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A PROOF OF THEOREM 3

In order to establish a versatile framework for invex functions, we provide proof of invexity for
a specific class of summation functions. The key result is encapsulated in the following lemma,
which reveals a fundamental connection: the invexity of the summation function, obtained by ap-
plying a unidimensional real function to distinct entries of a vector, hinges upon the invexity of this
underlying function.
Lemma 1 (Invexity of Function Sum). Let g : Rn → R be a function defined as

g(x) =

n∑
i=1

r(x[i]), (1)

where r : R → R. If r(w) is an invex function then g(x) is also invex.

Proof. Let g : Rn → R be a function defined as g(x) =
∑n

i=1 r(x[i]). Assume r : R → R is invex.
Then, from the invexity of r(w) we have that there exists ηr : R× R → R such that

r(w1)− r(w2) ≥ ζw2
· ηr(w1, w2), (2)

for all w1, w2 ∈ R, and any ζw2 ∈ ∂r(w2). Take x,y ∈ Rn. Then, we have

r(x[i])− r(y[i]) ≥ ζy[i] · ηr(x[i],y[i]), (3)

for any i = 1, . . . , n, and ∀ζy[i] ∈ ∂r(y[i]). From the above inequality we conclude that for any
ζ ∈ ∂g(y)

n∑
i=1

r(x[i])− r(y[i]) ≥
n∑

i=1

ζy[i] · ηr(x[i],y[i])

g(x)− g(y) ≥
n∑

i=1

ζy[i] · ηr(x[i],y[i])

g(x)− g(y) ≥ ζT η(x,y), (4)

such that η(x,y) = [ηr(x[1],y[1]), . . . , ηr(x[n],y[n])]
T , and ζ = [ζy[1], . . . , ζy[n]]

T . Thus,
from equation (4) the results holds.

Now we prove Theorem 3 using the result in Lemma 1

Proof. We proceed by cases.

• Let f be an admissible function. Then according to Definition 4 we know that f(x) =∑n
i=1 s(|x[i]|), for some s : [0,∞) → [0,∞) with s′(w) > 0 where t ∈ (0,∞). Since

the structure of f fits assumption in Lemma 1 then if s(w) is invex then f(x) is invex. Take
w1, w2 ∈ (0,∞), and define η : (0,∞)2 → R as

η(w1, w2) =

{
0 if s(w1) > s(w2)
s(w1)−s(w2)

(ζ∗)2
ζ∗ otherwise , (5)
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where ζ∗ is an element in ∂s(w2) of minimal absolute value which satisfies ζ∗·ζ
(ζ∗)2

≥ 1 for all
ζ ∈ ∂s(w2). The existence of ζ∗ is guaranteed because s′(w) > 0 and therefore 0 ̸∈ ∂s(w2)
(Mishra & Giorgi, 2008, Page 64). From the above equation it is clear that for all w1, w2 we have

s(w1)− s(w2) ≥ η(w1, w2) · ζw2
, ∀ζw2

∈ ∂s(w2) (6)

which means s is invex. Therefore f(x) is invex.

• Let f, g be an admissible functions. Considering the result in previous statement, it is enough
to show that h = βf + αg is an admissible function for any β, α ≥ 0. By definition we have
that h(0) = 0, and h′(w) > 0. In addition, since both f, g are positive functions it implies that
h(w)/w2 is non-increasing. Thus the result holds.

• Let f, g : Rn → R be two admissible functions as in Definition 4, such that f(x) =∑n
i=1 sf (|x[i]|), and g(x) =

∑n
i=1 sg(|x[i]|). Define hc(x) =

∑n
i=1(sf ◦ sg)(|x[i]|). Then,

observe that (sf ◦ sg)(0) = sf (sg(0)) = sf (0) = 0. Additionally, since s′f (w), s
′
g(w) > 0, then

(sf ◦ sg)′(w) > 0 (by the chain rule) for all t ∈ (0,∞). Finally, we know that s′f (w), s
′
g(w) > 0

implies sf (w), sg(w) > 0 to be strictly increasing. Therefore, for any w1 < w2 we know
(sf ◦ sg)(w1) < (sf ◦ sg)(w2), which implies (sf◦sg)(w1)

(w1)2
>

(sf◦sg)(w2)
(w2)2

. Thus the result holds.

Thus we proved the first part of this theorem.

Now we proceed to prove the second part of this theorem.

Proof. Let f : Rn → R be two admissible functions as in Definition 4, such that f(x) =∑n
i=1 sf (|x[i]|), and sf (w) ≥ 0. Define the set D = {t ∈ (0,∞)|s′(w) > 0}. In consequence,

from first statement of this theorem proved above we know that sf (w) is invex in D for some func-
tion ηD. Then, define for any w1, w2 ∈ (0,∞) the following function

η(w1, w2) =

{
ηD(w1, w2) if w1, w2 ∈ D
0 otherwise . (7)

Considering the above η(w1, w2) function (which is non-zero), take w1, w2 ∈ (0,∞), and assume

sf (w1)− sf (w2) ≤ 0. (8)

If w1, w2 ∈ D, then we know sf (w) is invex, which implies that

sf (w1)− sf (w2) ≥ η(w1, w2) · ζw2
= ηD(w1, w2) · ζw2

0 ≥ ηD(w1, w2) · ζw2 , (9)

for all ζw2 ∈ ∂sf (w2), and therefore quasi-invex. Otherwise, if either w1 ̸∈ D or w2 ̸∈ D, it is clear
to conclude that η(w1, w2) · ζw2 = 0, for all ζw2 ∈ ∂sf (w2). Thus, the result holds.

Finally, to establish the validity of the remaining two statements when f is quasi-invex, we follow a
similar procedure as described above. In the interest of conciseness, we omit the detailed exposition.
Thus the results holds.

B PROOF OF THEOREM 4

We prove Theorem 4 proceeding by cases, exploiting the result in Lemma 1, because equation (3) is
the sum of unidimensional real functions applied to different entries of a vector.

EQUATION (3)

Proof. From the definition of function g(x) in equation (3) it is clear that the only aspect we have
to prove is that log(1 + wp)/w2 is non-increasing for any w > 0, and fixed p ∈ (0, 1). Take
r(w) = log(1 + wp). Observe that the first derivative of h(w) = r(w)/w2 is given by h′(w) =
1
w3

(
pwp

1+wp − 2 log(1 + wp)
)

. Since pwp

1+wp − 2 log(1 + wp) < 0, then we have that h′(w) < 0,

which leads to conclude that r(w)/w2 is non-increasing on (0,∞). Then it is clear that r(w)/w2 is
non-increasing on (0,∞).
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Now we prove the second part of this theorem.

Proof. define the first-order difference matrix D ∈ R(n−1)×n as

D =


−1 1

−1 1
. . . . . .

−1 1

 . (10)

Observe that it is clear that D is full row rank. Then, define gTV (x) = g(Dx) where g is an
admissible function. It is worth noticing that since g is point-wise non-increasing when divided by
a quadratic mapping, then g is continuously differentiable. In addition, due to the fact that D is full
row rank, we appeal to (Pinilla et al., 2022, Lemma 2) that ensures gTV (x) is invex. Thus the result
holds.

B.1 ADDITIONAL DISCUSSION ON THEOREM 4

In this section we discuss the 2D and 3D total-variation-like extensions of invex functions.

