑
n

exp
(
q̂Ti k̂j/

√
dK + ϕ̂ij(n)

)(
v̂j + ψ̂ij(n)

)
, (A29)
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where q̂, k̂, and v̂ are key, query, and value of x̂ in X̂ . Scalar ϕ̂ij(n) and vector ψ̂ij(n) encode the
interatomic spatial relation as ϕ(p̂j(n)−p̂i) and ψ(p̂j(n)−p̂i), respectively, where p̂j(n) = p̂j+L̂n.
We rewrite Eq. (A29) by rewriting populated point i as i[m] and j as j[m′], obtaining

ŷi[m] =
1

Ẑi[m]

N∑
j=1

∑
m′

∑
n

exp
(
q̂Ti[m]k̂j[m′]/

√
dK + ϕ̂i[m]j[m′](n)

)(
v̂j[m′] + ψ̂i[m]j[m′](n)

)
,

(A30)
where

∑
m′ is short for

∑k1−1
m′

1=0

∑k2−1
m′

2=0

∑k3−1
m′

3=0 with m′ = (m′
1,m

′
2,m

′
3)

T . Since x̂i[m] in X̂

equals xi in X , we substitute q̂i[m] = qi, k̂j[m′] = kj , and v̂j[m′] = vj to obtain

ŷi[m] =
1

Ẑi[m]

N∑
j=1

∑
m′

∑
n

exp
(
qTi kj/

√
dK + ϕ̂i[m]j[m′](n)

)(
vj + ψ̂i[m]j[m′](n)

)
. (A31)

Similarly to Eq. (4), this infinitely connected attention can be written in the following pseudo-finite
periodic attention form:

ŷi[m] =
1

Ẑi[m]

N∑
j=1

exp
(
qTi kj/

√
dK + α̂i[m]j

)
(vj + β̂i[m]j), (A32)

where
α̂i[m]j = log

∑
n

∑
m′

exp
(
ϕ̂i[m]j[m′](n)

)
, (A33)

β̂i[m]j =
1

Ẑi[m]j

∑
n

∑
m′

exp(ϕ̂i[m]j[m′](n))ψ̂i[m]j[m′](n), (A34)

and Ẑi[m]j = exp(α̂i[m]j). Here, ϕ̂i[m]j[m′](n) encodes the interatomic spatial relation:

p̂j[m′](n) − p̂i[m] = (p̂j[m′] + L̂n)− p̂i[m] (A35)

= (pj + Lm′ + Lcj − p+ L̂n)− (pi + Lm+ Lci − p) (A36)

= pj + (L̂n+ Lm′) + L(cj −m− ci)− pi. (A37)
Notice here that

L̂n+ Lm′ = (n1k1 +m′
1)ℓ1 + (n2k2 +m′

2)ℓ2 + (n3k3 +m′
3)ℓ3 (A38)

= Ln′, (A39)

where n′ = (n1k1 +m′
1, n2k2 +m′

2, n3k3 +m′
3)

T ∈ Z3. Thus, we obtain
p̂j[m′](n) − p̂i[m] = pj + L(n′ + c)− pi, (A40)

where c = (cj −m− ci) ∈ Z3. Because
∑

n

∑
m′ for terms of n′ is equivalent to infinite series∑

n′ over all n′ ∈ Z3, we obtain the following equivalence:

α̂i[m]j = log
∑
m′

∑
n

exp
(
ϕ(p̂j[m′](n) − p̂i[m])

)
(A41)

= log
∑
n′

exp
(
ϕ(pj + L(n′ + c)− pi)

)
(A42)

= log
∑
n′

exp
(
ϕij(n′+c)

)
. (A43)

Therefore, α̂i[m]j converges to the same value of αij in Eq. (5), if they converge. Likewise, β̂i[m]j

converges to the same value of βij in Eq. (6). Provided that α̂i[m]j = αij and β̂i[m]j = βij , the
right-hand side of Eq. (A32) equals the right-hand side of Eq. (4), thus proving ŷi[m] = yi.

