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ABSTRACT

The quality of many modern machine learning models improves as model com-
plexity increases, an effect that has been quantified—for predictive performance—
with the non-monotonic double descent learning curve. Here, we address the over-
arching question: is there an analogous theory of double descent for models which
estimate uncertainty? We provide a partially affirmative and partially negative an-
swer in the setting of Gaussian processes (GP). Under standard assumptions, we
prove that higher model quality for optimally-tuned GPs (including uncertainty
prediction) under marginal likelihood is realized for larger input dimensions, and
therefore exhibits a monotone error curve. After showing that marginal likelihood
does not naturally exhibit double descent in the input dimension, we highlight re-
lated forms of posterior predictive loss that do exhibit non-monotonicity. Finally,
we verify empirically that our results hold for real data, beyond our considered
assumptions, and we explore consequences involving synthetic covariates.

1 INTRODUCTION

With the recent success of overparameterized and nonparametric models for many predictive tasks
in machine learning (ML), the development of the corresponding uncertainty quantification (UQ)
has unsurprisingly become a topic of significant interest. Naïve approaches for forward propagation
of error and other methods for inverse uncertainty problems typically apply Monte Carlo methods
under a Bayesian framework (Zhang, 2021). However, the large-scale nature of many ML problems
of interest results in significant computational challenges. One of the most successful approaches for
solving inverse uncertainty problems is the use of Gaussian processes (GP) (Williams & Rasmussen,
2006). This is now frequently used for many predictive tasks, including time-series analysis (Roberts
et al., 2013) and classification (Williams & Barber, 1998; Williams & Rasmussen, 2006). GPs are
also fundamental for Bayesian optimization (Hebbal et al., 2019; Frazier, 2018), although extending
Bayesian optimization into high-dimensional settings remains challenging (Binois & Wycoff, 2021).

Although the theoretical understanding of the predictive capacity of high-dimensional ML mod-
els continues to advance rapidly, a parallel rigorous theory for UQ is comparatively lagging. The
prominent heuristic in modern ML that larger models will typically perform better has become al-
most axiomatic. However, it is only more recently that this heuristic has become represented in
the theory through the characterisation of benign overfitting (Bartlett et al., 2020). In particular, the
double descent curve extends the bias-variance tradeoff curve to account for improving performance
with higher model complexity (Belkin et al., 2019; Wang et al., 2021; Derezinski et al., 2020b) (see
Figure 1(right)). Typically, these arguments involve applications of random matrix theory (Edelman
& Rao, 2005; Paul & Aue, 2014), notably the Marchenko-Pastur law, concerning limits of spectral
distributions under large data/large dimension regimes.

While the predictive performance of ML models can improve as model size increases, it is not clear
whether or not the same is true for predictions of model uncertainty. Several common measures of
model quality which incorporate inverse uncertainty quantification are Bayesian in nature, the most
prominent of which are the marginal likelihood and various forms of posterior predictive loss. It is
well-known that Bayesian methods can perform well in high dimensions (De Roos et al., 2021), even
outperforming their low-dimensional counterparts when properly tuned (Wilson & Izmailov, 2020).
To close this theory-practice gap, an analogous formulation of double descent curves in the setting
of uncertainty quantification is desired. Marginal likelihood and posterior distributions are often
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Performance Metric Error Curve Optimal γ
Marginal Likelihood / Free Energy (3) Monotone (Thm. 1) eqn. (5)
Posterior Predictive L2 Loss (1) Double Descent (Prop. 1) 0
Posterior Predictive NLL (2) Double Descent (Prop. 1) E∥f̄(x)− y∥2

Table 1: Behavior of UQ performance metrics and optimal posterior temperature γ.

intractable for arbitrary models (e.g., Bayesian neural networks (Goan & Fookes, 2020)). However,
their explicit forms are well known for GPs (Williams & Rasmussen, 2006).

GPs are nonparametric, and most of the kernels used in practice induce infinite-dimensional feature
spaces, so model complexity can be difficult to quantify (although some notions of kernel dimen-
sion have been proposed (Zhang, 2005; Alaoui & Mahoney, 2015)). Nevertheless, it is generally
expected that accurately fitting a GP to data lying in higher-dimensional spaces requires training on
a larger dataset. This curse of dimensionality has been justified using error estimates (von Luxburg
& Bousquet, 2004), and verified empirically (Spigler et al., 2020). However, under appropriate se-
tups, predictive performance has been demonstrated to improve with larger input dimension (Liu
et al., 2021). Here, we consider whether the same is true for the marginal likelihood and posterior
predictive metrics. Our main results (see Theorem 1 and Proposition 1) are summarized as follows.

• Monotonicity: For two optimally regularized scalar GPs, both fit to a sufficiently large set of iid
normalized and whitened input-output pairs, the better performing model under marginal likeli-
hood is the one with larger input dimension.

• Double Descent: For sufficiently small temperatures, GP posterior predictive metrics exhibit dou-
ble descent if and only if the mean squared error for the corresponding kernel regression task
exhibits double descent (see Liang & Rakhlin (2020); Liu et al. (2021) for sufficient conditions).

Figure 1 illustrates characteristics of monotone and double descent error curves. Along the way,
we identify optimal choices of temperature (which can be interpreted as noise in the data) under a
tempered posterior setup — see Table 1 for a summary. Our results highlight that the common curse
of dimensionality heuristic can be bypassed through an empirical Bayes procedure. Furthermore, the
performance of optimally regularized GPs (under several metrics), can be improved with additional
covariates (including synthetic ones). Our theory is supported by experiments performed on real
large datasets. Additional experiments, including the effect of ill-conditioned inputs, alternative
data distributions, and choice of underlying kernel, are conducted in Appendix A. Details of the
setup for each experiment are listed in Appendix G.

2 BACKGROUND

2.1 GAUSSIAN PROCESSES

A Gaussian process is a stochastic process f on Rd such that for any set of points x1, . . . , xk ∈ Rd,
(f(x1), . . . , f(xk)) is distributed as a multivariate Gaussian random vector (Williams & Rasmussen,
2006, §2.2). Gaussian processes are completely determined by their mean and covariance functions:
if for any x, x′ ∈ Rd, Ef(x) = m(x) and Cov(f(x), f(x′)) = k(x, x′), then we say that f ∼
GP(m, k). Inference for GPs is informed by Bayes’ rule: letting (Xi, Yi)

n
i=1 denote a collection of

iid input-output pairs, we impose the assumption that Yi = f(Xi) + ϵi where each ϵi ∼ N (0, γ),
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Figure 1: Illustrations of monotone (left) and double descent (right) error curves.
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yielding a Gaussian likelihood p(Y |f,X) = (2πγ)−n/2 exp(− 1
2γ ∥Y − f(X)∥2). The parameter

γ is the temperature of the model, and dictates the perceived accuracy of the labels. For example,
taking γ → 0+ considers a model where the labels are noise-free.

For the prior, we assume that f ∼ GP(0, λ−1k) for a fixed covariance kernel k and regularization
parameter λ > 0. While other mean functions m can be considered, in the sequel we will consider
the case where m ≡ 0. Indeed, if m ̸= 0, then one can instead consider Ỹi = Yi −m(Xi), so that
Ỹi = f̃(Xi) + ϵi and the corresponding prior for f̃ is zero-mean. The Gram matrix KX ∈ Rn×n

for X has elements Kij
X = k(Xi, Xj). Let x = (x1, . . . , xm) denote a collection of N points in

Rd, f(x) = (f(x1), . . . , f(xm)) and denote by Kx ∈ Rm×m and kx ∈ Rn×m the matrices with
elements Kij

x = k(xi, xj) and kijx = k(Xi, xj).

Given this setup, we are interested in several metrics which quantify the uncertainty of the model.
The posterior predictive distribution (PPD) of f(x) given X,Y is (Williams & Rasmussen, 2006,
pg. 16)

f(x)|X,Y ∼ N (f̄(x), λ−1Σ(x)),

where f̄(x) = k⊤x (KX + λγI)−1Y and Σ(x) = Kx − k⊤x (KX + λγI)−1kx. This defines a
posterior predictive distribution ργ on the GP f given X,Y (so f | X,Y ∼ ργ). If we let y =
(y1, . . . , ym) denote a collection of m associated test labels corresponding to our test data x, the
posterior predictive L2 loss (PPL2) is the quantity

ℓ(x,y) := Ef∼ργ∥f(x)− y∥2 = ∥f̄(x)− y∥2 + λ−1tr(Σ(x)). (1)

Closely related is the posterior predictive negative log-likelihood (PPNLL), given by

L(x,y|X,Y ) := −Ef∼ργ log p(y|f,x) = 1
2γ ∥f̄(x)− y∥2 + 1

2λγ tr(Σ(x)) +
m
2 log(2πγ). (2)

2.2 MARGINAL LIKELIHOOD

The fundamental measure of model performance in Bayesian statistics is the marginal likelihood
(also known as the partition function in statistical mechanics). Integrating the likelihood over the
prior distribution π provides a probability density of data under the prescribed model. Evaluating
this density at the training data gives an indication of model suitability before posterior inference.
Hence, the marginal likelihood is Zn = Ef∼πp(Y |f,X). A larger marginal likelihood is typically
understood as an indication of superior model quality. The Bayes free energy Fn = − logZn is
interpreted as an analogue of the test error, where smaller Fn is desired.

The marginal likelihood for a Gaussian process is straightforward to compute: since Yi =
f(Xi) + ϵi under the likelihood, and (f(Xi))

n
i=1 ∼ N (0, λ−1KX) under the GP prior π =

GP(0, λ−1k), we have Yi|X ∼ N (0, λ−1KX + γI), and hence the Bayes free energy is given
by (Williams & Rasmussen, 2006, eqn. (2.30))

Fγ
n = 1

2λY
⊤(KX + λγI)−1Y + 1

2 log det(KX + λγI)− n
2 log

(
λ
2π

)
. (3)

In practice, the hyperparameters λ, γ are often tuned to minimize the Bayes free energy. This is an
empirical Bayes procedure, and typically achieves excellent results (Krivoruchko & Gribov, 2019).

The PPNLL can be linked to the marginal likelihood through cross-validation measures. Let I
be uniform on {1, . . . , k} and let T be a random choice of k indices from {1, . . . , n} (the test
set). Let T̄ = {1, . . . , n}\T denote the corresponding training set. The leave-k-out cross-
validation score under the PPNLL is defined by Sk(X,Y ) = EL(XTI

, YTI
|XT̄ , YT̄ ). The Bayes

free energy is the sum of all leave-k-out cross-validation scores (Fong & Holmes, 2020), that is
Fγ

n =
∑n

k=1 Sk(X,Y ). Therefore, the mean Bayes free energy (or mean free energy for brevity)
n−1Fγ

n can be interpreted as the average cross-validation score. Similar connections can also be
formulated in the PAC-Bayes framework (Germain et al., 2016).