2D TOTAL-VARIATION-LIKE REGULARIZER

Let be g an admissible function. Then, the 2D total-variation-like regularizer based on is defined as

gTV (x) = g(Dhx) + g(Dvx), (11)

where matrix Dh, and Dv model the discrete derivative in the horizontal and vertical directions,
respectively. Therefore, Dh is defined as in equation (10) and Dv is given as

Dv =


−1 · · · 1

−1 · · · 1
. . . . . .
−1 · · · 1

 . (12)

Now we prove that equation (11) is quasi-invex as follows.

Proof. Recall in the previous section we showed that each term g(Dhx) and g(Dvx) are invex
(since Dh, and Dv are full row-rank). Therefore, there exits ηh(x,y) and ηv(x,y) for any x,y ∈
Rn such that

g(Dhx)− g(Dhy) ≥ ζT
h ηh(x,y) (13)

for all ζh ∈ ∂g(Dhy) and

g(Dvx)− g(Dvy) ≥ ζT
v ηv(x,y) (14)

for all ζv ∈ ∂g(Dvy). Then, assume

gTV (x)− gTV (y) ≤ 0. (15)

This leads to

g(Dhx)− g(Dhy) + g(Dvx)− g(Dvy) ≤ 0

ζT
h ηh(x,y) + ζT

v ηv(x,y) ≤ 0

ζT
g ηg(x,y) ≤ 0 (16)

where ζg = [ζT
h , ζ

T
v ]

T ∈ ∂gTV (y), and ηgTV
(x,y) = [ηTh (x,y), η

T
v (x,y)]

T . Thus, from the
above inequality we have that gTV (x) is quasi-invex.
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3D TOTAL-VARIATION-LIKE REGULARIZER

Let g be an admissible function. Then, the 3D total-variation-like regularizer is defined as

gTV (x) = g(Dhx) + g(Dvx) + g(Dtx), (17)

where matrix Dh, Dv , Dt model the discrete derivative in the horizontal, vertical, and transversal
(third dimension) directions, respectively. Therefore, Dh is defined as in equation (10) and Dv as
in equation (12), and Dt is given as

Dt =


−1 · · · · · · 1

−1 · · · · · · 1
. . . . . . . . .
−1 · · · · · · 1

 . (18)

Now we prove that equation (11) is quasi-invex as follows.

Proof. Recall in the previous section we showed that each term g(Dhx), g(Dvx), and g(Dtx) are
invex (since Dh, Dv , and Dt are full row-rank). Therefore, there exits ηh(x,y), ηv(x,y), and
ηt(x,y) for any x,y ∈ Rn such that

g(Dhx)− g(Dhy) ≥ ζT
h ηh(x,y) (19)

for all ζh ∈ ∂g(Dhy)

g(Dvx)− g(Dvy) ≥ ζT
v ηv(x,y) (20)

for all ζv ∈ ∂g(Dvy), and

g(Dtx)− g(Dty) ≥ ζT
t ηt(x,y) (21)

for all ζt ∈ ∂g(Dty). Then, assume

gTV (x)− gTV (y) ≤ 0. (22)

This leads to

g(Dhx)− g(Dhy) + g(Dvx)− g(Dvy) + g(Dtx)− g(Dty) ≤ 0

ζT
h ηh(x,y) + ζT

v ηv(x,y) + ζT
t ηt(x,y) ≤ 0

ζT
g ηg(x,y) ≤ 0 (23)

where ζg = [ζT
h , ζ

T
v , ζ

T
t ]

T ∈ ∂gTV (y), and ηgTV
(x,y) = [ηTh (x,y), η

T
v (x,y), η

T
g (x,y)]

T . Thus,
from the above inequality we have that gTV (x) is quasi-invex.

C PROOF OF THEOREM 5

In this proof we seek to guarantee that the list of functions in Theorem 4 are admissible functions,
and we proceed by cases.

EQUATION (4)

Proof. Take r(w) = log(1 + w2

δ2 ) for any w ̸= 0, and fixed δ ∈ R. It is trivial to see that r(0) = 0,
that r(w) it is not identically zero, and non-decreasing on (0,∞). Then, we just need to show that
r(w)/w2 is non-increasing on (0,∞). Observe that the first derivative of h(w) = r(w)/w2 is given

by h′(w) =
2
(

w2

δ2+w2 −log(1+w2

δ2
)
)

w3 . Since w2

δ2+w2 − log(1 + w2

δ2 ) < 0, then we have that h′(w) < 0,
which leads to conclude that r(w)/w2 is non-increasing on (0,∞). Then it is clear that r(w)/w2 is
non-increasing on (0,∞).
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Figure 1: Plot of r(w)/w for r(w) being (a) equation (6), (b) equation (7) for c = 0.1, and (c) equa-
tion (8) and w > 0 to check that r(w)/w2 is non-increasing on (0,∞)

EQUATION (5)

Proof. Take r(w) = 2w2

w2+4δ2 for any w ̸= 0, and fixed δ ∈ R. It is trivial to see that r(0) = 0,
that r(w) it is not identically zero, and non-decreasing on (0,∞). Then, we just need to show that
r(w)/w2 is non-increasing on (0,∞). Observe that h(w) = r(w)/w2 is given by h(w) = 2

w2+4δ2 ,
which leads to conclude that r(w)/w2 is non-increasing on (0,∞). Then it is clear that r(w)/w2 is
non-increasing on (0,∞).

EQUATION (6)

Take r(w) = 1 − exp(−w2/δ2) for any w ̸= 0, and fixed δ ∈ R. It is trivial to see that r(0) = 0,
that r(w) it is not identically zero, and non-decreasing on (0,∞). Then, we just need to show that
r(w)/w2 is non-increasing on (0,∞). For easy of exposition we present in Figure 1(a) the plot of
r(w)/w2. Then it is clear that r(w)/w2 is non-increasing on (0,∞).

EQUATION (7)

Take r(w) = |α−2|
α

((
(w/c)2

|α−2| + 1
)α/2

− 1

)
for any w ̸= 0, and fixed α ∈ R, c > 0. It is trivial

to see that r(0) = 0, that r(w) it is not identically zero, and non-decreasing on (0,∞). Then, we
just need to show that r(w)/w2 is non-increasing on (0,∞). For easy of exposition we present in
Figure 1(b) the plot of r(w)/w2. Then it is clear that r(w)/w2 is non-increasing on (0,∞).

EQUATION (8)

Take r(w) = log
(
1 + w2

)
− w2

2w2+2 for any w ̸= 0. It is trivial to see that r(0) = 0, that r(w)
it is not identically zero, and non-decreasing on (0,∞). Then, we just need to show that r(w)/w2

is non-increasing on (0,∞). For easy of exposition we present in Figure 1(c) the plot of r(w)/w2.
Then it is clear that r(w)/w2 is non-increasing on (0,∞).

D PROOF OF THEOREM 6

To prove that gθ(x) is quasi-invex, for regularizers in Theorem 6, we show the existence of η :
Rn × Rn → Rn satisfying Definition 3 for gθ(x).
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EQUATION (9)

Proof. Let gθ(x) = λ
∑n

i=1 rθ(x[i]), for θ ≥ 1, λ ∈ (0, 1], and

rθ(w) =

{
λ|w| − w2/(2θ) if |w| < θλ
θλ2/2 if |w| ≥ θλ

. (24)

First, we will show that if |w| < θλ then rθ(w) is invex. In consequence, gθ(x) is invex for any
x ∈ D (see Lemma 1), with

D = {z ∈ Rn : |z[i]| < θλ,∀i ∈ {1, . . . , n}}.

Once we prove this, we are able to build η : Rn × Rn → Rn such that gθ(x) is quasi-invex for any
x ∈ Rn.

