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A Our Discretization Method1

In practice, the manifold is often represented by triangle mesh: a collection of vertices, edges and2

faces. Since most concepts defined on manifolds in this paper can be naturally extended to meshes,3

we do not repeat all of them here but only focus on the part with significant differences.4

On meshes, the processing of single head self-attention is discretized into following form:5

SA(f)(h)w (p) =
∑
q∈Np

α(f)(h)p,qV
(h)
uq

(f ′w(q)), (21)

where uq = w−1p logp(q), f ′w(q) = ρin(gwq→p)fw(q), Vuq (f ′w(q)) = WV (uq)f
′
w(q), and6

α(f)(h)p,q =
S(K(h)(fw(p)), Q(h)(f ′w(q)))∑

q′∈N (p) S(K(h)(fw(p)), Q(h)(f ′w(q′)))
. (22)

In implementation, the rotation induced by parallel transport gwq→p and the logarithmic map are7

computed by the Vector Heat Method [7].8

B Proofs of the Theorems9

B.1 Proof of Theorem 110

Theorem 1 (i) If N is even, there is no such real representation ρ̃N of SO(2) that satisfies Eqn.11

(9). (ii) If N is odd, there is a unique representation ρ̃N of SO(2) that satisfies Eqn. (9). (iii) The12

representation ρ̃N in (ii) is an orthogonal representation.13

Proof 1 (i) We prove by contradiction. Assume that there exists such ρ̃N that satisfies Eqn. (9) when14

N is even. In the real domain, the irreps of SO(2) are15

ϕ
SO(2)
0 (θ) = 1,

ϕ
SO(2)
k (θ) =

[
cos(kθ̃) − sin(kθ̃)

sin(kθ̃) cos(kθ̃)

]
,

θ ∈ SO(2), k ∈ N∗.

(23)

Every representation of SO(2) can be decomposed into the direct sum of the irreps in Eqn. (23) [6],16

where each irrep may appear 0 or multiple times, and the direct sum ⊕ is matrix concatenation along17

the diagonal, i.e.,18

A⊕B =

[
A

B

]
. (24)
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As a special case, the decomposition of ρ̃N takes the following form: ∀θ ∈ SO(2),19

ρ̃N (θ) = A′


ϕ
SO(2)
i1

(θ)

ϕ
SO(2)
i2

(θ)
. . .

ϕ
SO(2)
ij

(θ)

 (A′)−1, (25)

where A′ ∈ GL(n,R), and i1, · · · , ij are non-negative integers.20

The decomposition Eqn. (25) takes its form for all θ ∈ SO(2), obviously also holds for θ ∈ CN .21

According to Eqn. (9), we have: ∀θ ∈ CN ,22

ρCN
reg(θ) = A′


ϕ
SO(2)
i1

(θ)

ϕ
SO(2)
i2

(θ)
. . .

ϕ
SO(2)
ij

(θ)

 (A′)−1, (26)

Also, when N is even, the decomposition of ρCN
reg is as follows: ∀θ ∈ CN ,23

ρCN
reg(θ) = A



ϕCN
0 (θ)

ϕCN
1 (θ)

. . .

ϕCN
N
2 −1

(θ)

ϕCN
N
2

(θ)

A
−1, (27)

where24

ϕCN
0 (θ) = 1,

ϕCN

k (θ) =

[
cos(kθ̃) − sin(kθ̃)

sin(kθ̃) cos(kθ̃)

]
,

ϕCN

N
2

(θ) = cos(N2 θ̃),

θ ∈ CN , k ∈ {1, 2, · · · , N2 − 1},

(28)

and A ∈ GL(n,R). When the irreps in the centering block diagonal matrix of the decomposition are25

permuted in fixed order, such as the one in Eqn. (27) whose permutation is ϕCN
0 (θ), · · · , ϕCN

N/2(θ),26

the decomposition of ρCN
reg(θ) is unique [6]. So it is necessary that the irreps in Eqn. (26) permute the27

irreps in Eqn. (27).28

However, when N is even, ρCN
reg includes an additional irrep of CN than the case where N is odd,29

i.e., ϕCN

N/2 = cos(N2 θ̃), which cannot be expressed by any irreps in Eqn. (23). This results in30

contradiction.31

(ii) In Section 4.2 we have constructed a representation ρ̃N satisfying Eqn. (9). Here, we will prove32

its uniqueness. For better illustration, we slightly modify the notations of Eqn. (14). As is shown in33