2.3 BAYESIAN LINEAR REGRESSION

One of the most important special cases of GP regression is Bayesian linear regression, obtained
by taking klin(x, x

′) = x⊤x′. As a special case of GPs, our results apply to Bayesian linear regres-
sion, directly extending double descent analysis into the Bayesian setting. By Mercer’s Theorem
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(Williams & Rasmussen, 2006, §4.3.1), a realization of a GP f has a series expansion in terms of
the eigenfunctions of the kernel k. As the eigenfunctions of klin are linear, f ∼ GP(0, λ−1klin) if
and only if

f(x) = w⊤x, w ∼ N (0, λ−1).

More generally, if ϕ : Rd → Rp is a finite-dimensional feature map, then f(x) = w⊤ϕ(x),
w ∼ N (0, λ−1) is a GP with covariance kernel kϕ(x, y) = ϕ(x)⊤ϕ(y). This is the weight-space in-
terpretation of Gaussian processes. In this setting, the posterior distribution over the weights satisfies
ργ(w) = p(w|X,Y ) ∝ exp(− 1

2γ ∥Y − ϕ(X)w∥2 − λ
2 ∥w∥

2) and the marginal likelihood becomes

Zγ
n =

∫
Rp

p(Y |X,w)π(w)dw =
λd/2

γn/2(2π)
1
2 (n+d)

∫
Rp

e−
1
2γ ∥Y−ϕ(X)w∥2

e−
λ
2 ∥w∥2

dw, (4)

where ϕ(X) = (ϕ(Xi))
n
i=1 ∈ Rn×p. Under this interpretation, the role of λ as a regularization

parameter is clear. Note also that if λ = µ/γ for some µ > 0, then the posterior ργ(w) depends on
γ as (ρ1(w))1/γ (excluding normalizing constants). This is called a tempered posterior; if γ < 1,
the posterior is cold, and it is warm whenever γ > 1.

3 RELATED WORK

Double Descent and Multiple Descent. Double descent is an observed phenomenon in the error
curves of kernel regression, where the classical (U-shaped) bias-variance tradeoff in underparame-
terized regimes is accompanied by a curious monotone improvement in test error as the ratio c of
the number of datapoints to the ambient data dimension increases beyond c = 1. The term was
popularized in Belkin et al. (2018b; 2019). However, it had been observed in earlier reports (Do-
briban & Wager, 2018; Loog et al., 2020), and the existence of such non-monotonic behavior as a
function of system control parameters should not be unexpected, given general considerations about
different phases of learning that are well-known from the statistical mechanics of learning (Engel
& den Broeck, 2001; Martin & Mahoney, 2017). An early precursor to double descent analysis
came in the form of the Stein effect, which establishes uniformly reduced risk when some degree of
regularisation is added (Strawderman, 2021). Stein effects have been established for kernel regres-
sion in Muandet et al. (2014); Chang et al. (2017). Subsequent theoretical developments proved the
existence of double descent error curves on various forms of linear regression (Bartlett et al., 2020;
Tsigler & Bartlett, 2020; Hastie et al., 2022; Muthukumar et al., 2020), random features models
(Liao et al., 2020; Holzmüller, 2020), kernel regression (Liang & Rakhlin, 2020; Liu et al., 2021),
two-layer neural networks (Mei & Montanari, 2022), and classification tasks (Frei et al., 2022; Wang
et al., 2021). For non-asymptotic results, subgaussian data is commonly assumed, yet other data dis-
tributions have also been considered (Derezinski et al., 2020b). Double descent error curves have
also been observed in nearest neighbor models (Belkin et al., 2018a), decision trees (Belkin et al.,
2019), and state-of-the-art neural networks (Nakkiran et al., 2021). More recent developments have
identified a large number of possible curves in kernel regression (Liu et al., 2021), including triple
descent (Adlam & Pennington, 2020; d’Ascoli et al., 2020) and multiple descent for related volume-
based metrics (Derezinski et al., 2020a). Similar to our results, an optimal choice of regularization
parameter can negate the double descent singularity and result in a monotone error curve (Liu et al.,
2021; Nakkiran et al., 2020; Wu & Xu, 2020). While there does not appear to be clear consensus
on a precise definition of “double descent,” for our purposes, we say that an error curve E(t) ex-
hibits double descent if it contains a single global maximum away from zero at t∗, and decreases
monotonically thereafter. This encompasses double descent as it appears in the works above, while
excluding some misspecification settings and forms of multiple descent.

Learning Curves for Gaussian Processes. The study of error curves for GPs under posterior
predictive losses has a long history (see Williams & Rasmussen (2006, §7.3) and Viering & Loog
(2021)). However, most results focus on rates of convergence of posterior predictive loss in the
large data regime n → ∞. The resulting error curve is called a learning curve, as it tracks how
fast the model learns with more data (Sollich, 1998; Sollich & Halees, 2002; Le Gratiet & Garnier,
2015). Of particular note are classical upper and lower bounds on posterior predictive loss (Opper &
Vivarelli, 1998; Sollich & Halees, 2002; Williams & Vivarelli, 2000), which are similar in form to
counterparts in the double descent literature (Holzmüller, 2020). For example, some upper bounds
have been obtained with respect to forms of effective dimension, defined in terms of the Gram matrix
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Figure 2: Error curves for mean Bayes free energy n−1Fγ
n for synthetic data under linear (top)

and Gaussian (bottom) kernels, with λ = λ∗ (left; monotone decreasing) and λ = 0.01 (right;
increases at higher input dimensions).

(Zhang, 2005; Alaoui & Mahoney, 2015). Contraction rates in the posterior have also been examined
(Lederer et al., 2019). In our work, we consider error curves over dimension rather than data, but
we note that our techniques could also be used to study learning curves.

Cold Posteriors. Among the most surprising phenomena encountered in Bayesian deep learning
is the cold posterior effect (CPE): the performance of Bayesian neural networks (BNNs) appears to
improve for tempered posteriors when γ → 0+. This presents a challenge for uncertainty prediction:
taking γ → 0+ concentrates the posterior around the maximum a posteriori (MAP) point estimator,
and so the CPE implies that optimal performance is achieved when there is little or no predicted
uncertainty. First observed in Wenzel et al. (2020), several authors have since sought to explain
the phenomenon through data curation (Aitchison, 2020), data augmentation (Izmailov et al., 2021;
Fortuin et al., 2021), and misspecified priors (Wenzel et al., 2020), although the CPE can still arise
in isolation of each of these factors (Noci et al., 2021). While our setup is too simple to examine the
CPE at large, we find some common forms of posterior predictive loss are optimized as γ → 0+.

4 MONOTONICITY IN BAYES FREE ENERGY

In this section, we investigate the behavior of the Bayes free energy using the explicit expression in
(3). First, to facilitate our analysis, we require the following assumption on the kernel k.

Assumption. The kernel k is formed by a function κ : R → R that is continuously differentiable on
(0,∞) and is one of the following two types:

(I) Inner product kernel: k(x, x′) = κ(x⊤x′/d) for x, x′ ∈ Rd, where κ is three-times
continuously differentiable in a neighbourhood of zero, with κ′(0) > 0. Let

α = κ′(0), β = κ(1)− κ(0)− κ′(0).

(II) Radial basis kernel: k(x, x′) = κ(∥x − x′∥2/d) for x, x′ ∈ Rd, where κ is three-times
continuously differentiable on (0,∞), with κ′(2) < 0. Let

α = −2κ′(2), β = κ(0) + 2κ′(2)− κ(2).
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Figure 3: Error curves for mean Bayes free energy under the CIFAR10 dataset; linear (left) and
Gaussian (right) kernels; λ = λ∗; curves for real data match Figure 2 (left).

This assumption allows for many common covariance kernels used for GPs, including polynomial
kernels k(x, x′) = (c + x⊤x′/d)p, the exponential kernel k(x, x′) = exp(x⊤x′/d), the Gaussian
kernel k(x, x′) = exp(−∥x− x′∥2/d), the multiquadric kernel k(x, x′) = (c+ ∥x− x′∥2/d)p, the
inverse multiquadric k(x, x′) = (c+ ∥x− x′∥2/d)−p kernels, and the Matérn kernels

k(x, x′) = (2ν−1Γ(ν))−1∥x − x′∥νKν(∥x− x′∥)
(where Kν is the Bessel-K function). Different bandwidths can also be incorporated through the
choice of κ. However, it does exclude some of the more recent and sophisticated kernel families,
e.g., neural tangent kernels. Due to a result of El Karoui (2010), the Gram matrices of kernels
satisfying this assumption exhibit limiting spectral behavior reminiscent of that for the linear kernel,
k(x, x′) = c+ x⊤x′/d. Roughly speaking, from the perspective of the marginal likelihood, we can
treat GPs as Bayesian linear regression.

In line with previous work on double descent curves (Belkin et al., 2019), our objective is to in-
vestigate the behavior of the marginal likelihood with respect to model complexity, which is often
given by the number of parameters in parametric settings (d’Ascoli et al., 2020; Derezinski et al.,
2020b; Hastie et al., 2022)). GPs are non-parametric, and while notions of effective dimension do
exist (Zhang, 2005; Alaoui & Mahoney, 2015), it is common to instead consider the input dimension
in place of the number of parameters in this context (Liang & Rakhlin, 2020; Liu et al., 2021).

For our theory, we first consider the “best-case scenario,” where the prior is perfectly specified and
its mean function m is used to generate Y : Yi = m(Xi) + ϵi, where each ϵi is iid with zero mean
and unit variance. By a change of variables, we can assume (without loss of generality) that m ≡ 0,
so that Yi = ϵi, and is therefore independent of X . To apply the Marchenko-Pastur law from
random matrix theory, we consider the large dataset – large input dimension limit, where n and d
scale linearly so that d/n → c ∈ (0,∞). The inputs are assumed to have been whitened and to
be independent zero-mean random vectors with unit covariance. Under this limit, the sequence of
mean Bayes entropies n−1Fγ

n , for each n = 1, 2, . . . , converges in expectation over the training set
to a quantity Fγ

∞ which is more convenient to study. Our main result is presented in Theorem 1; the
proof is delayed to Supplementary Material.
Theorem 1 (Limiting Bayes Free Energy). Let X1, X2, . . . be independent and identically dis-
tributed zero-mean random vectors in Rd with unit covariance, satisfying E∥Xi∥5+δ < +∞ for
some δ > 0. For each n = 1, 2, . . . , let Fγ

n denote (3) applied to X = (Xi)
n
i=1 and Y = (Yi)

n
i=1,

with each Yi ∼ N (0, 1). If n, d→ ∞ such that d/n→ c ∈ (0,∞), then

Fγ
∞ := lim

n→∞
n−1EFγ

n ,

is well-defined. In this case,

(a) If λ = µ/γ for some µ > 0, there exists an optimal temperature γ∗ which minimizes Fγ
∞,

which is given by

γ∗ = c− 1− c
α (β + µ) +

√
(1 + c

α (β + µ+ α))2 − 4c. (5)

If the kernel k depends on λ such that α is constant in λ and β = β0λ for β0 ∈ [0, 1), then
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Figure 4: Error curves for mean Bayes free energy under real data with Gaussian (left); repeated
data (center); and zeroed data (right), under the linear kernel and λ = λ∗. Only adding synthetic

non-zero iid covariates improves model performance.