Observe that r′θ(w) for 0 < |w| < θλ is given by

r′θ(w) = λ
w

|w|
− w

θ
. (25)

The above equation implies that 0 ∈ ∂rθ(w) only when w = 0. Further, since rθ(0) < rθ(w) for
any 0 < |w| < θλ, then w = 0 is a global minimizer of rθ(w), in the restricted domain, implying
its invexity. Therefore, appealing to Lemma 1 there exists ηr : Rn × Rn → Rn such that gθ(x) is
invex in D. It is worth mentioning that D is an open set, because it is the Cartesian product of n
open sets. This observation is important because invexity requires to compute the subgradient which
is only possible on open sets. Thus, the invexity of gθ(x) is well defined. And therefore, gθ(x) is
quasi-invex in D.

In consequence, define the following η : Rn × Rn → Rn as

η(x,y) =

{
ηr(x,y) if x,y ∈ D
0 otherwise . (26)

Considering the above η(x,y) function (which is non-zero), take x,y ∈ Rn, and assume

gθ(x)− gθ(y) ≤ 0. (27)

If x,y ∈ D, then we know gθ(x) is invex, which implies that

gθ(x)− gθ(y) ≥ ζT η(x,y)

0 ≥ ζT η(x,y), (28)

for all ζ ∈ ∂gθ(y), and therefore quasi-invex. Otherwise, if either x ̸∈ D or y ̸∈ D, it is clear to
conclude that ζT η(x,y) = 0, for all ζ ∈ ∂gθ(y). Thus, the result holds.

EQUATION (10)

Proof. Let gθ(x) =
∑n

i=1 rθ(x[i]) be the regularizer in equation (10) for θ > 0, and rθ(x[i]) =
min(r(x[i]), θ) where function r(w) takes the form of

r(w) = log(1 + (|w|+ ϵ)
p
), p ∈ (0, 1), ϵ > 0. (29)

To prove that equation (10) is quasi-invex we first show that the unidimensional function r(w) is
invex and then we proceed to show the construction of η : Rn × Rn → Rn. To prove that function
r(w) is invex observe that if w > 0 then we have that ∂r(w) =

{
p

(|w|+ϵ)1−p+(|w|+ϵ)

}
, which means

that 0 ̸∈ ∂r(w). Conversely, if w < 0 then ∂r(w) =
{

−p
(|w|+ϵ)1−p+(|w|+ϵ)

}
, leading to 0 ̸∈ ∂r(w).

Lets examinate w∗ = 0. Note that limw→0+ r
′(w) = p

ϵ1−p+ϵ , and that limw→0− r
′(w) = −p

ϵ1−p+ϵ .

Additionally, since r(w) is a Lipschitz continuous function, then appealing to Theorem 1 we have
that ∂r(w∗ = 0) = conv

{
−p

ϵ1−p+ϵ ,
p

ϵ1−p+ϵ

}
=

[
−p

ϵ1−p+ϵ ,
p

ϵ1−p+ϵ

]
. This means that 0 ∈ ∂r(0).

Further, given the fact that r(0) ≤ r(w) for all w ∈ R, then w∗ = 0 is a global minimizer of r(w).
Therefore, the function r(w) is invex.

6
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Now we show the existence of η : Rn × Rn → Rn satisfying Definition 3 for gθ(x). First, observe
that if function r(w) does not reach the value of θ for any w, then it is clear the existence of ηg :
Rn × Rn → Rn such that gθ(x) =

∑n
i=1 r(x[i]) is invex according to Lemma 1, and therefore

quasi-invex. On the other hand, if we assume r(w) reaches the value of θ, then there exists w∗ ≥ 0
such that r(w) < θ for any |w| < w∗. Let D = {z ∈ Rn : |z[i]| < w∗,∀i ∈ {1, . . . , n}}.
It is worth mentioning that D is an open set, because it is the Cartesian product of n open sets.
This observation is important because invexity requires to compute the subgradient which is only
possible on open sets. Thus, the invexity of gθ(x) in D is well defined. Now, we define the following
η : Rn × Rn → Rn as

η(x,y) =

{
ηg(x,y) if x,y ∈ D
0 otherwise . (30)

Considering the above η(x,y) (which is non-zero), take x,y ∈ Rn, and assume

gθ(x)− gθ(y) ≤ 0. (31)

If x,y ∈ D, then we know gθ(x) is invex, which implies that

gθ(x)− gθ(y) ≥ ζT η(x,y)

0 ≥ ζT η(x,y), (32)

for all ζ ∈ ∂gθ(y), and therefore quasi-invex. Otherwise, if either x ̸∈ D or y ̸∈ D, it is clear to
conclude that ζT η(x,y) = 0, for all ζ ∈ ∂gθ(y). Thus, the result holds.

D.1 THIRD PART OF THEOREM 6

Proof. Let g be an admissible function such that g(x) =
∑n−1

i=1 sg(|x[i]|), and sg(w) ≥ 0. Define
gTV (x) = g(Dx) where D as defined in equation (10). Then, according to Theorem 3 we have
that g(x) is quasi-invex for some ηg(x,y), which implies that

gTV (x)− gTV (y) ≤ 0 =⇒ ζT ηg(Dx,Dy) ≤ 0, (33)

for all ζ ∈ ∂g(Dy). We know that matrix D is full row-rank which means that (DDT )−1 exits
and (DDT )(DDT )−1 = In−1 where In−1 is the identity matrix. Then, from the above inequality
we obtain

gTV (x)− gTV (y) ≤ 0 =⇒ ζT (DDT )(DDT )−1ηg(Dx,Dy) ≤ 0

=⇒ ζTD
(
DT (DDT )−1ηg(Dx,Dy)

)
=⇒ (DT ζ)T

(
DT (DDT )−1ηg(Dx,Dy)

)
=⇒ (DT ζ)T η(x,y), (34)

where η(x,y) = DT (DDT )−1ηg(Dx,Dy). Further, since g is continuously differentiable con-
cluded from (Bagirov et al., 2014, Theorem 3.20) we know that DT ζ ∈ ∂gTV (y). Thus, from equa-
tion (34) we get

gTV (x)− gTV (y) ≤ 0 =⇒ ζT η(x,y), (35)

for all ζ ∈ ∂gTV (y), which implies gTV (x) is quasi-invex. Therefore, the result holds.

D.2 PROOF SCAD IS QUASI-INVEX

Proof. Let gθ(x) = λ
∑n

i=1 rθ(x[i]), for θ > 2, λ ∈ (0, 1], and

rθ(w) =


λ|w| if |w| ≤ λ
−w2+2θλ|w|−λ2

2(θ−1) if λ < |w| < θλ

(θ + 1)λ2/2 otherwise
. (36)

First, we will show that if |w| < θλ then rθ(w) is invex. In consequence, gθ(x) is invex for any
x ∈ D (see Lemma 1), with

D = {z ∈ Rn : |z[i]| < θλ,∀i ∈ {1, . . . , n}}.

7
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Once we prove this, we are able to build η : Rn × Rn → Rn such that gθ(x) is quasi-invex for any
x ∈ Rn.

Observe that r′θ(w) for 0 < |w| < θλ is given by

r′θ(w) =

{
λ w

|w| if |w| ≤ λ
−w+ θλw

|w|
θ−1 if λ < |w| < θλ.

