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In this supplementary material, we provide additional details to complement the main1

paper. Specifically, we present:2

• Additional implementation details;3

• Additional experimentl results including non-logarithmic comparison;4

• Explanation of our models with ternary inference;5

• A proof sketch for stochastic rounding’s convergence guarantee in DQT6

1. Additional Implementation Details7

1.1. Model configuration8

The detailed configurations for models of different sizes are provided in Table 1. Note that9

the batch size varies across model sizes during training, but no gradient accumulation is10

used in any experiment. For each model, the learning rate is selected via grid search over11

the set {1e-5, 1e-4, 5e-4, 1e-3} using our development set. Regarding the tokenizer, we12

adopt a publicly released pre-trained one1 without further updates during training. We fix13

the random seed to 42 for reproducibility.14

1.2. Dataset preprocessing15

The maximum length of training data for both datasets is set to 512. Texts longer than16

512 tokens are split into separate chunks, while shorter texts are padded accordingly. For17

Wikipedia, this preprocessing results in approximately 14 million sentences derived from18

the original 6.4 million examples, while for FineWeb, the dataset yields around 33 million19

sentences. The test set of WikiText-2 is from 2.20

1. https://huggingface.co/1bitLLM/bitnet_b1_58-large
2. https://huggingface.co/datasets/Salesforce/wikitext/viewer/wikitext-2-v1/test
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Params hidden size intermediate size num hidden layers num attention heads batch size

130M 768 2048 12 12 64
320M 1024 2048 24 16 32
1B 2048 3072 24 32 16

Table 1: Configuration of different models sizes.

Model size FP32 BF16 BF16+Adafactor FP8 FP8+Adafactor

130M 69327 54675 53827 39276 38315
1B 76533 58345 53723 40945 37669

Table 2: Actual GPU memory usage (in MB) of models with different sizes on a single
GH200.

1.3. Low-precision environments21

For FP8 simulation, we choose to use MS-AMP because the GH200 Superchips are equipped22

with ARM-based CPUs, which are not fully supported by the transformer-engine library23

currently. As for the reason for using low-precision simulation, hardware and software24

constraints, such as the inability to modify low-level PyTorch kernels or implement true25

integer-based weight updates, make it infeasible to perform actual low-bit computation in26

our environment. These limitations are typical in academic settings, where direct access to27

low-level hardware accelerators is restricted. As an alternative, we focus on evaluating the28

practical effectiveness of our method under memory-constrained conditions, simulating the29

scenarios where computational resources are limited.30

1.4. Actual Memory Usage31

We present the actual memory usage of models with different sizes in Table 2. The values32

reflect usage on a single GH200 GPU, which has 97,871 MB of available memory. We can33

also observe exactly how much memory is saved after applying the Adafactor optimizer.34

1.5. Weight Update Frequency35

For BitNet models, we compare quantized weight matrices at adjacent training steps by36

iterating through all corresponding rows and columns to identify whether each element is37

updated or not. For DQT models, we can directly compare the weight matrices before38

and after stochastic rounding. The update percentage is computed as the ratio of changed39

weight elements to the total number of elements.40

2. Additional Experimental Results41

We provide a more precise and clear comparison in Figure 1 and Figure 2.42

3. Ternary Inference43

Since the straight-through estimator is not employed in our proposed DQT, both the forward44

and backward operate directly on n-bit weight matrices, which means that our DQT models45
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Figure 1: Non-logarithmic training loss comparison of DQT 8 bits and BitNet b1.58 in 1B
sizes. Our DQT 8 bits performs slightly better than BitNet b1.58.
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Figure 2: Training loss comparison of DQT 8 bits and DQT 8 bits that utilizes ternary
inference. DQT achieves ternary inference with minimal degradation.

trained with larger bit-width are not inherently ternary during inference. To enable a fair46

comparison with BitNet b1.58, we adapt our models to perform ternary inference. This is47

achieved by using ternary weights during the forward pass while maintaining n-bit weights48

for the backward pass, updated through the straight-through estimator. The straight-49

through estimator is employed only to enable ternary inference in n-bit DQT models as a50

variant of our models. We additionally present the training loss for DQT 8 bit and DQT 851

bit with ternary inference in the supplementary material, Figure 2. Note that when ternary52

inference is applied, the memory usage is the same as BitNet b1.58 during inference.53
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4. A Proof Sketch for Convergence Guarantee in DQT54

We consider the simplified optimization problem: min L(θ), where L(·) is a smooth and55

possibly non-convex loss function and θ stands for the model parameter.56

We use a stochastic gradient method with quantized updates:57

θt+1 = SR(θ − η∇L(θt)) = θt − η∇L(θt) + ϵt, (1)

where SR(·) denotes the stochastic rounding quantizer (core approach of DQT), η is the58

learning rate and ϵt is the quantization error (noise) which can be represented as:59

ϵt = SR(θ − η∇L(θt))− (θ − η∇L(θt)). (2)

It is easy to find that in Equation 1, the latter is in the form of SGD optimization with60

noise. Let x = θ − η∇L(θt), then ϵt can be written into:61

ϵt = SR(x)− x, (3)

where62

SR(x) =

{
⌊x⌋, with p = ⌈x⌉ − x

⌈x⌉, otherwise
. (4)

Now we can calculate the expectation:63

E(SR(x)) = (⌈x⌉ − x) · ⌊x⌋+ (x− ⌊x⌋) · ⌈x⌉ = x. (5)

Then it would be obvious that64

E(ϵt) = E(SR(x))− E(x) = 0. (6)

This draws the important conclusion that the noise is zero-mean and unbiased.65

Next, we continue to calculate the variance of ϵt. Assume we quantize x with step size66

∆. Define: qlow = ⌊x/∆⌋ · ∆, and qhigh = qlow + ∆. With probability α, SR(x) = qhigh67

and with probability 1− α, SR(x) = qlow. Then following Equation 3, the noise ϵt can be68

represented as:69

ϵt =

{
qlow − x = −α∆, with p = 1− α

qhigh − x = (1− α)∆, with p = α
. (7)

The variance of ϵt can be represented using the following equation:70

V(ϵt) = (1− α)(α∆)2 + α[(1− α)∆]2 = α(1− α)∆2. (8)

Thus, the variance of ϵt is bounded:71

V(ϵt) ≤
1

4
∆2, (9)

the maximum is achieved when α = 1
2 .72

In conclusion, for an SGD optimization problem with noise, if the noise is zero-mean73

and its variance is bounded, the convergence can be guaranteed.74
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Figure 3: An example of our training process using 8-bit quantization.


	Additional Implementation Details
	Model configuration
	Dataset preprocessing
	Low-precision environments
	Actual Memory Usage
	Weight Update Frequency

	Additional Experimental Results
	Ternary Inference
	A Proof Sketch for Convergence Guarantee in DQT