(b) If γ ∈ (0, 1− β0), there exists a unique optimal λ∗ > 0 minimizing Fγ
∞ satisfying

λ∗ =
α[(c+ 1)(γ + β0) +

√
(c− 1)2 + 4c(γ + β0)2]

c(1− (γ + β0)2)
. (6)

If γ ≥ 1− β0, then no such optimal λ∗ exists.

(c) For any temperature 0 < γ < 1 − β0, at λ = λ∗, Fγ
∞ is monotone decreasing in c ∈

(0,∞).

The expression for the asymptotic Bayes free energy Fγ
∞ is provided in the Supplementary Material.

To summarize, first, in the spirit of empirical Bayes, there exists an optimal λ∗ for the Gaussian
prior which minimizes the asymptotic mean free energy. Under this setup, the choice of λ which
maximizes the marginal likelihood for a particular realization of X,Y will converge almost surely
to λ∗ as n, d → ∞. Similar to Nakkiran et al. (2020); Wu & Xu (2020), we find that model
performance under marginal likelihood improves monotonically with input dimension when λ = λ∗

for a fixed amount of data. Indeed, for large n, d, EFγ
n ≈ nFγ

∞ and c ≈ d/n, so Theorem 1c
implies that the expected Bayes free energy decreases (approximately) monotonically with the input
dimension, provided n is fixed and the optimal regularizer λ∗ is chosen.

Discussion of assumptions. The assumption that the kernel scales with λ is necessary using our
techniques, as λ∗ cannot be computed explicitly otherwise. This holds for the linear kernel, but most
other choices of κ can be made to satisfy the conditions of Theorem 1 by taking κ(x) 7→ η−1κ(ηx),
for appropriately chosen bandwidth η ≡ η(λ). For example, for the quadratic kernel, this gives
k(x, x′) = (λ−1/2 + λ1/2x⊤x′)2. Effectively, this causes the regularization parameter to scale
non-linearly in the prior kernel. Even though this is required for our theory, we can empirically
demonstrate this monotonicity also holds under the typical setup where k does not change with λ.
In Figure 2, we plot the mean free energy for synthetic Gaussian datasets of increasing dimension
at both optimal and fixed values of λ for the linear and Gaussian kernels. Since n is fixed, in line
with Theorem 1c, the curves with optimally chosen λ decrease monotonically with input dimension,
while the curves for fixed λ appear to increase when the dimension is large. Note, however, that the
larger β for the Gaussian kernel induces a significant regularizing effect. A light CPE appears for
the Gaussian kernel when λ is fixed, but does not seem to occur under λ∗.

While the assumption that m = 0 may appear too restrictive, in Appendix B, we show that m
is necessarily small when the data is normalized and whitened. Consequently, under a zero-mean
prior, the marginal likelihood behaves similarly to our assumed scenario. This translates well in
practice: under a similar setup to Figure 2, the error curves corresponding to the linear and Gaussian
kernels under the whitened CIFAR10 benchmark dataset (Krizhevsky & Hinton, 2009) exhibiting
the predicted monotone behavior (Figure 3).

Synthetic covariates. Since Theorem 1 implies that performance under the marginal likelihood
can improve as covariates are added, it is natural to ask whether an improvement will be seen if
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Figure 5: Posterior predictive L2 loss error curves for synthetic data exhibiting perturbed /
tempered double descent under the linear kernel with λ = 0.01/γ (left), and λ = λ∗ (right).

the data is augmented with synthetic covariates. To test this, we considered the first 30 covariates of
the whitened CT Slices dataset obtained from the UCI Machine Learning Repository (Graf et al.,
2011), and we augmented them with synthetic (iid standard normal) covariates; the first 30 covariates
repeated; and zeros (for more details, see Appendix A). While the first of these scenarios satisfies
the conditions of Theorem 1, the second two do not, since the new data cannot be whitened such that
its rows have unit covariance. Consequently, the behavior of the mean free energy reflects whether
the assumptions of Theorem 1 are satisfied: only the data with Gaussian covariates exhibits the same
monotone decay. From a practical point of view, a surprising conclusion is reached: after optimal
regularization, performance under marginal likelihood can be further improved by concatenating
Gaussian noise to the input.

5 DOUBLE DESCENT IN POSTERIOR PREDICTIVE LOSS

In this section, we will demonstrate that, despite the connections between them, the marginal like-
lihood and posterior predictive loss can exhibit different qualitative behavior, with the posterior
predictive losses potentially exhibiting a double descent phenomenon. Observe that the two forms
of posterior predictive loss defined in (1) and (2) can both be expressed in the form

L = c1(γ)E∥f̄(x)− y∥2︸ ︷︷ ︸
MSE

+ c2(λ, γ)Etr(Σ(x))︸ ︷︷ ︸
volume

+ c3(γ).

The first term is the mean-squared error (MSE) of the predictor f̄ , and is a well-studied object
in the literature. In particular, the MSE can exhibit double descent, or other types of multiple
descent error curves depending on k, in both ridgeless (Holzmüller, 2020; Liang & Rakhlin, 2020)
and general (Liu et al., 2021) settings. On the other hand, the volume term has the uniform bound
Etr(Σ(x)) ≤ mEk(x, x), so provided c2 is sufficiently small, the volume term should have little
qualitative effect. The following is immediate.
Proposition 1. Assume that the MSE E∥f̄(x)− y∥2 for Gaussian inputs x and labels y converges
to an error curve E(c) that exhibits double descent as n → ∞ with d ≡ d(n) satisfying d(n)/n →
c ∈ (0,∞). If there exists a function λ(γ) such that c2(λ(γ), γ)/c1(γ) → 0 as γ → 0+, then for
any ϵ > 0, there exists an error curve Ē(c) exhibiting double descent, a positive integer N , and
γ0 > 0 such that for any 0 < γ < γ0 and n > N , |L/c1 − Ē| < ϵ at d = d(n) and λ = λ(γ).

For posterior predictive L2 loss, in the tempered posterior scenario where λ = µ/γ, the MSE
remains constant in γ, while c2/c1 = γ/µ. Since the predictor f̄ depends only on µ, the optimal
γ in the tempered posterior scenario is realised as γ → 0+. In other words, under the posterior
predictive L2 loss, the best prediction of uncertainty is none at all. This highlights a trivial form of
CPE for PPL2 losses, suggesting it may not be suitable as a UQ metric. Here we shall empirically
examine the linear kernel case; similar experiments for more general kernels are conducted in the
Supplementary Material. In Figure 5(left), we plot posterior predictive L2 loss under the linear
kernel on synthetic Gaussian data by varying γ while keeping µ fixed. We find that the error curve
exhibits double descent when γ < 2µ. The corresponding plot for the CIFAR10 dataset is shown
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Figure 6: PPL2 loss under the linear kernel with λ = 0.01/γ (left) and λ = λ∗ (right) on the
CIFAR10 dataset; curves for real data match Figure 5.

in Figure 6(left), demonstrating that this behavior carries over to real data. Choosing λ = λ∗ (the
optimal λ according to marginal likelihood) reveals a more typical set of regularized double descent
curves; this is shown in Figure 5(right) for synthetic data and Figure 6(right) for the CIFAR10
dataset. This is due to the monotone relationship between the volume term and λ, hence the error
curve inherits its shape from the behaviour of λ∗ (see Appendix A in the Supplementary Material).

In contrast, this phenomenon is not the case for posterior predictive negative log-likelihood. In-
deed, letting λ = µ/γ and optimizing the expectation of (2) in γ, the optimal γ∗ = m−1E∥f̄(x)−
y∥2. The expected optimal PPNLL is therefore

− Ex,yEf∼ργ∗ log p(y|f,x) = 1
2m[1 + log(2πE∥f̄(x)− y∥2)] + (2µ)−1tr(Σ(x)). (7)

Otherwise, the PPNLL displays similar behavior to PPL2, as the two are related linearly.

6 CONCLUSION

Motivated by understanding the uncertainty properties of prediction from GP models, we have ap-
plied random matrix theory arguments and conducted several experiments to study the error curves
of three UQ metrics for GPs. Contrary to classical heuristics, model performance under marginal
likelihood/Bayes free energy improves monotonically with input dimension under appropriate reg-
ularization (Theorem 1). However, Bayes free energy does not exhibit double descent. Instead,
posterior predictive loss inherits a double descent curve from non-UQ settings when the variance
in the posterior distribution is sufficiently small (Proposition 1). While our analysis was conducted
under the assumption of a perfectly chosen prior mean, similar error curves appear to hold under
small perturbations, which always holds for large whitened datasets. Although our contributions are
predominantly theoretical, our results also have some noteworthy practical consequences:

• Tuning hyperparameters according to marginal likelihood is essential to ensuring good perfor-
mance in higher dimensions, and completely negates the curse of dimensionality.

• When using L2 losses as UQ metrics, care should be taken in view of the CPE. As such, we do
not recommend the use of this metric in lieu of other alternatives.

• Our experiments suggest that further improvements beyond the optimisation of hyperparameters
may be possible with the addition of synthetic covariates, although further investigation is needed
before such a procedure can be universally recommended.

In light of the surprisingly complex behavior on display, the fine-scale behavior our results demon-
strate, and a surprising absence of UQ metrics in the double descent literature, we encourage in-
creasing adoption of random matrix techniques for studying UQ / Bayesian metrics in double de-
scent contexts and beyond. There are numerous avenues available for future work, including the
incorporation of more general kernels (e.g., using results from Fan & Wang (2020) to treat neural
tangent kernels, which are commonly used as approximations for large-width neural networks).
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Monotonicity and Double Descent in Uncertainty Quantification
with Gaussian Processes
SUPPLEMENTARY DOCUMENT

A ADDITIONAL EMPIRICAL RESULTS

In this section, we consider other factors not covered by our analysis in the main body of the paper.
Full experimental details are given in Appendix G.

CT Slices dataset. To demonstrate our procedure for working with real data, we first consider
the CT Slices dataset obtained from the UCI Machine Learning Repository (Graf et al., 2011),
comprised of n = 53500 images X1, . . . , Xn ∈ Rd with d = 385 features, and corresponding
scalar-valued labels Y1, . . . , Yn ∈ R. This dataset is also used in Figure 4. The data was prepro-
cessed in the following way: first, 17 features were observed to be linearly dependent on the others,
and were removed to reveal d = 368 features. The sample mean µX and sample covariance matrix
ΣX of X1, . . . , Xn were computed, and the input normalized by Xi 7→ Σ

−1/2
X (Xi − µX). The

labels were similarly normalized as Yi 7→ (Yi − µY )/σY , where µY and σY are the sample mean
and standard deviation of the labels, respectively. Under this preprocessing, X and Y are assumed
to satisfy the conditions of Theorem 1.