(37)

The above equation implies that 0 ∈ ∂rθ(w) only when w = 0. Further, since rθ(0) < rθ(w) for
any 0 < |w| < θλ, then w = 0 is a global minimizer of rθ(w), in the restricted domain, implying
its invexity. Therefore, appealing to Lemma 1 there exists ηr : Rn × Rn → Rn such that gθ(x) is
invex in D. It is worth mentioning that D is an open set, because it is the Cartesian product of n
open sets. This observation is important because invexity requires to compute the subgradient which
is only possible on open sets. Thus, the invexity of gθ(x) is well defined. And therefore, gθ(x) is
quasi-invex in D.

In consequence, define the following η : Rn × Rn → Rn as

η(x,y) =

{
ηr(x,y) if x,y ∈ D
0 otherwise . (38)

Considering the above η(x,y) function (which is non-zero), take x,y ∈ Rn, and assume

gθ(x)− gθ(y) ≤ 0. (39)

If x,y ∈ D, then we know gθ(x) is invex, which implies that

gθ(x)− gθ(y) ≥ ζT η(x,y)

0 ≥ ζT η(x,y), (40)

for all ζ ∈ ∂gθ(y), and therefore quasi-invex. Otherwise, if either x ̸∈ D or y ̸∈ D, it is clear to
conclude that ζT η(x,y) = 0, for all ζ ∈ ∂gθ(y). Thus, the result holds.

D.3 PROOF CAPPED-ℓ1 IS QUASI-INVEX

Proof. Let gθ(x) = λ
∑n

i=1 rθ(x[i]), for θ > 0, λ ∈ (0, 1], and

rθ(w) = min(|w|, θ).

Now we show the existence of η : Rn ×Rn → Rn satisfying Definition 3 for gθ(x). Let D = {z ∈
Rn : |z[i]| < θ,∀i ∈ {1, . . . , n}}. Thus, we define η : Rn × Rn → Rn as

η(x,y) =

{
x− y if x,y ∈ D
0 otherwise . (41)

Considering the above η(x,y) (which is non-zero), take x,y ∈ Rn, and assume

gθ(x)− gθ(y) ≤ 0. (42)

If x,y ∈ D, then we know gθ(x) is the ℓ1-norm, which implies that

gθ(x)− gθ(y) ≥ ζT (x− y)

0 ≥ ζT (x− y), (43)

for all ζ ∈ ∂gθ(y), and therefore quasi-invex. Otherwise, if either x ̸∈ D or y ̸∈ D, it is clear to
conclude that ζT η(x,y) = 0, for all ζ ∈ ∂gθ(y). Thus, the result holds.

E PROOF OF LEMMA 1

Proof. Let f, h : Rn → R be two invex functions (not necessarily with respect to the same η).
Define the function q(x) = max(f(x), h(x)). Now we will show that q(x) satisfies Definition 3.
Then, take x,y ∈ Rn and assume

q(x)− q(y) ≤ 0. (44)

8
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The above inequality implies that

max(f(x), h(x))−max(f(y), h(y)) ≤ 0

max(f(x), h(x)) ≤ max(f(y), h(y)). (45)

Now we proceed by cases.

1. Assume q(y) = max(f(y), h(y)) = f(y), then from equation (45) we have

f(x) ≤ max(f(x), h(x)) ≤ max(f(y), h(y)) = f(y)

f(x) ≤ f(y). (46)

Since f is an invex function, then we know there exits ηf : Rn × Rn → Rn such that
equation (46) implies

f(x)− f(y) ≥ ζT ηf (x,y)

0 ≥ ζT ηf (x,y) (47)

for all ζ ∈ ∂f(y) = ∂q(y).

2. Assume q(y) = max(f(y), h(y)) = h(y), then from equation (45) we have

h(x) ≤ max(f(x), h(x)) ≤ max(f(y), h(y)) = h(y)

h(x) ≤ h(y). (48)

Since h is an invex function, then we know there exits ηh : Rn × Rn → Rn such that
equation (48) implies

h(x)− h(y) ≥ ζT ηh(x,y)

0 ≥ ζT ηh(x,y) (49)

for all ζ ∈ ∂h(y) = ∂q(y).

From the above discussed cases, we build η : Rn × Rn → Rn as

η(x,y) =

{
ηf (x,y) if f(y) > h(y)
0 if f(y) = h(y)
ηh(x,y) otherwise

. (50)

Thus, from equation (46), equation (48), and the above definition of η(x,y), we conclude

q(x)− q(y) ≤ 0 =⇒ ζT η(x,y) ≤ 0, (51)

∀x,y ∈ Rn, and ∀ζ ∈ ∂q(y). Therefore the desired result holds.

F GLOBAL OPTIMA GUARANTEES OF PROGRAM (1)

To prove the global optima guarantees of optimization problem in (1) we formulate and prove the
following theorem.

Theorem 1. Let f, g : Rn → R be admissible functions as in Definition 4. Assume x⋆ is a solution
of program (1) for ϵ = 0, then x⋆ is a global minimizer.

Proof. Assume x∗ is a minimizer of constrained optimization problem in equation (1), and define
D = {x ∈ Rn|f(x) = 0}. This means that x∗ is a minimizer of g(x) in D i.e. x∗ ∈ D. Since,
f(x) is an admissible function, then is invex. Therefore, x∗ must be a global minimizer. Thus the
result holds.

9
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G PROOF OF THEOREM 7

In order to prove Theorem 7 we introduce an auxiliary definition and lemmata as follows.
Definition 1. (Sparseness measure (Gribonval & Nielsen, 2007)) Let g : Rn → R such that g(x) =∑n

i=1 r(x[i]), where r : [0,∞) → [0,∞) and increasing. If r, not identically zero, with r(0) = 0
such that r(w)/w is non-increasing on (0,∞), then g(x) is said to be a sparseness measure.

Considering the above definitions we obtain the following conclusions.
Lemma 2. (Gribonval & Nielsen, 2007, Proposition 1) Let g : Rn → R be a function satisfying
Definition 1. Then, g satisfies the triangle inequality.

Observe that the above lemma provides a practical methodology to verify when the function g(x)
satisfies the triangle inequality.
Lemma 3. Let f : Rn → R be an admissible function. Take x ∈ Rn such that ∥x∥∞ < ∞. If
f(x) <∞, then ∥x∥22 < 1

c(x)f(x) for a constant c(x) > 0.

Proof. Since f is an admissible function, then f(x) =
∑n

i=1 s(x[i]) and s(w)/w2 is nonincreasing.
Therefore, we have for all i = 1, . . . , n

s(x[i])

x2[i]
≥ s(∥x∥∞)

∥x∥2∞
= c(x) > 0. (52)

Thus, we obtain

∥x∥22 ≤ 1

c(x)
f(x). (53)

Thus the result holds.

With the above definitions and lemmata we proceed to prove Theorem 7. This proof assumes the
regularizer g(x) satisfies Definition 1. This assumption is proved at the end of this section.