At the overall architecture level, the above result indicates that applying the stacked self-attention
blocks for an invariant representation, as X̂ ′ = g(Φ(X,P,L,k,p)), gives k1k2k3 duplicates of
X ′ = g(X,P,L). For these X̂ ′ and X ′, pooling operation h such as global mean or max pooling
holds the invariance: h(X̂ ′) = h([X ′, ..., X ′]) = h(X ′). Thus, overall network transformation f is
periodic invariant.
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G DIFFERENCE FROM POTNET

PotNet is a GNN-based crystal-structure encoder proposed by Lin et al. (2023). PotNet shares
similarity with Crystalformer in that it uses infinite summations of interatomic potentials to model
the periodicity of crystal structures. However, in addition to the obvious difference of being a GNN
or a Transformer, there is a more fundamental or conceptual difference in their representations of
potential summations. To see this, let us discuss how these methods perform state evolution.

State evolution in PotNet. Using our notation, the PotNet’s state evolution can be essentially
expressed as

x′
i ← g

xi,

N∑
j=1

f(xi,xj , eij)

 , (A44)

where f and g are learnable GNN layers that perform message passing on all pairs of hidden state
variables (xi,xj) and edge features eij between them. Thus, PotNet presents itself in a standard
GNN framework for fully connected graphs of nodes of unit-cell atoms. The most important part of
PotNet is its edge feature eij , which is an embedding of an infinite summation of scalar potentials.
This summation is defined for each unit-cell atom pair (i, j) as

Sij =
∑
n

Φ(∥pj(n) − p∥) (A45)

using a scalar potential function Φ(r) : R+ → R. PotNet exploits three known forms of actual
interatomic potentials, that is, Coulomb potential 1/r, London dispersion potential 1/r6, and Pauli
repulsion potential e−αr, via their summation:

Φ(r) = κ1/r + κ2/r
6 + κ3e

−αr, (A46)

where κ1, κ2, κ3, α are hyperparameters. Edge feature eij is then provided as its embedding expanded
and encoded via radial basis functions (RBF) and multi-layer perceptron (MLP) as

eij = MLP(RBF(Sij)). (A47)

Here, we see that PotNet exploits the infinite summations of known interatomic potentials to derive
physics- and periodicity-informed edge features eij , to be processed in a standard GNN framework.

State evolution in Crystalformer. The core part of our state evolution is the attention operation
provided in Eq. (3) and written again below:

yi =
1

Zi

N∑
j=1

∑
n

exp(qTi kj/
√
dK + ϕij(n))(vj +ψij(n)) (A48)

As described in Sec. 3.1, this attention operation, as a whole, is interpreted as an infinite summation
of interatomic potentials defined and performed in an abstract feature space.

One may find some similarities of our αij and βij with Sij and eij of PotNet, because they enable a
standard fully-connected Transformer or a fully-connected GNN to incorporate the crystal periodicity.
However, our αij and βij are rather bi-products of the explicit potential summation in feature space
performed as the infinitely connected attention, whereas Sij is a potential summation calculated in
potential space before the GNN message passing (typically as preprocessing) and eij is an abstract
embedding of Sij .

Summary.

• PotNet proposes a new type of physics-informed edge feature by using the values of infinite
summations of interatomic potentials. This edge feature implicitly embeds the information
of crystal periodicity and can thus allow a standard fully-connected GNN to be informed of
crystal periodicity.

• Crystalformer deeply fuses the calculations of infinite potential summations with neural
networks, by performing the infinitely connected attention as an infinite potential summation
expressed in abstract feature space. This attention operation can be performed in a standard
fully-connected Transformer by using proposed position encoding αij and βij .
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H HYPERPARAMETERS FOR THE JARVIS-DFT DATASET

Compared to the Materials Project dataset, the JARVIS-DFT dataset is relatively small in both
its training set size and average system size (i.e., average number of atoms in unit cells, which is
approximately 10 atoms in the JARVIS-DFT while 30 in the Materials Project). To account for these
differences, we increase the batch size and number of total epochs as shown in Table A2.

Table A2: Hyperparameters for the JARVIS-DFT dataset.