Figure 7 examines the mean Bayes free energy for the linear and Gaussian kernels, under the optimal
choice of λ∗ from Theorem 1. This figure should be compared to the synthetic data examples shown
in Figure 2 (upper left and bottom left). Similarly, Figure 8 is the corresponding version of Figure
5. Notably, the characteristic behavior of all four plots is still prominent in the real data example.

Image classification datasets We conducted parallel experiments on two larger benchmark
datasets that are ubiquitous in the literature — MNIST LeCun et al. (1998) and CIFAR10
Krizhevsky & Hinton (2009). To this end, the MNIST and CIFAR10 datasets were preprocessed in
the same manner as the CT Slices dataset. Both datasets correspond to classification problems
with 10 class labels, however, for our purposes we consider the analogous regression problems over
the class labels.

The MNIST training set is comprised of 60, 000 different 28 × 28 grayscale images of handwritten
digits from 0-9. After preprocessing, d = 706 of the 768 features were retained, and n = 175 images
were randomly sampled for use as the dataset. The mean free energy curves under the linear and
Gaussian kernel under the optimal λ = λ∗, as well as the PPL2 curves for the optimal λ and fixed
µ are shown in Figures 9 and 10, respectively. Similarly, the CIFAR10 training dataset contains
50, 000 different 32× 32 color images, each with 3 channels. This corresponds to 3072 features, of
which d = 3003 were retained after preprocessing, and n = 900 images were randomly sampled as
the for use as the dataset. Analogous images are presented in Figures 3 and 6.

Figure 7: Error curves for mean Bayes free energy under the CT Slices dataset; linear (left) and
Gaussian (right) kernels; λ = λ∗
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Figure 8: PPL2 loss under the linear kernel with λ = 0.01/γ (left) and λ = λ∗ (right) on the CT
Slices dataset.

It may seem surprising that the behavior of these models is so close to those of well-specified models,
since there is no a priori reason to assume the mean of the data-generating process is zero. However,
in Appendix B we demonstrate that this is merely a consequence of normalization of the response
variables, and that such normalization forces tight control over the gradients of the mean function
under expectation.

Figure 9: Error curves for mean Bayes free energy under the MNIST dataset; linear (left) and
Gaussian (right) kernels; λ = λ∗

Figure 10: PPL2 loss under the linear kernel with λ = 0.01/γ (left) and λ = λ∗ (right) on the
MNIST dataset.

Synthetic covariates. From Theorem 1, one can conclude that performance under the marginal
likelihood can increase as covariates are added. This begs the question: if the data is augmented
with synthetic covariates, will this still result in a higher marginal likelihood? We have considered
adding three different forms of synthetic covariates to the first 30 covariates of the whitened CT
Slices dataset:
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(i) Gaussian white noise: each Xij for j > 30 is drawn as an iid standard normal random
variable;

(ii) Copied data: the first 30 covariates are repeated, that is, for j > 30, each Xij =
Xi,(j−1) mod 30+1, where mod denotes the modulus operator; and

(iii) Padded data: each Xij = 0 for j > 30.

While case (i) satisfies the conditions of Theorem 1, cases (ii) and (iii) do not, as neither case can
be whitened such that the rows of X have unit covariance. In Figure 4, we repeat the experiment
in the top left of Figure 2 using these augmented datasets. The behavior of the mean Bayes free
energy reflects whether the assumptions of Theorem 1 are satisfied: while case (i) exhibits the same
monotone decay, cases (ii) and (iii) do not.

Monotonicity in posterior predictive metrics. In these experiments, we consider posterior pre-
dictive metrics for synthetic data under optimal parameter choices. First, in Figure 11, the posterior
predictive L2 loss is optimized in λ, revealing a monotone decay in the dimension, analogous to
Nakkiran et al. (2020); Wu & Xu (2020). In Figure 12, we plot error curves for the optimally tem-
pered PPNLL metric (7) under the linear kernel, revealing a monotonically increasing curve with
input dimension when µ is fixed, and highlighting the need for appropriate regularization. If PPNLL
is optimized in both γ and µ simultaneously, the error curve becomes flat.

Prior misspecification. In our analysis, we have considered a practically optimal scenario where
the prior is centered on the mean function of the labels (in other words, our prior concentrates on
the correct solution). For more complex setups, where the prior is implicit and data-dependent, this
may be possible, but is unlikely in general. For example, if the prior dictates a priori knowledge,
then a perfectly specified prior implies the underlying generative model for the labels is known
in advance. Here, we assume that the mean function of the labels is nonzero, emulating a more
realistic scenario. We restrict ourselves to the linear setting here, and we consider Yi = θ0Xi + ϵi,
ensuring that the correct mean function lies in the RKHS of the kernel. Figure 13 illustrates the
effect on Bayes free energy (with optimal λ∗). From left to right, small θ0 = d−1/21, large θ0 =
nd−1/21, and growing θ0 = 1 perturbations are considered. For small values of the perturbation, the
monotonicity of the error curve is not affected in a meaningful way. While the zero-mean assumption
may seem restrictive, we demonstrate that this scenario will always hold asymptotically, provided
the data is normalized and whitened (see Appendix B). For larger perturbations, however, we see
a horizontal “double-ascent” (or reverse double descent) error curve. A growing perturbation also
results in a double-ascent curve, but with increasing Bayes free energy once the input dimension is
sufficiently large.

Regularity of the kernel. The regularity of the kernel plays a key role in the regularity, and con-
sequently, the quality of the predictor. In particular, less regular predictors tend to revert to the prior
more quickly away from the training data. The Matérn kernel family is noteworthy for its capacity
to adjust the regularity of predictors through the parameter ν, whereby realizations of a Gaussian
process with Matérn covariance are at most [ν]-times differentiable (Williams & Rasmussen, 2006,

Figure 11: PPL2 optimized in λ; varying γ. Figure 12: PPNLL optimized in γ with
λ = µ/γ; varying µ.
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Figure 13: Optimal mean Bayes free energy with low (left), increasing (center) and high (right)
levels of prior misspecification under the linear kernel.

Figure 14: Effect of varying the regularity
parameter ν in the Matérn kernel

Figure 15: Effect of irregular spectra in X
under the linear kernel

pg. 85). In Figure 14, we plot the Bayes free energy for fixed n = 300 and γ = 0.01 with optimal
λ∗ over input dimensions d ∈ [100, 1000] and ν ∈ [0.5, 100]. As ν decreases, the curves become
flatter, suggesting the effect of dimension is reduced.

Ill-conditioned data. Our theoretical analysis considers only the case where the data has been
whitened, that is, where each row of X has unit covariance. It is known that more interesting behav-
ior can occur depending on the spectrum of eigenvalues of the covariance matrix, including multiple
descent (Nakkiran et al., 2020; Hastie et al., 2022), and this appears to be robust to other volume-
based objectives (Derezinski et al., 2020a). In Figure 15, we consider an isotropic ill-conditioned
covariance matrix Cov(Xi) = Σ where Σ = diag((10)d/2i=1, (1/10)

d/2
i=1). Under the linear kernel, for

fixed λ, the error curve is similar to the isotropic setting. However, at λ = λ∗, we find that the mean
Bayes free energy can exhibit non-monotonic behavior at low temperatures.

Scaling dimension nonlinearly with data. An interesting consequence of the monotonic error
curve in the Bayes free energy is that the inclusion of additional data may be harmful if the input
dimension is increased at a slower rate d = O(nξ) for ξ < 1 (or beneficial if ξ > 1). This effect is
illustrated in Figure 16, where the normalized Bayes free energy n−1Fγ

n is plotted for the linear and
Gaussian kernels at the optimal λ∗ over n ∈ [300, 3000] with d = 210(1−ξ)nξ.

Effect of noise distribution Each experiment has also assumed that the labels are standard normal.
If this is not the case, but the labels are still assumed to be iid, have zero mean and are uncorrelated
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Figure 16: Error curves for mean Bayes free energy n−1Fγ
n under linear (left) and Gaussian (right)

kernels and λ = λ∗, for dimension scaling with data as O(nξ)

with the inputs (correctly specified prior), then the expected mean Bayes free energy satisfies

n−1EFγ
n =

λ

2n

n∑
i,j=1

E[YiYjQij ] +
1

2n
E log det(KX + λγI)− 1

2
log

(
λ

2π

)
,

=
λ

2n
σ2Etr(Q) +

1

2n
E log det(KX + λγI)− 1

2
log

(
λ

2π

)
,

where Q = (KX + λγI)−1 and σ2 = E[Y 2
i ]. Therefore, only the variance in the labels contributes

to n−1EFγ
n (other features of the distribution of the noise contribute to the higher order moments of

Fγ
n ). In Figure 17, we examine the effect that different variances in the label noise have on the mean

Bayes free energy. Normally distributed Yi were considered, with variances ranging from 0.1 to 10.

Figure 17: Error curves for mean Bayes free energy under linear kernel with λ = λ∗, γ = 0.1 (left)
/ γ = 0.01 (right) and different variances in the label data.

Posterior predictive loss with Gaussian kernel Figures 18 and 19 examine the effect of varying
γ on the posterior predictive L2 loss varying over d, under the Gaussian kernel. These figures should
be contrasted with the linear kernel case presented as Figure 5 (left and right, respectively). Note
that the significant regularizing effect when β > 0 prohibits the double descent behavior found in
the linear kernel case.

Visualizing λ∗ Figures 20 and 21 plot the values of λ∗ versus c over different values of γ, for the
linear and Gaussian kernels, respectively. Once again, the sharp trough formed at d = n in Figure
21 is significantly dampened by the regularizing effect of β > 0.

Real data without whitening. To examine the effect that whitening has on the error curves, we
reconsider the experiments producing Figures 3 (left; MNIST) and 9 (left; CIFAR10) where X and
Y are only normalised, that is, we subtract the sample means and divide by the sample deviation.
The results are reported in Figure 22. As expected from Couillet & Debbah (2011) and the results
of Figure 15, the curves resemble their whitened counterparts with some spurious “bumps”.
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Figure 18: Posterior predictive L2 loss under
the Gaussian kernel with λ = 0.01/γ

Figure 19: Posterior predictive L2 loss under
the Gaussian kernel with λ = λ∗

Figure 20: Values of λ∗ versus c varying γ for
the linear kernel

Figure 21: Values of λ∗ versus c varying γ for
the Gaussian kernel

B NORMALIZED DATA IMPLIES SMALL PRIOR MISPECIFICATION

In Figure 13, we explored the effect of changing the mean of the data-generating process from
that of the prior. It was found that provided the mean of the data-generating process did not differ
too significantly from that of the prior, the monotonicity of the error curves in Bayes free energy
appeared unaffected. Here we show that when the data is normalized and whitened, and a zero-
mean prior is chosen, the mean of the data-generating process will never differ too significantly
from the prior.