(i), ρ̃N must take the following form: ∀θ ∈ SO(2),34

ρ̃N (θ) = A1


ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)

A−11 , (29)
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where35

ϕ
SO(2)
0 (θ) = 1,

ϕ
SO(2)
k (θ) =

[
cos(kθ̃) − sin(kθ̃)

sin(kθ̃) cos(kθ̃)

]
,

θ ∈ SO(2), k ∈ {1, 2, · · · , N−12 },

(30)

and A1 ∈ GL(n,R). Assume that there exists another ρ satisfying Eqn. (9). It is necessary that ρ36

shares the irreps of ρ̃N , or else Eqn. (9) fails to hold for all θ ∈ CN . So ρ must take the following37

form: ∀θ ∈ SO(2),38

ρ(θ) = A2


ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)

A−12 , (31)

where A2 ∈ GL(n,R). As ρ̃N (θ) = ρ(θ) for θ ∈ CN , from the equivalence of the right hand sides39

of Eqn. (29) and Eqn. (31), we have that for ∀θ ∈ CN ,40

A−12 A1


ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)

 =


ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)

A−12 A1.

(32)

The matrix ϕSO(2)
0 (θ)⊕ϕSO(2)

1 (θ)⊕· · ·⊕ϕSO(2)
N−1

2

(θ) is block diagonal with each block ϕSO(2)
i (θ), i =41

0, 1, · · · , (N − 1)/2. Now, we partition the matrix A−12 A1 into a block matrix by exactly the same42

way that the block diagonal matrix is partitioned. We use the notation (A−12 A1)ij to represent the43

block in the ith row and jth column, then for ∀θ ∈ CN ,44

(A−12 A1)ijϕ
SO(2)
j (θ) = ϕ

SO(2)
i (θ)(A−12 A1)ij , (33)

⇔ (A−12 A1)ijϕ
CN
j (θ) = ϕCN

i (θ)(A−12 A1)ij (34)

where i = 0, · · · , (N − 1)/2, j = 0, · · · , (N − 1)/2. According to Schur’s Lemma [6], when45

i = j = 0, we have (A−12 A1)ij = r0, where r0 ∈ R. When i = j 6= 0, we have (A−12 A1)ij = riRi,46

where ri ∈ R and Ri ∈ SO(2). Otherwise, we have (A−12 A1)ij = O, where O is the zero matrix.47

Now we can represent A1 with A2:48

A1 = A2


r0

r1R1

. . .
rN−1

2
RN−1

2

 . (35)

Plugging Eqn. (35) into Eqn. (29), we get that for any θ ∈ SO(2),49

ρ̃N (θ) = A2


r0

r1R1

. . .
rN−1

2
RN−1

2



ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)



r0

r1R1

. . .
rN−1

2
RN−1

2


−1

A2
−1.

(36)

For i = 1, · · · , (N − 1)/2, the matrices Ri and ϕSO(2)
i (θ) commute since they are all rotation50

matrices, so riRiϕ
SO(2)
i (θ)R−1i r−1i = ϕ

SO(2)
i (θ). So ρ̃N (θ) = ρ(θ) for θ ∈ SO(2), proving the51

uniqueness of ρ̃N .52
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(iii) From Eqn. (29), we can get that53

A>1 ρ̃N (θ)>ρ̃N (θ)A1 =


ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)


>

A>1 A1


ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)

 .
(37)

As ρCN
reg is orthogonal representation, Eqn. (9) tells us that ρ̃N (θ)>ρ̃N (θ) = I for θ ∈ CN . Note that54

all the irreps are orthogonal representations, we have55

A>1 A1


ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)

 =


ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)

A>1 A1,

(38)

for θ ∈ CN . Partition the matrix A>1 A1 into a block matrix by exactly the same way that56

the block diagonal matrix is partitioned, then Eqn. (38) is equivalent to, for all θ ∈ CN ,57

ϕ
SO(2)
i (θ)(A>1 A1)ij = (A>1 A1)ijψ

SO(2)
j (θ) ⇔ ϕCN

i (θ)(A>1 A1)ij = (A>1 A1)ijψ
CN
j (θ), where58

i = 0, · · · , (N − 1)/2, j = 0, · · · , (N − 1)/2. According to Schur’s Lemma, when i = j = 0, we59

have (A>1 A1)ij = r′0, r
′
0 ∈ R. When i = j 6= 0, we have (A>1 A1)ij = r′iR

′
i, where r′i ∈ R and60

R′i ∈ SO(2). Otherwise, (A>1 A1)ij = O. So it is obvious that A>1 A1 commutes with the block61

diagonal matrix ϕSO(2)
0 (θ)⊕ϕSO(2)

1 (θ)⊕ · · · ⊕ϕSO(2)
N−1

2

(θ), ∀θ ∈ SO(2). Then, for any θ ∈ SO(2),62

ρ̃N (θ)>ρ̃N (θ) =(A>1 )−1


ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)


>

A>1 A1


ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)

A−11

=(A>1 )−1


ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)


> 

ϕ
SO(2)
0 (θ)

ϕ
SO(2)
1 (θ)

. . .