Proof. From hypothesis we assume matrix A satisfies the RIP condition for any k-sparse vector
with δ2k < 4√

41
. Then, taking S ⊂ {1, · · · , n} the k-support of x, from (Foucart & Rauhut, 2013,

Theorem 6.13) and for constants ρ ∈ (0, 1), τ > 0 we have

∥xS∥1 ≤ ρ∥xSc∥1 + τ∥Ax∗ − y∥2, (54)

where the notation means that xS coincides with x on the indices in S and is extended to zero in its
complement Sc. Observe that by adding the term ρ∥xS∥1 to equation (54) we conclude

∥xS∥1 ≤ ρ

1 + ρ
∥x∥1 +

τ

1 + ρ
∥Ax∗ − y∥2. (55)

Since we assume g(x) satisfies Definition 1, from (Gribonval & Nielsen, 2007, Theorem 5) we know
that g(xS)

g(x) ≤ ∥xS∥1

∥x∥1
. Thus, combining this inequality with equation (55) we get

g(xS) ≤
ρ

1 + ρ
g(x) +

τ ′

1 + ρ
∥Ax∗ − y∥2

g(xS) ≤ ρg(xSc) + τ ′∥Ax∗ − y∥2, (56)

where τ ′ = τ g(x)
∥x∥1

< ∞. Observe that since g(x) holds Lemma 2, then from (Woodworth &
Chartrand, 2016, Proposition 4.4), and equation (56) we get

g(x∗ − x) ≤ 2
1 + ρ

1− ρ
g(xSc) + 4

τ ′

1− ρ
∥Ax∗ − y∥2. (57)

Now, since f(x) is an admissible function, from Lemma 3, and equation (57) we obtain

g(x∗ − x) ≤ 2
1 + ρ

1− ρ
g(xSc) + 4

τ ′

1− ρ

√
ϵ
√

1/c(η), (58)

10
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where constant c(η) as in equation (52). It is important to remark that the above inequality is only
relevant for g(x) =

∑n
i=1 sg(|x[i]|) quasi-invex when sg(∥x∥∞) ≤ γ (which is assumed in this

proof) for γ = min{t ∈ (0,∞)|s′g(w) = 0}, otherwise sg(w) does not reflect the behaviour of
x. This assumption also applies to f(η) quasi-invex which implies the constrain sf (∥η∥∞) ≤ γ.
In addition, for regularizers g(x) satisfying Definition 1 we also know from (Gribonval & Nielsen,
2007, Lemma 1) that exists a constant b(x) such that ∥x∥1 ≤ 1

b(x)g(x). Then, from equation (58)
we conclude

∥x∗ − x∥1 ≤ Cβk,g(x) +D
√
ϵυf,η(x), (59)

where C = 2 1+ρ
1−ρ , βk,g(x) =

g(xSc )
b(x) , D = 4 τ ′

1−ρ , and υf,η(x) =
√

1/c(η)/b(x). Thus the result
holds.

SATISFYING DEFINITION 1

In this section we show that regularizers g(x) in equation (3), equation (9), equation (10) satisfy
Definition 1.

EQUATION (3)

Proof. Take r(w) = log(1 + |w|p) for any w ̸= 0, and fixed p ∈ (0, 1). It is trivial to see that
r(0) = 0, that r(w) it is not identically zero, and non-decreasing on (0,∞). Then, we just need to
show that r(w)/w is non-increasing on (0,∞). Observe that the first derivative of h(w) = r(w)/w

is given by h′(w) = 1
w2

(
pwp

1+wp − log(1 + wp)
)

. Since pwp

1+wp − log(1+wp) < 0, then we have that
h′(w) < 0, which leads to conclude that r(w)/w is non-increasing on (0,∞). Then it is clear that
r(w)/w is non-increasing on (0,∞).

EQUATION (9)

Proof. Take

rθ(w) =

{
λ|w| − w2/(2θ) if |w| < θλ
θλ2/2 if |w| ≥ θλ

,

for any w ∈ R and fixed λ > 0, θ ≥ 1. It is trivial to see that rθ(0) = 0, and that rθ(w) it is not
identically zero. Then, we just need to show that h(w) = rθ(w)/w is non-increasing on (0,∞).
Observe that the first derivative of h(w) = r(w)/w is given by

h′(w) =

{
−1/(2θ) if |w| < θλ
−θλ2/(2w2) if |w| ≥ θλ

.

Since h′(w) < 0, then r(w)/w is non-increasing on (0,∞). Thus it is clear that r(w)/w is non-
increasing on (0,∞).

H PROOF OF THEOREM 8

Proof. Let g : Rn → R be an admissible function. Then from Lemma 3 we know that g(x) ≥
c∥x∥22 for some c > 0, and therefore gTV (x) ≥ c′∥x∥22 for some c′ > 0. Then from (Pallaschke
& Rolewicz, 2013, Proposition 5.2.13) we know there exits constant d′ > 0 such that program (11)
has a unique minimizer for any λ ≤ 1

2d′ . This fact implies that program (11) is invex. It is easy to
verify that the TV-regularizer version of mappings in equation (4), equation (9), and equation (10)
the constant d′ is equal to one.

Now for the second part of this theorem, we have that h(x) = gTV (x) +
1
2λ∥x − u∥22 for some

u ∈ Rn is an invex function (this is also true for h(x) = g(x) + 1
2λ∥x − u∥22 with λ ≤ 1

2d ), then
Theorem 2 states that any global minimizer y of h satisfies that 0 ∈ ∂h(y). This condition implies
that 0 ∈ ∂gTV (y) +

1
λ (y −u), from which we obtain that y ∈ (λ∂gTV + I)−1(u). Thus, we have

that proxgTV
(u) = (λ∂gTV + I)−1(u) (this is also true for g(x)) from which the result holds.

11
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H.1 REMARKS ON PROX-REGULAR FUNCTIONS

In this section we prove a prox-regular function is quasi-invex. To that end, we introduce the fol-
lowing definition first.
Definition 2. Let f : Rn → R be a lower semi-continuous function, and u ∈ Rn. Then f is said to
be prox-regular if f(x) + 1

2λ∥x− u∥22 is convex for some λ > 0.

Now we proceed with the proof.

Proof. Let f : Rn → R be a prox-regular function for some λ > 0. Then we know that for any
x,y ∈ Rn

f(x)− f(y) ≥ ζT (x− y)− 1

2λ
∥x− y∥22 (60)

for all ζ ∈ ∂f(y). Define function η(x,y) as

η(x,y) =

{
0 if 0 ∈ ∂f(y)

x− y − ∥x−y∥2
2

2λ∥ζ∗∥2
2
ζ∗ otherwise , (61)

where ζ∗ is an element in ∂f(y) of minimum norm. Take x,y ∈ Rn and assume

f(x)− f(y) ≤ 0. (62)

Observe that if 0 ∈ ∂f(y) then we get ζT η(x,y) = 0, for all ζ ∈ ∂f(y). Additionally, if
0 ̸∈ ∂f(y), then from equation (60) we obtain

0 ≥ ζT (x− y)− 1

2λ
∥x− y∥22

≥ ζT

(
x− y − ∥x− y∥22

2λ∥ζ∗∥22
ζ∗

)
= ζT η(x,y), (63)

where the second inequality comes from the fact that ζ∗ is an element in ∂f(y) of minimum norm
i.e. ζT ζ∗

∥ζ∗∥2
2

≥ 1 for all ζ ∈ ∂f(y) (Bazaraa & Shetty, 2012, Theorem 2.4.4). From the above
inequality the result holds.

I PROOF OF THEOREM 9

Here we prove Theorem 9 following a similar strategy as presented in (Parikh & Boyd, 2014).