As above, assume that the labels satisfy Yi = f(Xi) + ϵi for some f : Rd → R and zero-mean iid
ϵi. Now, we also assume that Y has been normalized so that Var(Y ) = 1. Similarly, we assume that
X has been normalized and whitened, so that it has zero mean and unit covariance. For simplicity of

Figure 22: Error curves for mean Bayes free energy for the MNIST (left) and CIFAR10 (right)
datasets, with linear kernels; λ = λ∗.
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argument, assume further that Xi are normal, that is, Xi
iid∼ Z ∼ N (0, I). In the linear case where

f(x) = θ · x, since
1 = Var(Y ) ≥ Varf(Z) = ∥θ∥2,

this implies that the magnitude of the components of θ are bounded on average by d−1/2. This is
the scenario seen in Figure 13(left). Indeed, the scenarios in Figure 13(center) and 13(right), which
exhibit different error curves, satisfy Var(Y ) = n and Var(Y ) = d respectively, both of which are
considerably larger than 1.

The same principle holds for more general f . By a reverse Gaussian Poincaré inequality (Cacoullos,
1982, Proposition 3.5),

1 = Var(Y ) ≥ Varf(Z) ≥ 1

d

(
d∑

i=1

E∂if(Z)

)2

,

where ∂i denotes the i-th partial derivative. Therefore, the average coordinate-wise gradient of f ,
E∂If(X) (where I is uniform over {1, . . . , d}), is bounded above and below by

−
√

1

d
≤ E∂If(X) =

1

d

d∑
i=1

E∂if(X) ≤
√

1

d
.

C DIGAMMA FUNCTION

Before treating the random matrix theory, we will need some auxiliary results concerning the
digamma function. Let Γ(z) be the Gamma function, defined for z > 0 by Γ(z) =

∫∞
0
tz−1e−tdt.

The digamma function ψ(z) is the derivative of the logarithm of the Gamma function, that is
ψ(z) = d

dz log Γ(z). The digamma function satisfies the following properties:

• ψ(z + 1) = ψ(z) + z−1 for any z > 0;
• as z → ∞, ψ(z)/ log z → 1;
• letting γEM = ψ(1) denote the Euler-Mascheroni constant,

ψ(z + 1) = −γEM +

∫ 1

0

(
1− tz

1− t

)
dt.

The digamma function behaves well under summation. In particular, we have the following lemma.
Lemma 1. For any positive integer n and any real number z > −1,

n∑
i=1

ψ(z + i) = (n+ z)ψ(n+ z)− zψ(z)− n.

Proof. From the integral representation for the digamma function:

ψ(z) = −γEM +

∫ 1

0

(
1− tz−1

1− t

)
dt,

since
∑n

i=1 t
z+i−1 = tz

∑n−1
i=0 t

i = tz 1−tn

1−t for 0 ≤ t < 1,
n∑

i=1

ψ(z + i) = −nγEM +

∫ 1

0

n(1− t)− tz(1− tn)

(1− t)2
dt.

Focusing on the integral term, note that by letting f(t) = n(1−t)−tz(1−tn) and g(t) = (1−t)−1,
since g′(t) = (1− t)−2,∫ 1

0

n(1− t)− tz(1− tn)

(1− t)2
dt =

∫ 1

0

f(t)g′(t)dt

= lim
t→1−

f(t)g(t)− f(0)g(0)−
∫ 1

0

f ′(t)g(t)dt.
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Since limt→1−(1− tn)/(1− t) = n, limt→1− f(t)g(t) = 0, and so∫ 1

0

n(1− t)− tz(1− tn)

(1− t)2
dt = −n−

∫ 1

0

−n− ztz−1 + (n+ z)tn+z−1

1− t
dt

= −n−
∫ 1

0

(n+ z)(tn+z−1 − 1)− z(tz−1 − 1)

1− t
dt

= −n+ (n+ z)

∫ 1

0

1− tn+z−1

1− t
dt− z

∫ 1

0

1− tz−1

1− t
dt

= −n+ (n+ z) [ψ(n+ z) + γEM]− z [ψ(z) + γEM]

= −n+ nγEM + (n+ z)ψ(n+ z)− zψ(z).

The result immediately follows

Using this lemma, we can obtain an explicit expression for the sum of digamma functions with
increment 1

2 . This will be particularly useful for computing determinants of Wishart matrices.
Lemma 2. For any positive integers n and d with n > d,

d∑
i=1

ψ

(
n− i+ 1

2

)
=
n

2
ψ
(n
2

)
−
(
n− d

2

)
ψ

(
n− d

2

)
− d

+

(
n− 1

2

)
ψ

(
n− 1

2

)
−
(
n− d− 1

2

)
ψ

(
n− d− 1

2

)
.

Proof. First, note that
d∑

i=1

ψ

(
n− i+ 1

2

)
=

d∑
i=1

ψ

(
n− d+ i

2

)
.

We consider the cases where d is even and odd separately. When d is even,
d∑

i=1

ψ

(
n− d

2
+
i

2

)
=

d/2∑
i=1

ψ

(
n− d

2
+ i

)
+ ψ

(
n− d

2
+ i− 1

2

)
=
n

2
ψ
(n
2

)
−
(
n− d

2

)
ψ

(
n− d

2

)
− d

+

(
n− 1

2

)
ψ

(
n− 1

2

)
−
(
n− d− 1

2

)
ψ

(
n− d− 1

2

)
.

Now assume that d is odd. Then
d∑

i=1

ψ

(
n− d

2
+
i

2

)
= ψ

(n
2

)
+

d−1∑
i=1

ψ

(
(n− 1)− (d− 1)

2
+
i

2

)
= ψ

(n
2

)
+
n− 1

2
ψ

(
n− 1

2

)
−
(
n− d

2

)
ψ

(
n− d

2

)
− d+ 1

+
(n
2
− 1
)
ψ
(n
2
− 1
)
−
(
n− d− 1

2

)
ψ

(
n− d− 1

2

)
.

But now, since zψ(z + 1) = zψ(z) + 1, (n2 − 1)ψ(n2 − 1) = (n2 − 1)ψ(n2 )− 1, and so

ψ
(n
2

)
+
(n
2
− 1
)
ψ
(n
2
− 1
)
=
n

2
ψ
(n
2

)
− 1.

The result now follows.
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D MARCHENKO-PASTUR THEORY

In this section, we prove several lemmas concerning limiting traces and log-determinants of Wishart
matrices that will prove foundational for proving our main results. The fundamental theorem in
this section is the Marchenko-Pastur Theorem, which describes the limiting spectral distribution of
Wishart matrices. The following can be obtained from pg. 51 of Couillet & Debbah (2011).
Theorem 2 (Marchenko-Pastur Theorem). For each n = 1, 2, . . . , let Xn ∈ Rn×d be a matrix of
iid random variables with zero mean and unit variance. If n, d → ∞ with d/n → c ∈ (0,∞), then
for every z ∈ C\{0},

d−1Etr((n−1X⊤
n Xn − zI)−1) → m(z) :=

1− c− z −
√
(z − c− 1)2 − 4c

2cz
,

noting that m(z) satisfies m = 1/(1− c− z − czm).

For the remainder of this section, we assume the conditions of Theorem 2, that is, for each n =
1, 2, . . . , we let Xn ∈ Rn×d be a matrix of iid random variables with zero mean and unit variance.
Lemma 3 (Trace of Inverse Matrix). Let n, d→ ∞ with d/n→ c ∈ (0, 1] and assume that µn is a
sequence of real numbers such that µn → µ ∈ (0,∞) as n→ ∞. Then

n−1Etr((d−1X⊤
n Xn + µnI)

−1) → T (µ, c) :=
c− 1− cµ+

√
(cµ+ c+ 1)2 − 4c

2µ
,

and T (µ, c) satisfies T = c2/(1− c+ cµ+ µT ). Similarly, if d/n→ c ∈ (1,∞), then

n−1Etr((d−1XnX
⊤
n + µnI)

−1) → T̃ (µ, c) :=
1− c− cµ+

√
(cµ+ c+ 1)2 − 4c

2µ
,

and T̃ (µ, c) satisfies T̃ = c/(c− 1 + cµ+ µT̃ ) and T̃ (µ, c) = c2T (cµ, c−1).

Proof. By the Neumann series, (A+ ϵI)−1 = A−1 +O(ϵ) as ϵ→ 0+. Therefore,

n−1Etr
(
(d−1X⊤

n Xn + µnI)
−1
)
= n−1Etr

((
d−1X⊤

n Xn + µI
)−1
)
+ o(1)

= n−1Etr
((n

d
n−1X⊤

n Xn + µI
)−1

)
+ o(1)

=
d

n
n−1Etr

((
n−1X⊤

n Xn +
d

n
µI

)−1
)

+ o(1).

By the Marchenko-Pastur Theorem, letting z = −cµ,

d

n
n−1Etr

(
(n−1X⊤

n Xn + cµI)−1
)
=
d2

n2
d−1Etr

(
(n−1X⊤

n Xn + cµI)−1
)

=
d2

n2
d−1Etr

(
(n−1X⊤

n Xn − zI)−1
)

→ c2 ·
1− c− z −

√
(z − c− 1)2 − 4c

2cz

=
c− 1− cµ+

√
(cµ+ c+ 1)2 − 4c

2µ
.

On the other hand, when c > 1, letting X̃n = X⊤
n ∈ Rd×n, the Marchenko-Pastur Theorem

immediately implies

n−1Etr
(
(d−1XnX

⊤
n + µnI)

−1
)
= n−1Etr((d−1X̃⊤

n X̃n + µI)−1) + o(1)

→
c−1 − 1− µ+

√
(µ+ c−1 + 1)2 − 4c−1

2c−1µ
= T̃ (µ, c).
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Now we turn our attention to the log-determinant, which also depends exclusively on the spectrum.
Our method of proof relies on Jacobi’s formula, which relates the log-determinant to the trace of the
matrix inverse.

Lemma 4 (Log-Determinant). Let n, d → ∞ such that d/n → c ∈ (0, 1] and assume that µn is a
sequence of real numbers such that µn → µ ∈ (0,∞) as n→ ∞. Then

1

n
E log det(d−1X⊤

n Xn + µnI) → D(µ, c),

where

D(µ, c) := (c− 1) log(1− c)− c log c− c+

∫ µ

0

T (t, c)dt

= log

(
1 +

T (µ, c)

c

)
− T (µ, c)

c+ T (µ, c)
− c log

(
T (µ, c)

c

)
.

Similarly, if d/n→ c ∈ (1,∞), then

1

n
E log det(d−1XnX

⊤
n + µnI) → D̃(µ, c),

where

D̃(µ, c) := (1− c) log(c− 1) + (c− 1) log c− 1 +

∫ µ

0

T̃ (t, c)dt,

= c log

(
1 +

T̃ (µ, c)

c

)
− cT̃ (µ, c)

c+ T̃ (µ, c)
− log T̃ (µ, c).

Proof. By Jacobi’s formula and Taylor’s theorem, log det(A+ ϵI) = log detA+O(ϵ) as ϵ→ 0+,
and so

n−1E log det(d−1X⊤
n Xn + µnI) = n−1E log det(d−1X⊤

n Xn + µI) + o(1).