ϕ
SO(2)
N−1

2

(θ)

A>1 A1A
−1
1

=(A>1 )−1A>1 A1A
−1
1 = I, (39)

which completes the proof.63

B.2 Proof of Theorem 264

Theorem 2 Assume a GET ψ, whose types of input, intermediate, and output feature fields are ρlocal,65

kiρ
CN
reg and ρ0, respectively, where ki is the number of regular fields in the ith intermediate feature66

field. Denote f as the input feature field on triangle mesh M , and assume that the norm of the feature67

map ‖fw‖ is bounded by a constant C. Gauges w and w′ are linked by transformation g. Further68

suppose that ψ is Lipschitz continuous with constant L, then we have:69

(i) If gp ∈ CN for every mesh vertex p ∈M , then ψ(fw) = ψ(fw′).70

(ii) For general gp ∈ SO(2), we have ‖ψ(fw)− ψ(fw′)‖ ≤ πL
N C.71

Proof 2 (i) Since the equivariance of the multi-head self-attention (Eqn. (5)) directly follows from72

the equivariance of single-head self-attention (Eqn. (21)), we only give the equivariance proof of73

Eqn. (21) here. For simplicity, we omit the head h in this proof.74
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Firstly, we show the gauge invariance of attention score in Eqn. (22) by showing that the score function75

is gauge invariant. We use Sw to denote the score function under the gauge w, and use Sw′ under the76

gauge w′. As the feature fields of the intermediate layers are regular fields whose representation are77

permutation matrices for gauge transformations in CN , composing the element-wise ReLU preserves78

gauge equivariance. Eqn. (40) holds for all intermediate layers when gp ∈ CN :79

ReLU(ρ(gp)fw(g)) = ρ(gp)ReLU(fw(g)). (40)

As is introduced in Section 3, the quantities in different gauges are related as follows:80

w′p = wpgp, (41)

fw′(q) = ρin(g−1q )fw(q), (42)

gw
′

q→p = g−1p gwq→pgq, (43)

u′q = g−1p uq. (44)

Using the key and query function in Section 4.4, we have81

Sw = P (ReLU(WKfw(p) +WQρin(gwq→p)fw(q))). (45)

Under the gauge w′, it is82

Sw′ =P (ReLU(WKfw′(p) +WQρin(gw
′

q→p)fw′(q))) (46)

=P (ReLU(WKρin(g−1p )fw(p) +WQρin(g−1p gwq→pgq)ρin(g−1q )fw(q))) (47)

=P (ReLU(ρout(g
−1
p )WKfw(p) + ρout(g

−1
p )WQρin(gwq→p)fw(q))) (48)

=P (ρout(g
−1
p )ReLU(WKfw(p) + ρout(g

−1
p )WQρin(gwq→p)fw(q))) (49)

=P (ReLU(WKfw(p) +WQρin(gwq→p)fw(q))), (50)

where Eqn. (46) to Eqn. (47) is according to relationship of quantities in different gauges, Eqn. (47)83

to Eqn. (48) is using the property that WK and WQ satisfy Eqn. (17a), Eqn. (48) to Eqn. (49) is84

from Eqn. (40), and Eqn. (49) to Eqn. (50) is based on the fact that the output of average pooling85

stays the same under any permutation of the components.86

Now we show the gauge equivariance of the value function. Under the gauge w, the value function is87

Vuq (f ′w(q)) = WV (uq)ρin(gwq→p)fw(q), (51)

under the gauge w′, it is88

Vu′q (f ′w′(q)) = WV (u′q)ρin(gw
′

q→p)fw′(q), (52)

Plugging equations (41)–(44) into Eqn. (52), we get89

Vu′q (f ′w′(q)) =WV (g−1p uq)ρin(g−1p gwq→pgq)ρin(g−1q )fw(q) (53)

=ρout(g
−1
p )WV (uq)ρin(gp)ρin(g−1p gwq→pgq)ρin(g−1q )fw(q) (54)