Proof. Since (x∗, z∗,v∗) is a saddle point for L0, we have

L0(x
∗, z∗,v∗) ≤ L0(x

(t+1), z(t+1),v∗). (64)

Using Sx∗ + Pz∗ = y the left hand side is h∗ = inf{h1(x) + h2(z) | Sx + Pz = y}. With
h(t+1) = h1(x

(t+1)) + h2(z
(t+1)), this can be written as

h∗ ≤ h(t+1) + (v∗)Tq(t+1), (65)

for q(t+1) = Sx(t+1)+Pz(t+1)−y. Now, by definition, x(t+1) minimizes Lρ(x, z
(t),v(t)). From

Appendix H and the fact that ρσn(S) ≥ 1, ρσp(P ) ≥ 1, we know that the (necessary and sufficient)
optimality condition for Lρ(x, z

(t),v(t)) is given by

0 ∈ ∂Lρ(x
(t+1), z(t), z(t)) = ∂h1(x

(t+1)) + STv(t) + ρST (Sx(t+1) + Pz(t) − y). (66)

Since v(t+1) = v(t) + ρq(t+1), we can plug in v(t) = v(t+1) − ρq(t+1) and rearrange to obtain

0 ∈ ∂h1(x
(t+1)) + ST (v(t+1) − ρP (z(t+1) − z(t))). (67)

From Appendix H, this implies that x(t+1) uniquely minimizes

h1(x) + (v(t+1) − ρP (z(t+1) − z(t)))TSx. (68)

12
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A similar argument shows that z(t+1) uniquely minimizes h2(z) + (v(t+1))TPz. It follows that

h1(x
(t+1)) + (v(t+1) − ρP (z(t+1) − z(t)))TSx(t+1)

≤ h1(x
∗) + (v(t+1) − ρP (z(t+1) − z(t)))TSx∗, (69)

and that

h2(z
(t+1)) + (v(t+1))TPz(t+1) ≤ h2(z

∗) + (v(t+1))TPz∗. (70)

Adding the two inequalities above, using Sx∗ + Pz∗ = y, and rearranging, we obtain

h(t+1) − h∗ ≤ −(v(t+1))Tq(t+1) − ρ(P (z(t+1) − z(t)))T (−q(t+1) + P (z(t+1) − z∗)). (71)

On the other hand, adding equation (65), and equation (71), regrouping terms, and multiplying
through by 2 gives

2(v(t+1) − v∗)Tq(t+1) − 2ρ(P (z(t+1) − z(t)))Tq(t+1)

+ 2ρ(P (z(t+1) − z(t)))T (P (z(t+1) − z∗)) ≤ 0. (72)

Now by rewriting the first term in equation (72), and substituting v(t+1) = v(t) + ρq(t+1) it gives

2(v(t+1) − v∗)Tq(t+1) + ρ∥q(t+1)∥22 + ρ∥q(t+1)∥22, (73)

and substituting q(t+1) = (1/ρ)(v(t+1) − v(t)) in the first two terms gives

(2/ρ)(v(t) − v∗)T (v(t+1) − v(t)) + (1/ρ)∥v(t+1) − v(t)∥22 + ρ∥q(t+1)∥22. (74)

Since q(t+1) − q(t) = (q(t+1) − q∗)− (q(t) − q∗), this can be written as

(1/ρ)(∥v(t+1) − v∗∥22 − ∥v(t) − v∗∥22) + ρ∥q(t+1)∥22. (75)

We now rewrite the remaining terms

ρ∥q(t+1)∥22 − 2ρ(P (z(t+1) − z(t)))Tq(t+1) + 2ρ(P (z(t+1) − z(t)))T (P (z(t+1) − z∗)), (76)

where ρ∥q(t+1)∥22 is taken from equation (75). Substituting

z(t+1) − z∗ = (z(t+1) − z(t)) + (z(t) − z∗), (77)

in the last term gives

ρ∥q(t+1) − P (z(t+1) − z(t))∥22 + ρ∥P (z(t+1) − z(t))∥22
+ 2ρ(P (z(t+1) − z(t)))T (P (z(t+1) − z∗)), (78)

and substituting

z(t+1) − z(t) = (z(t+1) − z∗)− (z(t) − z∗), (79)

in the last two terms, we get

ρ∥q(t+1) − P (z(t+1) − z(t))∥22 + ρ
(
∥P (z(t+1) − z∗)∥22 − ∥P (z(t) − z∗)∥22

)
. (80)

With the previous step, this implies that equation (72) can be written as

V (t) − V (t+1) ≥ ρ∥q(t+1) − P (z(t+1) − z(t))∥22, (81)

where V (t) = (1/ρ)∥v(t) − v∗∥22 + ρ∥P (z(t) − z∗)∥22.

Now, we show that the middle term −2ρ(q(t+1))T (P (z(t+1) − z(t))) of the expanded right hand
side of equation (81) is positive. To see this, recall that z(t+1) minimizes h2(z) + (v(t+1))TPz,
and z(t) minimizes h2(z) + (v(t))TPz, so we can add

h2(z
(t+1)) + (v(t+1))TPz(t+1) ≤ h2(z

(t)) + (v(t+1))TPz(t), (82)

13
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and

h2(z
(t)) + (v(t))TPz(t) ≤ h2(z

(t+1)) + (v(t))TPz(t+1), (83)

to get that

(v(t+1) − v(t))TP (z(t+1) − z(t)) ≤ 0. (84)

Substituting v(t+1) − v(t) = ρq(t+1) gives the result, since ρ > 0. Thus, from equation (81), and
equation (84) we obtain

V (t+1) ≤ V (t) − ρ∥q(t+1)∥22 − ρ∥P (z(t+1) − z(t))∥22, (85)

which states that V (t) decreases in each iteration by an amount that depends on the norm of the
residual q(t) and on the change in z(t) over one iteration. Then, because V (t) ≤ V (0), it follows
that v(t) and Pz(t) are bounded. Iterating the inequality above gives that

ρ

∞∑
t=0

(
∥q(t+1)∥22 + ∥P (z(t+1) − z(t))∥22

)
≤ V (0), (86)

which implies that q(t) = Sx(t) + Pz(t) − y → 0, and P (z(t+1) − z(t)) → 0 as t → ∞.
Additionally, applying (Deng et al., 2017, Lemma 1.2) on equation (86) we obtain a convergence
rate for q(t), P (z(t+1) − z(t)) to zero of O(1/t). equation (86) also implies that the right hand side
in equation (71) goes to zero as t → ∞, because P (z(t+1) − z∗) is bounded and both q(t+1) and
P (z(t+1) − z(t)) go to zero. The right hand side in equation (65) goes to zero as t→ ∞, since q(t)

goes to zero. Thus we have limt→∞ h(t) = h∗, i.e., objective convergence. Therefore the result of
Theorem 9 holds.

I.1 REMARKS ON STABILITY OF ADMM

In this section we wish to emphasize that the stability and reliability (of the ADMM) can be estab-
lished from the following: 1) ADMM decomposes the overall optimization problem into a number of
simpler subproblems that have a unique solution (as rigorously demonstrated in previous section),
aiding convergence and stability. 2) As shown in previous section, the sequences x(t+1), z(t+1),
and v(t+1), constructed by ADMM algorithm, always converge to global optima irrespective of the
initial states x(0), z(0), and v(0), conferring a steadfast assurance of reliable attainment of optimal
solutions, and finally, 3) The effectiveness of the ADMM is well demonstrated in the literature us-
ing a range of real-world applications (Boyd et al., 2011; Wang et al., 2019b; Glowinski, 2014; Xie
et al., 2019), which we believe can reaffirm the reliability (and potentially the stability) of ADMM.

REMARKS ON OPTIMIZATION PROBLEM IN 1

In this section we show how program 1 is expressed as equation (12), where the non-linear constrain
is in the form of f(Ax− y). From (Chen et al., 2001; Cai & Wang, 2011), we know that

minimize g(x) subject to f(Ax− y) < ϵ,

can be equivalently rewritten as

minimize g(x) + λf(Ax− y),

for some λ > 0 that helps to satisfy the condition f(Ax − y) < ϵ. Thus, if introducing a variable
z = Ax− y, program (1) can be finally rewritten as

minimize g(x) + λf(z) subject to z = Ax− y,

which is in the optimization form of ADMM as pointed out in equation (12). In this way, optimiza-
tion problem in (1) is converted from non-linear constraints into linear ones.
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I.2 ADDITIONAL DISCUSSION ON THEOREM 9

In this section, we discuss why the assumptions ρσn(S) ≥ 1, and ρσp(P ) ≥ 1 for ρ > 0 in
Theorem 9 are mild, by showing practical imaging examples that satisfy these conditions. We list
those applications in the following.