Furthermore,

1

n
E log det(d−1X⊤

n Xn + µI) =
1

n
E log det(d−1X⊤

n Xn) +
1

n

∫ µ

0

Etr
(
(d−1X⊤

n Xn + tI)−1
)
dt,

=
1

n
E log det(d−1X⊤

n Xn) +

∫ µ

0

T (t, c)dt+ o(1),

and so it suffices to consider the case µ = 0. Since the log-determinant depends only on the spectrum
of Xn, and the spectrum of n−1X⊤

n Xn is asymptotically equivalent to that of n−1W⊤
n Wn, where

Wn is a Wishart-distributed matrix, it will suffice to consider the limit of n−1E log det(d−1W⊤
n Wn).

First, recall that (Bishop & Nasrabadi, 2006, B.81)

E log det(W⊤
n Wn) = d log 2 +

d∑
i=1

ψ

(
n− i+ 1

2

)
= d log 2 + nψ

(n
2

)
− (n− d)ψ

(
n− d

2

)
+O(n−1) +O(d−1).

Since ψ(x) = log x+O(x−1), letting d = [cn], there is

E log det
(
W⊤

n Wn

)
∼ d log 2 + n log

(n
2

)
− (n− d) log

(
n− d

2

)
− d

∼ n log n− (n− cn) log (n− cn)− cn

∼ n log n− (1− c)n log n− (1− c)n log(1− c)− cn

∼ cn log n− (1− c)n log(1− c)− cn.
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Therefore,

n−1E log det(d−1W⊤
n Wn) ∼

cn log n− (1− c)n log(1− c)− cn− cn log cn

n
→ (c− 1) log(1− c)− c− c log c,

and so

1

n
E log det(d−1X⊤

n Xn + µnI) → D(µ, c) := (c− 1) log(1− c)− c log c− c+

∫ µ

0

T (t, c)dt.

To obtain the second equality, we will need to compute the integral term. First, observe that by a
change of variables,

∫ µ

0
T (t, c)dt =

∫ cµ

0
τ(t, c)dt, where

τ(t, c) =
c− 1− t+

√
(t+ c+ 1)2 − 4c

2t
,

and T (t, c) = cτ(cµ, c). Observe that we can rewrite τ as

τ(t, c) =
(c+ 1 + t)2 − 4c− (t+ 1− c)2

2t
[√

(c+ 1 + t)2 − 4c+ (t+ 1− c)
]

=
2c√

(c+ 1 + t)2 − 4c+ (t+ 1− c)
.

Now, let

v = v(t) =
c+ 1 + t+

√
(c+ 1 + t)2 − 4c

2
,

so that τ(t, c) = 2c/(2v − 2c) = c/(v − c). Note that v2 − (c + t + 1)v + c = 0. Differentiating
this relation in t, we find

2vv′ − v − (c+ t+ 1)v′ = 0,

where v′ = dv/dt, and hence
v′ =

v

2v − (c+ t+ 1)
.

But since v2 + c = (c+ t+ 1)v,

v′ =
v

2v − v2+c
v

=
v2

v2 − c
.

Altogether, ∫
τ(t, c)dt =

∫
c(v2 − c)

(v − c)v2
dv.

From a partial fraction expansion,

c(v2 − c)

(v − c)v2
=
A

v2
+
B

v
+

C

v − c
,

we find that c(v2 − c) = A(v − c) + Bv2 − cBv + Cv2, implying that B + C = c, A − cB = 0
and −Ac = −c2. Therefore, A = c, B = 1, and C = c− 1, so

c(v2 − c)

(v − c)v2
=

c

v2
+

1

v
+
c− 1

v − c
.

Hence, an antiderivative of τ is given by

− c

v
+ log v + (c− 1) log(v − c).

Since v → 1 as t→ 0,∫ cµ

0

τ(t, c)dt = − c

v
+ log v + (c− 1) log(v − c) + c− (c− 1) log(1− c).
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Finally, since v = c(1 + τ(cµ, c))/τ(cµ, c) = c(c+ T (µ, c))/T (µ, c), the result for n > d follows.

Now we consider the d > n case. Then we have

n−1E log det
(
d−1XnX

⊤
n + µnI

)
= n−1E log det

(
d−1XnX

⊤
n + µI

)
+ o(1)

=
d

n
d−1E log det

(n
d
n−1XnX

⊤
n + µI

)
+ o(1)

=
d

n
d−1E log det

(
n−1XnX

⊤
n +

d

n
µI

)
+ log

(n
d

)
+ o(1)

= cd−1E log det
(
n−1XnX

⊤
n + cµI

)
− log c+ o(1)

→ cD(cµ, c−1)− log c.

From the first expression for D(µ, c), there is

cD(cµ, c−1) = c(c−1 − 1) log(1− c−1)− log c−1 − 1 +

∫ cµ

0

cT (t, c−1)dt

= (1− c) log(c− 1) + c log c− 1 +

∫ µ

0

c2T (ct, c−1)dt

= (1− c) log(c− 1) + c log c− 1 +

∫ µ

0

T̃ (t, c)dt.

Finally, from the second expression for D(µ, c),

cD(cµ, c−1) = c log

(
1 +

T (cµ, c−1)

c−1

)
− cT (cµ, c−1)

c−1 + T (cµ, c−1)
− log

(
T (cµ, c−1)

c−1

)
,

= c log

(
1 +

T̃ (µ, c)

c

)
− cT̃ (µ, c)

c+ T̃ (µ, c)
− log

(
T̃ (µ, c)

c

)
,

from which the result follows.

E KERNELS AND GRAM MATRICES

To extend the results of the previous section to Gram matrices, we rely on the approximation the-
ory developed in El Karoui (2010). For a continuous function κ : R → R that is continuously
differentiable on (0,∞), two types of kernels are considered:

(I) Inner product kernels: k(x, y) = κ(x⊤y/d) for x, y ∈ Rd, and κ is three-times continu-
ously differentiable in a neighbourhood of zero with κ′(0) > 0.

(II) Radial basis kernels: k(x, y) = κ(∥x − y∥2/d) for x, y ∈ Rd, and κ is three-times
continuously differentiable on (0,∞) with κ′ < 0.

Let ∥A∥2 denote the spectral norm of a matrix A. The following theorem combines Theorems 2.1
and 2.2 in El Karoui (2010).
Theorem 3. For each n = 1, 2, . . . , let X1

n, . . . , X
n
n be independent and identically distributed

zero-mean random vectors in Rd with Cov(Xi
k) = σ2I and E∥Xi

k∥5+δ < ∞ for some δ > 0.
For a kernel k of type (I) or (II), consider the Gram matrices Kn

X ∈ Rn×n with entries (Kn
X)ij =

k(Xi
n, X

j
n). If n, d→ ∞ such that d/n→ c ∈ (0,∞), then there exists an integer k and a bounded

sequence of rank k matrices C1, C2, . . . such that

∥Kn
X − (αd−1XX⊤ + βI + Cn)∥2 → 0,

where the constants α, β for cases (I) and (II) are, respectively,

(I) Inner product kernels: α = κ′(0), β = κ(σ2)− κ(0)− κ′(0)σ2;

(II) Radial basis kernels: α = −2κ′(2σ2), β = κ(0) + 2σ2κ′(2σ2)− κ(2σ2).
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For the remainder of this section, we assume the hypotheses of Theorem 3, so that ∥Kn
X −

(αd−1XX⊤ + βI)∥2 → 0 for some appropriate α > 0 and β ∈ R. To apply Theorem 3 with
the results of the previous section, we require the following basic lemma.

Lemma 5. For any symmetric positive-definite matrices A,B ∈ Rn×n and v > 0,

1

n
|tr((A+ vI)−1)− tr((B + vI)−1)| ≤ ∥A−B∥2

v2

1

n
| log det(A+ vI)− log det(B + vI)| ≤ ∥A−B∥2

v
.

Proof. Let λ1(A) ≥ · · · ≥ λn(A) and λ1(B) ≥ · · · ≥ λn(B) denote the eigenvalues of A and B,
respectively, in decreasing order. Recall from Weyl’s perturbation theorem (see Corollary III.2.6 of
Bhatia (2013)) that maxi=1,...,n |λi(A) − λi(B)| ≤ ∥A − B∥2. By the Mean Value Theorem, for
any x, y > 0, |(x+ v)−1 − (y + v)−1| ≤ v−2|x− y|. Therefore,

1

n
|tr((A+ vI)−1)− tr((B + vI)−1)| = 1

n

∣∣∣∣∣
n∑

i=1

1

λi(A) + v
− 1

λi(B) + v

∣∣∣∣∣
≤ 1

v2
max

i=1,...,n
|λi(A)− λi(B)|

≤ 1

v2
∥A−B∥2.

Similarly, the Mean Value Theorem implies that for any x, y > 0, | log(x + v) − log(y + v)| ≤
v−1|x− y|, and so

1

n
| log det(A+ vI)− log det(B + vI)| = 1

n

∣∣∣∣∣
n∑

i=1

log(λi(A) + v)− log(λi(B) + v)

∣∣∣∣∣
≤ 1

v
max

i=1,...,n
|λi(A)− λi(B)|

≤ 1

v
∥A−B∥2.

Combining Theorem 3 and Lemma 5 with Lemmas 3 and 4 yields the following corollary.

Corollary 1. Under the assumptions of Theorem 3, if µn is a sequence of positive real numbers
such that µn → µ ∈ (0,∞) as n→ ∞, then

1

n
Etr((Kn

X + µnI)
−1) →


1−c
β+µ + 1

αT
(

β+µ
α , c

)
if c < 1

1
α T̃
(

β+µ
α , c

)
if c > 1,

1

n
E log det(Kn

X + µnI) →

D
(

β+µ
α , c

)
+ (1− c) log

(
β+µ
α

)
+ logα if c < 1

D̃
(

β+µ
α , c

)
+ logα if c > 1.

Proof. First consider the c > 1 case. Combining Theorem 3 and Lemma 5, and noting that finite
rank perturbations do not affect the limiting spectrum (El Karoui, 2010, Lemma 2.1), we find that

1

n
Etr (Kn

X + µnI)
−1

=
1

n
Etr
(
αd−1XX⊤ + βI + µnI

)−1
+ o(1)

=
1

αn
Etr
(
d−1XX⊤ +

β + µ

α
I

)−1

+ o(1)

→ 1

α
T̃

(
β + µ

α
, c

)
.
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Similarly, since XX⊤ ∈ Rn×n,
1

n
E log det (Kn

X + µnI) =
1

n
E log det

(
αd−1XX⊤ + βI + µI

)
+ o(1)

=
1

n
E log det

(
d−1XX⊤ +

β + µ

α
I

)
+ logα+ o(1)

→ D̃

(
β + µ

α
, c

)
+ logα.