=ρout(g
−1
p )WV (uq)ρin(gwq→p)fw(q) (55)

=ρout(g
−1
p )Vuq (f ′w(q)). (56)

So the single-head attention Eqn. (21) is exactly equivariant to gauge transformations in CN . Also,90

the stack of gauge equivariant layers is gauge equivariant, hence ψ is gauge equivariant. According91

to the type of its input and output feature fields, we have ψ(fw) = ψ(fw′).92

(ii) For any gauge transformation gp, there exists gp ∈ CN such that the rotation angle θ̃p with93

respect to g−1p gp lies in [− π
N ,

π
N ]. Express the manifold equation as w = w · g, then we have94

ψ(fw) = ψ(fw), as is shown by (i). Note that the norm of a feature map here is defined as the95

Euclidean norm of a zipped vector produced by aligning the feature vectors of all points on the mesh96
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into one column. Then we have97

‖ψ(fw)− ψ(fw′)‖ = ‖ψ(fw)− ψ(fw′)‖ (57)
≤ L‖fw − fw′‖ (58)

= L
(∑

p

‖fw(p)− fw′(p)‖2
) 1

2

(59)

= L
(∑

p

‖(I − ρlocal(g−1p gp))fw(p)‖2
) 1

2

(60)

≤ L
(∑

p

‖I − ρlocal(g−1p gp)‖22‖fw(p)‖2
) 1

2

, (61)

where ‖ · ‖2 is the matrix spectral norm, and98

‖I − ρlocal(g−1p gp)‖2 =

∥∥∥∥∥∥
1− cos θ̃p sin θ̃p 0

− sin θ̃p 1− cos θ̃p 0
0 0 0

∥∥∥∥∥∥
2

= 2

∣∣∣∣∣sin(
θ̃p
2

)

∣∣∣∣∣ ≤ |θ̃p| ≤ π

N
. (62)

So99

‖ψ(fw)− ψ(fw′)‖ ≤ L
(∑

p

(
π

N
‖fw(p)‖)2

) 1
2

=
πL

N
‖fw‖ ≤

πL

N
C. (63)

C Solution of Equivariant Constraint100

Here, we provide the detailed process of computing solution basis of Eqn. (15) for all Θ ∈ CN .101

Firstly, we show that Eqn. (15) holds for all Θ ∈ CN is equivalent to it holds for one matrix Θ0 with102

the corresponding rotation angle θ0 = 2π/N , i.e.,103

Θ0 =

cos
2π

N
− sin

2π

N

sin
2π

N
cos

2π

N

 . (64)

The sufficiency is obvious, here we only show the necessity. In Section 4.3, we use Taylor expansion104

Eqn. (16) to solve the equivariance constraint Eqn. (15). The Taylor coefficients {W0,W1, · · · }105

solve equations (17) if and only if WV (u) = W0 +W1u1 +W2u2 + · · · solves Eqn. (15). Known106

that {W0,W1, · · · } solve equations (17) for Θ0, then Eqn. (15) holds for this Θ0, i.e.,107

WV (Θ−10 u) = ρout(Θ
−1
0 )WV (u)ρin(Θ0). (65)

Now we prove by induction that WV (u) solves Eqn. (15) for Θk
0 for any k ∈ N∗, where Θk

0 ∈ CN is108

the rotation matrix with respect to angle kθ0, i.e.,109

Θn
0 =

cos k
2π

N
− sin k

2π

N

sin k
2π

N
cos k

2π

N

 . (66)

One can easily verify the correctness of Eqn. (66) by Eqn. (65).110

Eqn. (65) is the statement when k = 1. Suppose that it holds for k = l, where l ∈ N∗, i.e.,111

WV ((Θl
0)−1u) = ρout((Θ

l
0)−1)WV (u)ρin(Θl

0). (67)

When k = l + 1, one can derive that112

WV ((Θl+1
0 )−1u) = WV ((Θ−10 (Θl

0)−1u) (68)

= ρout(Θ
−1
0 )WV ((Θl

0)−1u))ρin(Θ0) (69)

= ρout(Θ
−1
0 )ρout((Θ

l
0)−1)WV (u)ρin(Θl

0)ρin(Θ0) (70)

= ρout((Θ
l+1
0 )−1)WV (u)ρin(Θl+1

0 ), (71)
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which suggests that the statement still holds. So Eqn. (72) holds for every k ∈ N∗:113