Form. energy Total energy Bandgap (OPT) Bandgap (MBJ) E hull

Training set size 44578 44578 44578 14537 44296
Batch size 256 256 256 256 256
Total epochs 800 800 800 1600 800

I DETAILED ABLATION STUDIES

I.1 PHYSICAL INTERPRETATIONS OF RESULTS IN TABLE 4

Table 4 indicates the inclusion of the value position encoding yields greater improvements for the
formation energy and total energy while relatively limited improvements for the bandgap and energy
above hull (E hull). This result can be understood from the fact that the formation energy and total
energy are absolute energy metrics, whereas the bandgap and energy above hull are relative energy
metrics that evaluate gaps between two energy levels, as ∆E = E1 − E0.

The accurate prediction of such energy gaps is generally difficult, because it needs accurate predictions
of both E1 and E0. Furthermore, even when an algorithmic improvement in the prediction method
leads to improvements in absolute energy prediction (e.g., formation energy prediction), it does not
necessarily lead to improvements in energy gap prediction. Specifically, assume that an improved
algorithm predicts energies E′

1 = E1 +∆1 and E′
0 = E0 +∆0 as better predictions than E1 and

E0, respectively. These improvements can directly lead to lower prediction errors of absolute energy
metrics. However, when improvements ∆1 and ∆0 are made by the same mechanism, it may be
possible that ∆1 ≃ ∆0 so that they are canceled out in energy gaps ∆E′ = E′

1 − E′
0.

We conjecture that the limited improvements in the bandgap and energy above hull prediction are due
to these difficulties of energy gap prediction.

I.2 CHANGING THE NUMBER OF SELF-ATTENTION BLOCKS

We further study the effects of the number of self-attention blocks. We here utilize the simplified
variant because of its relatively good performance and high efficiency (Table 3). The results in
Table A3 suggest that the performance moderately mounts on a plateau with four or more blocks.

Table A3: Ablation studies by changing the number of self-attention blocks.
Settings # Blocks Form. E. Total E. Bandgap (OPT) Bandgap (MBJ) E hull

Simplified 1 0.0664 0.0669 0.171 0.368 0.1313
2 0.0627 0.0609 0.153 0.329 0.0965
3 0.0558 0.0569 0.145 0.320 0.0676
4 0.0541 0.0546 0.140 0.308 0.0517
5 0.0525 0.0543 0.143 0.309 0.0484
6 0.0503 0.0533 0.140 0.323 0.0430
7 0.0498 0.0515 0.131 0.298 0.0407

Given the good performance of the seven-block setting, we test a seven-block variant of the proposed
full model on the Materials Project and JARVIS-DFT datasets. The results in Tables A4 and A5 show
that the larger model achieves slightly better accuracies, especially when the training set is large
enough. Investigating how the performance changes with larger-scale datasets (Kirklin et al., 2015;
Draxl & Scheffler, 2019) is left as a future topic.
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Table A4: Performance of the larger model on the Materials Project (MEGNet) dataset.
Formation energy Bandgap Bulk modulus Shear modulus
60000 / 5000 / 4239 60000 / 5000 / 4239 4664 / 393 / 393 4664 / 392 / 393

4 blocks (default) 0.0186 0.198 0.0377 0.0689
7 blocks 0.0185 0.184 0.0372 0.0717

Table A5: Performance of the larger model on the JARVIS-DFT 3D 2021 dataset.
Form. energy Total energy Bandgap (OPT) Bandgap (MBJ) E hull

44578 / 5572 / 5572 44578 / 5572 / 5572 44578 / 5572 / 5572 14537 / 1817 / 1817 44296 / 5537 / 5537

4 blocks (default) 0.0306 0.0320 0.128 0.274 0.0463
7 blocks 0.0297 0.0312 0.127 0.275 0.0461

J RECIPROCAL SPACE ATTENTION FOR LONG-RANGE INTERACTIONS

J.1 BACKGROUND

Before presenting our attention formulation in reciprocal space, we briefly introduce its background
from physical simulations. In physical simulations, the difficulty of computing long-range inter-
actions in periodic systems is well known. Given potential function Φ(r) and physical quantities
{v1, ..., vN} (e.g., electric charges) associated with unit-cell atoms, these simulations typically involve
the summation of interatomic interactions:

Vi =
∑

j(n)̸=i

Φ(∥pj(n) − pi∥)vj , (A49)

where
∑

j(n)̸=i sums for all the atoms j(n) in the structure, as
∑N

j=1

∑
n, except for j(n) = i. Its

direct computation expanding n causes inefficiency for long-range Φ(r) due to slow convergence.
Thus, DFT calculations often employ an efficient calculation method called Ewald summation.