For the c < 1 case, from the Woodbury matrix identity (Pozrikidis, 2014, B.1.2),

tr
(
(η1XX

⊤ + η2I)
−1
)
=

n

η2
− tr

(
η1
η2
X
(
η2I + η1X

⊤X
)−1

X⊤
)

=
n

η2
− 1

η2
tr
((
η2I + η1X

⊤X
)−1

η1X
⊤X
)

=
n

η2
− 1

η2
tr
(
I − η2

(
η2I + η1X

⊤X
)−1
)

=
n− d

η2
+ tr

(
(η1X

⊤X + η2I)
−1
)
.

Therefore,

1

n
Etr (Kn

X + µnI)
−1

=
1

αn
Etr
(
d−1XX⊤ +

β + µ

α
I

)−1

+ o(1)

=
1− d

n

β + µ
+

1

αn
Etr
(
d−1X⊤X +

β + µ

α
I

)−1

+ o(1)

→ 1− c

β + µ
+

1

α
T

(
β + µ

α
, c

)
.

Finally, from Sylvester’s determinant theorem (Pozrikidis, 2014, B.1.15),

log det(η1XX
⊤ + η2I) = log det

(
η1
η2
XX⊤ + I

)
+ n log η2

= log det

(
η1
η2
X⊤X + I

)
+ n log η2

= log det
(
η1X

⊤X + η2I
)
+ (n− d) log η2.

Therefore,
1

n
E log det (Kn

X + µnI) =
1

n
E log det

(
d−1XX⊤ +

β + µ

α
I

)
+ logα+ o(1)

=
1

n
E log det

(
d−1X⊤X +

β + µ

α
I

)
+

(
1− d

n

)
log

(
β + µ

α

)
+ logα+ o(1)

→ D

(
β + µ

α
, c

)
+ (1− c) log

(
β + µ

α

)
+ logα.

F PROOFS OF MAIN RESULTS

With the underlying random matrix theory in place, we can begin to prove our main result in Theo-
rem 1. Throughout this section, we assume the conditions of Theorem 1, that is, we let X1, X2, . . .
be independent and identically distributed zero-mean random vectors in Rd with unit covariance,
satisfying E∥Xi∥5+δ < +∞ for some δ > 0. For each n = 1, 2, . . . , let

Fγ
n = 1

2λY
⊤(KX + λγI)−1Y + 1

2 log det(KX + λγI)− n
2 log

(
λ
2π

)
.

where KX ∈ Rn×n satisfies Kij
X = k(Xi, Xj) and Y = (Yi)

n
i=1, with each Yi ∼ N (0, 1).
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Proposition 2 (El Karoui-Marchenko-Pastur Limit of the Bayes Free Energy). Assuming that
n, d→ ∞ such that d/n→ c ∈ (0,∞), there is n−1EFγ

n → Fγ
∞ where for c < 1,

Fγ
∞ =

λ

2

(
1− c

β + γλ
+

1

α
T

(
β + γλ

α
, c

))
− 1

2
log

(
λ

2πα

)
+

1

2
D

(
β + γλ

α
, c

)
+

1

2
(1− c) log

(
β + γλ

α

)
,

and for c > 1,

Fγ
∞ =

λ

2α
T̃

(
β + γλ

α
, c

)
− 1

2
log

(
λ

2πα

)
+

1

2
D̃

(
β + γλ

α
, c

)
.

Proof. Recalling that E[Y ⊤AY ] = tr(A) for any A ∈ Rn×n, since KX is independent of Y ,

1

n
EFγ

n =
λ

2n
Etr((KX + λγI)−1) +

1

2n
E log det(KX + λγI)− 1

2
log

(
λ

2π

)
.

The result follows by a direct application of Corollary 1.

Proposition 3 (Optimal Temperature in the Bayes Free Energy). Assume that λ = µ/γ for some
fixed µ > 0. The limiting Bayes free energy Fγ

∞ is minimized in γ at

γ∗ =
µ

2(β + µ)
[1− c− c(β+µ

α ) +
√
(c(β+µ

α ) + c+ 1)2 − 4c].

Proof. First consider the case c < 1. If λ = µ/γ, then

Fγ
∞ =

µ

2γ

(
1− c

β + µ
+

1

α
T

(
β + µ

α
, c

))
− 1

2
log

(
µ

2πγα

)
1

2
D

(
β + µ

α
, c

)
+

1

2
(1− c) log

(
β + µ

α

)
.

Note that as γ → 0+ or γ → ∞, Fγ
∞, so if there exists only one point γ∗ where that ∂Fγ

∞/∂γ =
0, then by Fermat’s Theorem, γ∗ is the unique global minimizer of Fγ

∞. For µ fixed, we may
differentiate in γ to find that

∂Fγ
∞

∂γ
= − µ

2γ2

(
1− c

β + µ
+

1

α
T

(
β + µ

α
, c

))
+

1

2γ
.

Solving ∂Fγ
∞/∂γ = 0 for γ, the optimal

γ∗ = µ

(
1− c

β + µ
+

1

α
T

(
β + µ

α
, c

))
.

Simplifying,

1− c

β + µ
+

1

α

c− 1− c(β+µ
α ) +

√
(c(β+µ

α ) + c+ 1)2 − 4c

2(β+µ
α )

=
1− c− c(β+µ

α ) +
√
(c(β+µ

α ) + c+ 1)2 − 4c

2(β + µ)
,

which implies the result for c < 1. On the other hand, for c > 1,

Fγ
∞ =

µ

2γα
T̃

(
β + µ

α
, c

)
− 1

2
log

(
µ

2παγ

)
+

1

2
D̃

(
β + µ

α
, c

)
,

and once again, as γ → 0+ or γ → ∞, Fγ
∞ → ∞, so a unique critical point is the unique global

minimizer of Fγ
∞. For µ fixed, we differentiate in γ to find

∂Fγ
∞

∂γ
= − µ

2γ2α
T̃

(
β + µ

α
, c

)
+

1

2γ
.
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Solving ∂Fγ
∞/∂γ = 0 for γ, the optimal

γ∗ =
µ

α
T̃

(
β + µ

α
, c

)
.

Simplifying,

1

α
T̃

(
β + µ

α
, c

)
=

1− c− c(β+µ
α ) +

√
(c(β+µ

α ) + c+ 1)2 − 4c

2(β + µ)
,

which implies the result for c > 1.

In the sequel, we assume that the kernel itself depends on λ in such a way that β = β0λ for some
0 < β0 < 1. Let γ0 = γ + β0 and µ = λγ0/α. For c < 1, the limiting Bayes free energy satisfies

Fγ
∞ =

1

2γ0
(1− c+ µT (µ, c))− 1

2
log

(
µ

2πγ0

)
+

1

2
D(µ, c) +

1

2
(1− c) logµ,

=
1

2γ0
(1− c+ µT (µ, c))− 1

2
log

(
1

2πγ0

)
+

1

2
D(µ, c)− c

2
logµ.

and for c > 1,

Fγ
∞ =

µ

2γ0
T̃ (µ, c)− 1

2
log

(
µ

2πγ0

)
+

1

2
D̃(µ, c).

Proposition 4 (Optimal Regularization in the Bayes Free Energy). The limiting Bayes free energy
Fγ

∞ is minimized in λ at

λ∗ =
α[(c+ 1)γ0 +

√
(c− 1)2 + 4cγ20 ]

c(1− γ20)
.

Proof. Since Fγ
∞ is smooth for λ ∈ (0,∞) (and therefore µ ∈ (0,∞)), Fermat’s theorem implies

that any optimal temperature λ∗ must be a critical point of Fγ
∞ in (0,∞). First, consider the case

where c < 1. Differentiating Fγ
∞ with respect to µ,

∂Fγ
∞

∂µ
=

1

2γ0

∂

∂µ
(µT (µ, c))− c

2µ
+

1

2
T (µ, c).

Letting U(µ, c) = µT (µ, c) and U ′ = ∂U
∂µ ,

∂Fγ
∞

∂µ
=

1

2µ

(
µ

γ0
U ′ + U − c

)
. (8)

Noting that

U(µ, c) =
c− 1− cµ+

√
(cµ+ c+ 1)2 − 4c

2
,

and

U ′ = − c
2
+

c(cµ+ c+ 1)

2
√
(cµ+ c+ 1)2 − 4c

= c ·
cµ+ c+ 1−

√
(cµ+ c+ 1)2 − 4c

2
√

(cµ+ c+ 1)2 − 4c
,

and so U ′
√
(cµ+ c+ 1)2 − 4c = c · (c− U). Therefore, substituting into (8) reveals

∂Fγ
∞

∂µ
=

1

2cµ

(
cµ

γ0
−
√

(cµ+ c+ 1)2 − 4c

)
U ′.

Since U ′ > 0, ∂Fγ
∞/∂µ = 0 if and only if

cµ

γ0
=
√
(cµ+ c+ 1)2 − 4c. (9)

This occurs when
c2(1− γ20)µ

2 − 2cµ(c+ 1)γ20 − (c− 1)2γ20 = 0. (10)
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If γ0 ≥ 1, then no positive solutions exist for µ. On the other hand, if γ < 1, then only one positive
solution exists, and is given by

µ∗ =
2c(c+ 1)γ20 +

√
4c2(c+ 1)2γ40 + 4c2(1− γ20)(c− 1)2γ20

2c2(1− γ20)

=
2c(c+ 1)γ20 + 2cγ0

√
[(c+ 1)2 − (c− 1)2]γ20 + (c− 1)2

2c2(1− γ20)

=
(c+ 1)γ20 + γ0

√
(c− 1)2 + 4cγ20

c(1− γ20)
.

Next, consider the case c > 1. Differentiating Fγ
∞ with respect to µ, we seek

∂Fγ
∞

∂µ
=

1

2γ

∂

∂µ
(µT̃ (µ, c)) +

1

2
T̃ (µ, c)− 1

2µ
= 0,

or, equivalently,
µ

γ

∂

∂µ
(µT̃ (µ, c)) + µT̃ (µ, c)− 1 = 0. (11)

Letting Ũ = µT̃ and Ũ ′ = ∂Ũ
∂µ , we require µ

γU
′ + U − 1 = 0. But since

Ũ =
1− c− cµ+

√
(cµ+ c+ 1)2 − 4c

2
,

and

Ũ ′ =
∂Ũ

∂µ
=
c(c+ cµ+ 1−

√
(cµ+ c+ 1)2 − 4c)

2
√

(cµ+ c+ 1)2 − 4c
,

we find that Ũ ′
√
(cµ+ c+ 1)2 − 4c = c(1− Ũ). Substituting this relation into (9), we obtain

∂Fγ
∞

∂µ
=

1

2µc

(
cµ

γ
−
√
(cµ+ c+ 1)2 − 4c

)
Ũ ′ = 0,

and since U ′ > 0, an optimal µ∗ occurs if and only if (9) holds. The rest of the proof proceeds as in
the c < 1 case.

Proposition 5 (Monotonicity in the Bayes Free Energy). The limiting Bayes free energy Fγ
∞ at

λ = λ∗ decreases monotonically in c ∈ (0,∞).

Proof. First, we treat the c < 1 case. Using the closed form expression for D(µ, c) in Lemma 4,

Fγ
∞ =

1

2γ0
(1− c+ µT ) +

1

2
log(2πγ0)−

c

2
logµ

+
1

2

[
log

(
1 +

T

c

)
− T

c+ T
− c log

(
T

c

)]
.