WV ((Θk
0)−1u) = ρout((Θ

k
0)−1)WV (u)ρin(Θk

0), (72)

which proves the necessity. So we only have to solve the constraint Eqn. (15) for Θ0. More general,114

for any group, we only need to solve the constraint Eqn. (15) for one set of generators of the group.115

As is shown in Section 4.3, we can solve the linear equations in (17) with the same order indepen-116

dently. Now consider the equations in (17) with order n. For convenience, denote the matrices117

B0, B1, · · · , Bn are the coefficients of the terms un1 , u
n−1
1 u2, · · · , un2 , respectively. The relationship118

with the coefficients in Eqn. (16) is that Bi = W(n+1)n/2+i. Then the equations in (17) with order n119

can be rewritten as120

n∑
j=0

FijBj = ρout(Θ
−1
0 )Biρin(Θ0), for i = 0, 1, · · · , n, (73)

where F ∈ R(n+1)×(n+1) is a matrix. For example, when the order n = 1, F = Θ0. To simplify121

computation, we stretch the matrices B0, B1, · · · , Bn and align them into a long ((n+ 1)× Cout ×122

Cin)-dimensional vector B̃, i.e.123

B̃i×Cout×Cin+j×Cin+k = (Bi)jk. (74)

Then the equation (73) is equivalent to: ∀i, t, l, s.t., 0 ≤ i ≤ n, 1 ≤ t ≤ Cout, 1 ≤ l ≤ Cin,124 ∑
j

Fij(Bj)tl =
∑
t′,l′

ρout(Θ
−1
0 )tt′(Bi)t′l′ρin(Θ0)l′l (75)

⇐⇒
∑
j,t′,l′

Fijδtt′δll′(Bj)t′l′ =
∑
j,t′,l′

δijρout(Θ
−1
0 )tt′ρin(Θ0)>ll′(Bj)t′l′ (76)

According to the definition of the Kronecker product ⊗
⇐⇒ F ⊗ ICout

⊗ ICin
B̃ = (In+1 ⊗ (ρout(Θ

−1
0 )⊗ ρ>in(Θ0))B̃. (77)

Then the equation (73) can be reduced to a more compact linear equation:125

(In+1 ⊗ (ρout(Θ
−1
0 )⊗ ρ>in(Θ0))− F ⊗ ICout

⊗ ICin
)B̃ = 0. (78)

where ICout
, ICout

and In+1 are the identity matrices of dimension Cout, Cin and n+ 1, respectively.126

The solution bases of Eqn. (78) can be efficiently computed via SVD.127

D Experiment Details128

Before going into the experiments, we introduce several structures adopted in our neural networks.129

All experiments are carried on Ubuntu 20.04 machine with NVIDIA RTX 3090 GPU.130

Linear Layer. The linear layer receives an input and produces an output that is the linear transfor-131

mation of the input. Since our network is gauge equivariant, the linear transformation matrix has to132

satisfy the Eqn. (17a).133

Average Pooling. Wiersma et al. [9] propose an average pooling method we use here. Firstly, the134

Farthest Point Sampling algorithm [2] is employed to sample the representative points, giving out the135

vertices of the pooled mesh. Then every non-sampled point in the original mesh is clustered into its136

geodesically nearest representative point among all representative points. At last, the feature vector137

of each representative point in the pooled mesh is taken as the average of all the feature vectors of its138

cluster:139

fw(p) =
1

|Cp|
∑
q∈Cp

ρin(gwq→p)fw(q), (79)

where Cp is the cluster of p, and fw(p) is the value of pooled feature vector.140

To clarify, the Average Pooling used in supplementary materials refers to the pooling method proposed141

in [9] with respect to mesh vertices, different from the average pooling operation in computing142

attention score (in Section 4.4)143
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Global Average Pooling. The Global Average Pooling layer takes the average of every component144

of the feature vectors on all vertices of the mesh, producing a global feature vector.145

Group Pooling. For each component of the feature vector in the regular field under a specified gauge,146

the Group Pooling layer [8] outputs its maximum element, producing a gauge invariant scalar field.147

Unpooling. The Unpooling layer is like the inverse of the average pooling layer. It upsamples the148

feature map by parallel transporting the feature vector from the representative point to each point in149

the original cluster.150

D.1 Data Preprocessing151

The datasets used in this paper are all in the form of triangle meshes. Given the mesh data of a sample,152

we compute its surface area by summing up the areas of all faces, and then scale it into 1. For each153

point p, we construct the neighborhoods Np in Eqn. (22) by selecting all vertices within geodesic154

distance σ to p. Then, the mesh data can be processed into a graph where the edge connection155

represents neighborhood relationship. For each vertex and its neighbor vertices, we use the Vector156