In Ewald summation, potential Φ(r) is represented as the sum of short-range and long-range terms as

Φ(r) = Φshort(r) + Φlong(r). (A50)

In this manner, the summation of interactions is divided into two parts as

Vi =
∑

j(n) ̸=i

Φshort(∥pj(n) − pi∥)vj +
∑

j(n) ̸=i

Φlong(∥pj(n) − pi∥)vj . (A51)

The first part is the sum of fast-decay potentials in distance, which can be efficiently computed
directly in real space. On the other hand, long-range potentials have concentrated low-frequency
components and thus have fast decay in frequency. Therefore, the second part can be efficiently
computed in reciprocal space via its Fourier series expansion.

J.2 RECIPROCAL SPACE ATTENTION

Kosmala et al. (2023) recently proposed Ewald message passing in the GNN framework, which
performs graph convolutions in both real and reciprocal space. We also import the idea of Ewald
summation into our Transformer framework.

To obtain reciprocal-space representations of αij and βij in Eqs. (5) and (6), it is sufficient to derive
for infinite series

∑
n exp(ϕij(n))ψij(n) in the right-hand side of Eq. (6). We rewrite it as f(pj−pi)

using the following 3D spatial function:

f(r) =
∑
n

exp
(
ϕi(r + n1l1 + n2l2 + n3l3)

)
ψi(r + n1l1 + n2l2 + n3l3). (A52)

With this spatial function, αij and βij are expressed as

αij = log f(pj − pi|ψi ← 1), (A53)

βij =
1

Zij
f(pj − pi), (A54)
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where f(·|ψi ← 1) denotes substitution ψi ← 1 into Eq. (A52).

Since f is a periodic function, it can be alternatively expressed via Fourier series expansion with f ’s
Fourier coefficient F (ωm) as

f(r) =
∑

m∈Z3

F (ωm) exp
(
iωm · r

)
, (A55)

where i is the imaginary unit and

ωm = m1l̄1 +m2l̄2 +m3l̄3 (A56)

is a 3D vector analogous to the angular frequency of the Fourier transform. ωm is defined with three
integersm = (m1,m2,m3) ∈ Z3 with reciprocal lattice vectors:

(l̄1, l̄2, l̄3) = (
2π

V
l2 × l3,

2π

V
l3 × l1,

2π

V
l1 × l2) (A57)

where V = (l1× l2) · l3 is the cell volume. Fourier coefficient F (ωm) is obtained via 3D integration:

F (ωm) =
1

V

∫∫∫
R3

cell

f(r) exp
(
− iωm · r

)
dxdydz (A58)

=
1

V

∫∫∫
R3

exp
(
ϕi(r)

)
ψi(r) exp

(
− iωm · r

)
dxdydz, (A59)

where R3
cell ⊂ R3 is the 3D domain of the unit cell. Intuitively, F (ωm) with small or large ∥m∥

represents a low or high frequency component of f(r).

Computing αij and βij with Eqs. (A53) and (A54) in reciprocal space using Fourier series in
Eq. (A55) is effective when potential function exp(ϕij(n)) is long-tailed, because F (ωm) in such a
case decays rapidly as ∥m∥ increases.

J.3 GAUSSIAN DISTANCE DECAY ATTENTION IN RECIPROCAL SPACE.

The reciprocal-space representation of αij in the case of the Gaussian distance decay function in
Eq. (7) is expressed as follows.

αij = log

[
(2πσ̄2

i )
3/2

V

∑
m

exp
(
− σ̄2

i ∥ωm∥2

2

)
cos

(
ωm · (pj − pi)

)]
(A60)

Eq. (A60) is essentially an infinite series of Gaussian functions of frequencies ∥ωm∥, which rapidly
decay as frequencies increase. On the other hand, we omit βij in the reciprocal-space attention
by assuming ψij(n) = βij = 0, because its analytic solution does not exist for our current ψij(n)

provided in Eq. (9). Exploring an effective form of ψij(n) for the reciprocal-space attention is left as
future work.