1. Image Fusion: Image fusion has been receiving increasing attention in the research community
to investigate general formal solutions to a broad spectrum of applications (Vargas et al., 2019).
For example, in the remote sensing field, the increasing availability of spaceborne imaging sen-
sors operating in various ground scales and spectral bands undoubtedly provides strong motivations
(Camacho et al., 2022). Because of the trade-off imposed by the physical constraint between spatial
and spectral resolutions, spatial enhancement of poor-resolution multispectral (MS) data is desirable
(Camacho et al., 2022). Another example is medical imaging, in which the goal of image fusion is
to create new images more suitable for human visual perception (Meyer-Bäse et al., 2004).
Mathematically the image fusion problem in spectral imaging can be modeled as in equation (12)
defining matrices S, and P as (Vargas et al., 2019)

S =



0
I
0
Bs

G
D
I

 ,P =



I −RλM 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I −M 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I


= I +H. (87)

Observe that σn(S) = 2+δ > 1 for δ > 0 where is the smallest singular value of BT
s Bs+GTG+

DTD. In addition, σn(P ) = 1+ζ > 0 where ζ is the smallest singular value of H+HT +HTH .
Thus, taking ρ ≥ max{0.5, 1/(1 + ζ)} the needed conditions in Theorem 9 are satisfied.

2. Spectral Imaging: Spectral imaging combines two disciplines - spectroscopy and photography -
to sample image data at many wavelength bands. In general, spectral imaging is separated into either
multispectral (¡ 20 wavelength bands sampled) or hyperspectral (¿ 20 wavelength bands) (Vargas
et al., 2018). Mathematically the spectral imaging problem can be modeled as in equation (12)
defining matrices S, and P are given by (Vargas et al., 2018)

S =

I, . . . , I︸ ︷︷ ︸
K

,Ψ,LT

T

,P = −I, (88)

where Ψ is an orthogonal matrix. Observe that σn(S) = K + 1 + δ > 1 for δ > 0 where is the
smallest singular value of LTL. In addition, σn(P ) = 1. Thus, taking ρ ≥ 1 the needed conditions
in Theorem 9 are satisfied.

3. Computer Tomography: Computer tomography refers to a computerized X-ray imaging proce-
dure in which a narrow beam of X-rays is aimed at a patient and quickly rotates around the body,
producing signals processed by the machine’s computer to generate cross-sectional images (Wang
et al., 2019a). These slices are called tomographic images and can give a clinician more detailed
information than conventional X-rays. Mathematically, the computer tomography problem can be
modeled as in equation (12) defining matrices S, and P are given by S = I , and P = −I (Vargas
et al., 2018). Thus, taking ρ ≥ 1 the needed conditions in Theorem 9 are satisfied.

4. Magnetic Resonance Imaging: Magnetic Resonance Imaging (MRI) is a non-invasive imaging
technique providing both functional and anatomical information for clinical diagnosis. Imaging
speed is a fundamental challenge. Fast MRI techniques are essentially demanded to accelerate data
acquisition while still reconstructing a high-quality image (Sun et al., 2016). Mathematically, the
magnetic resonance imaging problem can be modeled as in equation (12) defining matrices S, and
P are given by S = I , and P = −Ψ (Vargas et al., 2018), for Ψ an orthogonal matrix. Thus,
taking ρ ≥ 1 the needed conditions in Theorem 9 are satisfied.

5. Compressive Sensing: Compressive sensing is a recent highly applicative approach. It enables
efficient data sampling at a much lower rate than the requirements indicated by the Nyquist theo-
rem. Compressive sensing possesses several advantages, such as the much smaller need for sensory
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devices, much less memory storage, higher data transmission rate, many times less power consump-
tion (Ramirez et al., 2021). Due to all these advantages, compressive sensing has been used in a
wide range of applications. Mathematically, the compressive sensing problem can be modeled as
in equation (12) defining matrices S, and P are given by S = Ψ, and P = −I (Ramirez et al.,
2021), for Ψ an orthogonal matrix. Thus, taking ρ ≥ 1 the needed conditions in Theorem 9 are
satisfied.
6. Stepped-Frequency Radar: Step-frequency is a radar waveform consisting of a series of sine
waves with linearly increasing frequency. The radar measures the phase and amplitude on each fre-
quency and used an inverse Fourier transform of these data to build a time domain profile (Johnston
et al., 2021). Mathematically, the Stepped-Frequency Radar problem can be modeled as in equa-
tion (12) defining matrices S, and P are given by S = I , and P = −I (Johnston et al., 2021).
Thus, taking ρ ≥ 1 the needed conditions in Theorem 9 are satisfied.

I.3 PROXIMAL SOLUTIONS

In this section we present the proximal operator for the studied invex/quasi-invex functions in this
work, summarized in the following Table 4.

Table 4: Proximal operator for regularizers ℓp-quasinorm, and equation (3), equation (9) (λ ∈ (0, 1]
is a thresholding parameter).

Ref Invex function Proximal operator

(Marjanovic
& Solo, 2012)

gλ(w) = λ|w|p, p ∈ (0, 1), w ̸= 0. Proxgλ(w) =

{
0 |t| < τ
{0, sign(w)β} |t| = τ
sign(w)y |t| > τ

where β = [2λ(1 − p)]1/(2−p), τ = β + λpβp−1,
h(y) = λpyp−1 + y − |t| = 0, y ∈ [β, |t|]

- gλ(w) = λ log(1 + |w|p), p ∈ (0, 1), x ̸= 0 Proxgλ(w) =

{
0 |w| = 0
sign(w)β otherwise

where β(β−|w|)(β−p +1)+λp = 0, β > 0. We solve this
equation using standard bisection method.

(Zhang, 2010) MCP Proxλgθ (w) =

{
θw−sign(w)θλ

θ−1 |w| < θλ
w |w| ≥ θλ

PROXIMAL OF FUNCTION IN EQUATION (3)

Consider h(w) = λ log(1 + |w|p) + 1
2 (w − u)2 for λ ∈ (0, 1], w ̸= 0, and fixed u ∈ R, p ∈ (0, 1).

We note first that we only consider w′s for which sign(w) = sign(u), otherwise h(w) = λ log(1 +
|w|p)+ 1

2w
2+|u||w|+ 1

2u
2 which is clearly minimized atw = 0. Then, since with sign(w) = sign(u)

we have (w−u)2 = (|w|−|u|)2, we replace uwith |u| and takew ≥ 0. As h(w) is differentiable for
w > 0, re-arranging h′(w) = 0 gives ψλ(w) =

∆ λpwp−1

1+wp + w = |u|. Observe that ψ′
λ(w) is always

positive then it means that ψλ(w) is monotonically increasing. Thus, the equation ψλ(w) = |u| has
unique solution i.e. at some point the quality holds. Thus, solving ψλ(w) = |u| is equivalent to

w(w − |u|)(w−p + 1) + λp = 0. (89)

We solve equation (89) using standard bisection method (Burden & Faires, 1985).