Heat Method [7] to precompute the logarithmic map and the rotation angle induced by parallel157

transport from each neighbor vertex to the center.158

After the downsampling of the pooling layer and neighborhood reconstruction, one can obtain a159

smaller scale graph whose vertices are a subset of the vertices in the original mesh. Following [9], we160

incorporate graph structures in different scales into a multi-scale graph. Then the logarithmic map161

and parallel transport can be computed in one pass. Our model receives pointwise local coordinate162

input (i.e. X in Section 4.5) to guarantee SO(3) invariance, which can also be computed in advance.163

D.2 SHREC Classification164

The neural network used in the shape classification task is lightweight but successful. Input features165

in Section 4.5 are first processed by a linear layer, producing a feature field of type 12ρCN
reg . After166

that, a single ResNet block [3] is used, with the radius σ set to 0.2, i.e., we take into account all the167

vertices within a geodesic distance of 0.2 as the neighborsNp in Eqn. (22). The output of the ResNet168

block is also a 12ρCN
reg feature field. The followings are a group pooling layer and a global average169

pooling layer. At last, a fully connected layer is attached and the softmax function outputs the final170

probabilities of each class. The architecture is visualized in Figure 5. The network is trained for 70171

epochs using the Adam optimizer [4] with an initial learning rate of 0.005 and is divided by 10 at172

41th epoch. The order of the cyclic group CN is set to 9. To leverage robustness, every input mesh is173

scaled with a factor of random variable uniformly distributed in [0.85, 1.15] in training.174

D.3 Human Body Segmentation175

Following [9], to reduce training time, we use Farthest Point Sampling algorithm to select 1024176

vertices from the original mesh data in training and testing. U-ResNet is a prominent architecture177

in the field of geometric deep learning [1]. It has a multi-scale structure with several pooling and178

unpooling layers. Here we employ the method in [9] for adapting these layers to mesh data. Our179

models have two scales and the neighborhood radii are 0.2 and 0.4, respectively. We use four ResNet180

blocks in each stage of feature transformation. Again we set N = 9 here, so all the feature fields181

in intermediate layers are regular fields of C9. The architecture is visualized in Figure 6. We train182

the network for 50 epochs with the Adam algorithm. The learning rate is initialized as 0.01 and is183

divided by 10 at 31th epoch, and further divided into half at 41th epoch.184

D.4 Ablation Study185

Local Coordinate. In Section 4.5, we have proposed to incorporate local coordinates to make our186

model rotation invariant. To verify their superiority, we adopt a baseline model whose inputs are raw187

xyz coordinates. Like RGB channels in color images, the xyz coordinates are treated as three scalar188

fields, 3ρ0. For a fair comparison, the baseline model is identical to our state-of-the-art model except189

for the first layer.190

The comparison is carried out in three settings: No rotations on the training dataset and no rotations191

on the test dataset (N/N), no rotations on the training dataset and rotate on the test dataset (N/R), and192
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rotate on the training dataset and rotate on the test dataset (R/R). As is shown in Table 5, applying the193

ρlocal feature field consistently improves model accuracy in all cases as it enables our model to be194

invariant to SO(3) rotations intrinsically.

Table 5: Model accuracy in the human body segmentation task with respect to different types of
inputs.

Input Type (N/N) (N/R) (R/R)

3ρ0 91.5% 90.9 % 91.6%
ρlocal (Ours) 92.6% 92.6% 92.6%

195

Parallel Transport Methods. Parallel transport carries the information of surface geometry, playing196

a crucial role in assuring gauge equivariance. Here we replace our parallel transport method with two197

baseline methods, truncation [10] and interpolation [5], to validate the effectiveness of our method.198

The results are shown in Table 6.199

All the models listed in Table 6 only differ in parallel transport methods. The None setting serves200

as the control group where parallel transport is not used. Its setup is for showing the effectiveness201

of parallel transport. Our model shows conspicuous superiority to all baselines. Compared with202

ours, parallel transport with interpolation fails to preserve the norm of feature vector while truncation203

disregards the relative orientation information to some extent.

Table 6: Model accuracy in the human body segmentation task with respect to different parallel
transport methods.

Method Ours Interpolation Truncation None

Accuracy(%) 92.6 92.1 91.3 86.7

204

Figure 5: The state-of-the-art neural network architecture for shape classification task.
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Figure 6: The state-of-the-art neural network architecture for shape segmentation task.
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