Note that, at the optimal µ∗, d
dcF

γ
∞ = ∂

∂cF
γ
∞ + ∂

∂µF
γ
∞ · ∂µ∗

∂c = ∂
∂cF

γ
∞. Therefore,

2
dFγ

∞
dc

=

(
T

(T + c)2
+
µ

γ0
− c

T

)
∂T

∂c
+ 1− 1

γ0
− T 2

c(T + c)2
+ log

(
c

µT

)
.

Differentiating T in c, we find that

∂T

∂c
=

1− µ

2µ
+

1

2µ

(
(cµ+ c+ 1)(µ+ 1)− 2√

(cµ+ c+ 1)2 − 4c

)

=
(cµ+ c+ 1)(µ+ 1)− (µ− 1)

√
(cµ+ c+ 1)2 − 4c− 2

2µ
√
(cµ+ c+ 1)2 − 4c

=
2c− (µ− 1)T√
(cµ+ c+ 1)2 − 4c

.
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Since cµ∗/γ0 =
√
(cµ∗ + c+ 1)2 − 4c, at the optimal µ∗,

∂T

∂c
= γ0 ·

2c− µT + T

cµ
.

Note that for any c > 0,

µT =
c− 1− cµ+

√
(cµ+ c+ 1)2 − 4c

2
<
c− 1− cµ+ cµ+ c+ 1

2
= c.

Recalling that log x < x − 1 for any x > 1, log(c/(µT )) < c/(µT ) − 1. Therefore, 2dFγ
∞

dc < M ,
where

M =

(
T

(T + c)2
+
µ

γ0
− c

T

)
γ0(2c− µT + T )

cµ
− 1

γ0
− T 2

c(T + c)2
+

c

µT
.

Since T = (c− 1− cµ∗ + cµ∗/γ0)/(2µ
∗) at the optimal µ∗, after several calculations, we find that

M = Q(µ∗, c, γ0)
c2(1− γ20)(µ

∗)2 − 2cµ∗(c+ 1)γ20 − (c− 1)2γ20
2cγ0µ∗(cγ0µ∗ − cγ0 + cµ∗ + γ0)(cγ0µ∗ + cγ0 − cµ∗ − γ0)

,

where

Q(µ, c, γ) = (2(c− 1)γ + cµ)(cµ2 + 2cµ+ c+ µ− 1)γ2

+ cµ(cµ+ c+ µ− 1)γ2 − (µ+ 1)(cµ+ (c− 1)γ)2.

In particular, by (10), at µ = µ∗, M = 0, and hence, d
dcF

γ
∞ < 0.

Next, we treat the c > 1 case. Using the closed form expression in Lemma 4,

Fγ
∞ =

µ

2γ0
T̃ − 1

2
log

(
µ

2πγ0

)
+

1

2
c log(c+ T̃ )− 1

2
c log c− 1

2

cT̃

c+ T̃
− 1

2
log T̃ .

Differentiating in c at the optimal µ∗,

2
dFγ

∞
dc

= 2
∂Fγ

∞
∂c

=

(
µ

γ0
− 1

T̃
+

cT̃

(c+ T̃ )2

)
∂T̃

∂c

+ log(c+ T̃ )− log c− 1 +
cT̃

(c+ T̃ )2
+

c2

(c+ T̃ )2
− T̃ 2

(c+ T̃ )2
.

Differentiating T̃ in c, we find that

∂T̃

∂c
=

−1− µ+ (cµ+c+1)(µ+1)−2√
(cµ+c+1)2−4c

2µ

=
− (µ+ 1)

√
(cµ+ c+ 1)2 − 4c+ (cµ+ c+ 1)(µ+ 1)− 2

2µ
√
(cµ+ c+ 1)2 − 4c

=
1√

(cµ+ c+ 1)2 − 4c
·

[
(µ+ 1)

cµ+ c+ 1−
√

(cµ+ c+ 1)2 − 4c

2µ
− 1

µ

]

=
1√

(cµ+ c+ 1)2 − 4c
·
[
(µ+ 1)

(
1

µ
− T̃

)
− 1

µ

]
=

1− µT̃ − T̃√
(cµ+ c+ 1)2 − 4c

.

Since cµ∗/γ0 =
√
(cµ∗ + c+ 1)2 − 4c, it follows that

∂T̃

∂c
= γ · 1− µT − T

cµ
.
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Note that for any c > 0, T̃ < c, and so log(1 + T̃ /c) < T̃/c. Therefore, 2dFγ
∞

dc < M where

M =
γ0
cµ

(
µ

γ0
− 1

T̃
+

cT̃

(c+ T̃ )2

)
+
T̃

c
− 1 +

cT̃

(c+ T̃ )2
+

c2

(c+ T̃ )2
− T̃ 2

(c+ T̃ )2
.

Since T̃ = (1− c− cµ∗ + cµ∗/γ0)/(2µ
∗) at the optimal µ∗, after several calculations, we find that

M = −Q(µ∗, c, γ0)
c2(1− γ20)(µ

∗)2 − 2cµ∗(c+ 1)γ20 − (c− 1)2γ20
2cγ0µ∗(cγ0µ∗ − cγ0 + cµ∗ + γ0)(cγ0µ∗ + cγ0 − cµ∗ − γ0)

,

where

Q(µ, c, γ) = µ(cµ+ γ)2 + 2c(µ+ 1)2(c− 1)γ3 + 2(c− 1)(µ− 1)γ3

− 2c2γ2µ(µ+ 1)− µc2γ2(µ+ 1)2 − 2cγ2µ(µ− 1).

In particular, since the numerator for M is always zero, it follows that dFγ
∞

dc < 0.

Theorem 1 follows immediately from Propositions 2, 3, 4, and 5.

Proof of Proposition 1. Under the stated hypotheses, let δ(λ, γ) = c2(λ, γ)/c1(γ) and Ē(c) =
E(c) + c3(γ)/c1(γ). Then

|L/c1 − Ē| ≤ |E∥f̄(x)− y∥2 − E|+ δ(λ(γ), γ)Etr(Σ(x))
≤ |E∥f̄(x)− y∥2 − E|+ δ(λ(γ), γ)mEk(x, x).

For an arbitrary ϵ > 0, let N be sufficiently large so that for any n > N and d = d(n), |E∥f̄(x) −
y∥2 − E| ≤ ϵ/2. Similarly, let γ0 be sufficiently small so that for any 0 < γ < γ0, δ(λ(γ), γ) <
ϵ/(2mEk(x, x)). Then |L/c1 − Ē| < ϵ, and the result follows.

G DETAILS OF EXPERIMENTS

In each figure shown throughout this work, a performance metric has been calculated for varying
dataset size n, input dimension d, and hyperparameters γ, λ. For experiments involving synthetic
data, X ∈ Rn×d has iid rows drawn from N (0,Σ), and Y = (Yi)

n
i=1 is comprised of iid samples

from N (0, σ2) (where Σ = I and σ = 1 unless specified otherwise). For PPL2 and PPNLL, the
expectation is computed over iid scalar test points x, y ∼ N (0, 1). Runs are averaged over a number
of iterations, and 95% confidence intervals (under the central limit theorem) are highlighted. In
Table 2 we present the parameters used for each figure.

32



U
nderreview

as
a

conference
paperatIC

L
R

2023

Figure n d γ λ Kernel Iterations Notes
2UL 300 [100, 1000] [0.01, 0.99] λ∗ linear 5
2UR 300 [100, 1000] [0.01, 0.99] 0.01 linear 5
2BL 300 [100, 1000] [0.01, 0.99] λ∗ Gaussian 5
2BR 300 [100, 1000] [0.01, 0.99] 0.01 Gaussian 5
3L 900 [180, 3003] [0.01, 0.99] λ∗ linear 100 CIFAR10 dataset
3R 900 [180, 3003] [0.01, 0.99] λ∗ Gaussian 100 CIFAR10 dataset
4 50 [10, 368] [0.01, 0.99] λ∗ linear 100 CT Slices dataset (augmented)

5L 100 [10, 1000] [0.001, 0.99] 0.01/γ linear 100
5R 100 [10, 1000] [0.001, 0.99] λ∗ linear 100
6L 900 [180, 3003] [0.01, 0.99] λ∗ linear 100 CIFAR10 dataset
6R 900 [180, 3003] [0.01, 0.99] λ∗ linear 100 CIFAR10 dataset
7L 50 [10, 368] [0.01, 0.99] λ∗ linear 100 CT Slices dataset
7R 50 [10, 368] [0.01, 0.99] λ∗ Gaussian 100 CT Slices dataset
8L 50 [10, 368] [0.01, 0.99] 0.01/γ linear 100 CT Slices dataset
8R 50 [10, 368] [0.01, 0.99] λ∗ linear 100 CT Slices dataset
9L 175 [35, 706] [0.01, 0.99] λ∗ linear 100 MNIST dataset
9R 175 [35, 706] [0.01, 0.99] λ∗ Gaussian 100 MNIST dataset
10L 175 [35, 706] [0.01, 0.99] 0.01/γ linear 100 MNIST dataset
10R 175 [35, 706] [0.01, 0.99] λ∗ linear 100 MNIST dataset
11 100 [30, 300] [0.001, 0.1] λopt linear 10000 1000 iterations for d > n
12 100 [10, 1000] γopt [0.1/γopt, 10/γopt] linear 100

13L 300 [100, 1000] [0.01, 0.99] λ∗ linear 5 ∥θ0∥ = 1

13C 300 [100, 1000] [0.01, 0.99] λ∗ linear 5 ∥θ0∥ =
√
d

13R 300 [100, 1000] [0.01, 0.99] λ∗ linear 5 ∥θ0∥ =
√
n

14 300 [100, 1000] 0.01 λ∗ Matérn 5 ν ∈ [0.5, 100]

15 300 [100, 1000] [0.01, 0.99] λ∗ linear 5 Σ = diag((10)d/2i=1, (1/10)
d/2
i=1)

16L [300,3000] 210(1−ξ)nξ 0.01 λ∗ linear 5 ξ ∈ [0.1, 1.9]
16R [300,3000] 210(1−ξ)nξ 0.01 λ∗ Gaussian 5 ξ ∈ [0.1, 1.9]
17L 300 [100, 1000] 0.1 λ∗ linear 5 σ2 ∈ [0.1, 10]
17R 300 [100, 1000] 0.01 λ∗ linear 5 σ2 ∈ [0.1, 10]
18 100 [10, 1000] [0.001, 0.99] 0.01/γ Gaussian 100
19 100 [10, 1000] [0.001, 0.99] λ∗ Gaussian 100
20 300 [100, 1000] [0.001, 0.99] λ∗ linear —
21 300 [100, 1000] [0.001, 0.99] λ∗ Gaussian —

Table 2: Parameters used for each experiment, organized by Figure. L=left, C=center, R=right, U=upper, B=bottom
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