When σ̄2
i = σ2

i , the two expressions of αij with Eqs. (5) and (A60) become theoretically equivalent.
Similarly to Ewald summation, however, we want to use the real-space attention for short-range
interactions and the reciprocal-space attention for long-range interactions. To this end, we treat σi
and σ̄i as independent variables by following a parameterization method in Appendix C. Specifically,
we parameterize σ̄2

i as

σ̄2
i = r̄20ρ((q

T
i w̄ −m)/s; ā, b̄). (A61)

In this way, σ̄i is lower bounded as σ̄i > σlb with σlb = r̄0
√
b̄. We use (r̄0, ā, b̄) = (2.2, 0.1, 0.5)

for σ̄i. Now σi and σ̄i have an upper and lower bound, respectively, as σi < σub ≃ 1.98Å and
σ̄i > σlb ≃ 1.56Å. Therefore, the combined use of the real-space and reciprocal-space attention
can cover the entire range of interactions in principle. We compute Eq. (A60) with a fixed range of
∥m∥∞ ≤ 2. Note that because of the symmetry, we can reduce the range of m1 as 0 ≤ m1 ≤ 2 by
doubling the summed values for m1 > 0.
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Table A6: Effects of attention in the Fourier space on the JARVIS-DFT dataset.
Method Form. energy Total energy Bandgap (OPT) Bandgap (MBJ) E hull

Crystalformer (real space) 0.0306 0.0320 0.128 0.274 0.0463
Crystalformer (dual space) 0.0343 0.0353 0.126 0.283 0.0284

J.4 RESULTS USING THE DUAL SPACE ATTENTION

As discussed in Sec. 6, we evaluate a variant of our method by changing half the heads of each MHA
to the reciprocal attention provided in Appendix J.3. Table A6 shows the results with this dual-space
attention.

We observe that the dual-space variant yields a significant improvement in the energy above hull
prediction. Although its exact mechanism is unknown, we provide hypothetical interpretations below,
as we do for results in Table 4 in Appendix I. In short, we conjecture that it is related to the fact that
the energy above hull is the only metric in Table A6 that involves the energy evaluation of different
crystal structures than the targeted one.

A more in-depth discussion needs to know the definition of the energy above hull. Let’s again express
it as ∆E = E1 −E0, where E1 corresponds to the formation energy of the target structure and E0 is
the so-called convex hull provided by stable phases of the target structure. As we know, substances
around us change their phases between solid, liquid, and gas depending on the temperature and
pressure. Likewise, a crystal structure has multiple stable phases with different structures within the
solid state. For example, a structure with a chemical formula of AB has phases that have different
structures with chemical formulas of AxB1−x, x ∈ [0, 1] (i.e., structures with the same element
composition but different ratios of elements). When we plot y = FormationEnergy(AxB1−x) for
all possible phase structures of AB, we can draw a convex hull of the plots, as in Fig. A1, which
will have some corner points that represent stable phases of AB (i.e., S1 to S4 in Fig. A1). The
energy above hull is then defined as the vertical deviation between the formation energy of the target
structure and the line of the convex hull, essentially representing the instability of the target structure.

Concentration of 𝐴𝐴, 𝑥𝑥 in 𝐴𝐴𝑥𝑥𝐵𝐵1−𝑥𝑥

Fo
rm

at
io

n 
en

er
gy

𝑆𝑆𝑆(𝐴𝐴)

𝑆𝑆𝑆(𝐵𝐵)

Convex hull

Target structure

𝑆𝑆𝑆

𝑆𝑆𝑆
Δ𝐸𝐸

0 1

Figure A1: Energy above hull. Image courtesy of Ma, J., Hegde, V., Munira, K., Xie, Y., Keshavarz,
S., Mildebrath, D., Wolverton, C., Ghosh, A., & Butler, W. (2017). Computational investigation of
half-Heusler compounds for spintronics applications. Phys. Rev. B, 95, 024411.

When E1 and E0 involve the energy evaluation of different structures, it may be possible that the
inclusion of long-range interactions has a positive impact on some of the stable phases of a given
structure in E0 while not so for the given structure itself in E1. This asymmetric relation between E1

and E0 may mitigate the aforementioned cancellation effect and may lead to improved prediction of
E0 and ∆E.
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