Implementation details: In order to efficiently compute the proximal solutions, which is an entry-
wise operation, in Table 4, we use the Python library CuPy (Lib). The reason is that this library
allows the creation of GPU kernels in the language C++ from Python (quick guide on how to create
and use these kernels (ker)). Therefore, inside this GPU kernel, we implemented the entry-wise
operation from the Proximal Operator column of Table 4. We report as an example how to implement
the proximal solution for ℓp-quasinorm. We remark that this implementation is efficient because it
runs in parallel and at the GPU speed. Additional features of the CuPy library are the flexibility to
connect both TensorFlow and PyTorch libraries for training neural networks (pyt).

Lastly, the running time to compute the proximal of invex/quasi-invex functions is also essential to
compare with its convex competitor, i.e., ℓ1-norm. The reason is the desire to improve imaging qual-
ity, keeping the same computational complexity to obtain it. Therefore, the following Table 5 reports
the running time to compute the proximal (in GPU) of equation (3), ℓp-quasinorm, and equation (9)
for an image of 2048 × 2048 pixels. Table 5 suggests that computing the proximal of the ℓ1-norm
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is faster than the proximal of invex regularizers. However, this difference is given in milliseconds,
making it negligible in practice.

Table 5: Time to compute the proximal for all invex and convex regularizers, of an image with
2048 × 2048 pixels. The reported time is the averaged over 256 trials. For ℓp-quasinorm we select
p = 0.5, and ϵ = (p(1− p))

1
2−p .

equation (3) ℓp-quasinorm equation (9) ℓ1-norm
Time 2.8ms 1.06ms 0.86ms 0.66ms

J EXTENDED ACCELERATED PROXIMAL GRADIENT METHOD (APGM)

The accelerated proximal gradient method (APGM) (Li & Lin, 2015) has been shown to be effective
in solving program (1) by minimizing F (x) = g(x)+ f̂(x) where f̂(x) = 1

2 (max{f(x)− ϵ, 0})2,
achieving better quality in less iterations than its predecessors (Beck & Teboulle, 2009; Frankel
et al., 2015; Boţ et al., 2016), and been frequently used by recent imaging works (Wang & Chen,
2022; Mai et al., 2022). Note that f̂ is invex with the same η as f (which is also the same of g
according to Theorem 3), since h(w) = (max(w− ϵ, 0))2 is an increasing convex function (Mishra
& Giorgi, 2008, Theorem 2.14). Therefore, F (x) is invex. The iterative process performed by
APGM is summarized as

y(t) = x(t) +
rt−1

rt
(z(t) − x(t)) +

rt−1 − 1

rt
(x(t) − x(t−1))

z(t+1) = proxα2g
(y(t) − α2∇f̂(y(t))) (90)

v(t+1) = proxα1g
(x(t) − α1∇f̂(x(t))), rt+1 =

√
4(rt)2 + 1 + 1

2

x(t+1) =

{
z(t+1), if f̂(z(t+1)) + g(z(t+1)) ≤ f̂(v(t+1)) + g(v(t+1))
v(t+1), otherwise

,

for some positive constants α1, α2, and assuming f̂ is L-smooth. The reported convergence guaran-
tees of x(t+1) to global optima of APGM has been only stated for convex losses (Li & Lin, 2015).
For non-convex cases, convergence to a critical point has been stated (Li & Lin, 2015). Here, we
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extend the general convergence guarantees of APGM to invex/quasi-invex settings in Theorem 3 so
that its benefits are available to the signal restoration problems.
Theorem 2. Let f, g : Rn → R be admissible functions as in Definition 4, where f is L-smooth.
Assume x⋆ a global minimizer of F (x) = g(x) + f̂(x) for ϵ = 0, then

F (x(T+1))− F (x∗) ≤ 2

α′(T + 1)2
∥x(0) − x∗∥22, (91)

where T is number of iterations, α1, α2 <
κ

Lκ+4 , 1
α′ =

(
1
α1

− 2
κ

)
> 0, with κ a constant that

depends on f, g.

Proof of Theorem 2 relies on the properties of admissible functions including Theorem 8. The proof
is presented below. It is worth mentioning that the convergence rate for admissible functions as in
Theorem 2 is the same as in the convex case (see (Li & Lin, 2015)).

Proof. Step 2 in the APGM is given by

z(t+1) = argmin
x∈Rn

〈
∇f(y(t)),x− y(t)

〉
+

1

2α1
∥x− y(t)∥22 + g(x). (92)

From Theorem 8 we know that equation (92) is unique for a α1 <
1
κg

for some κg > 0. Then the
optimality condition for equation (92) is given by

0 ∈ ∇f(y(t)) +
1

α1
(z(t+1) − y(t)) + ∂g(z(t+1)). (93)

Additionally, since g(x) is an admissible function, then from (Pallaschke & Rolewicz, 2013, Propo-
sition 5.2.14) we have that

g(x)− g(z(t+1)) ≥
〈
−∇f(y(t))− 1

α1
(z(t+1) − y(t)),x− z(t+1)

〉
− 1

κg
∥x− z(t+1)∥22. (94)

for all x. From the Lipschitz continuous of ∇f , we have for all x and κf < 1
L that

f(x)− f(y(t)) ≥
〈
∇f(y(t)),x− y(t)

〉
− 1

κf
∥x− y(t)∥22. (95)

In addition of the Lipschitz continuity of ∇f we have that

F (z(t+1)) ≤ g(z(t+1)) + f(y(t)) +
〈
∇f(y(t)), z(t+1) − y(t)

〉
+
L

2
∥z(t+1) − y(t)∥22

= g(z(t+1)) + f(y(t)) +
〈
∇f(y(t)),x− y(t)

〉
+

〈
∇f(y(t)), z(t+1) − x

〉
+
L

2
∥z(t+1) − y(t)∥22. (96)

Then, plugging equation (94), and equation (95) into equation (96) we obtain that

F (z(t+1)) ≤ g(z(t+1)) + f(x) +
〈
∇f(y(t)), z(t+1) − x

〉
+

1

κf
∥x− y(t)∥22 +

L

2
∥z(t+1) − y(t)∥22

≤ F (x) +

〈
∇f(y(t)) +

1

α1
(z(t+1) − y(t)),x− z(t+1)

〉
+

〈
∇f(y(t)), z(t+1) − x

〉
+

1

κf
∥x− y(t)∥22 +

1

κg
∥x− z(t+1)∥22 +

L

2
∥z(t+1) − y(t)∥22

≤ F (x) +
1

α1

〈
z(t+1) − y(t),x− z(t+1)

〉
+
L

2
∥z(t+1) − y(t)∥22

+
1

κ

(
∥x− y(t)∥22 + ∥x− z(t+1)∥22

)
, (97)

where 1
κ = max{ 1

κf
, 1
κg

}. Observe that the last term in the above equation (97) satisfies

1

κ

(
∥x− y(t)∥22 + ∥x− z(t+1)∥22

)
≤ 1

κ
∥z(t+1) − y(t)∥22 −

2

κ

〈
z(t+1) − y(t),x− z(t+1)

〉
.

(98)
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Combining equation (97) and equation (98) we obtain

F (z(t+1)) ≤ F (x) +

(
1

α1
− 2

κ

)〈
z(t+1) − y(t),x− z(t+1)

〉
+

(
L

2
+

1

κ

)
∥z(t+1) − y(t)∥22

= F (x) +

(
1

α1
− 2

κ

)〈
z(t+1) − y(t),x− y(t)

〉
−

(
1

α1
− L

2
− 3

κ

)
∥z(t+1) − y(t)∥22.

(99)

Thus, if α1 <
κ

Lκ+4 then we have

F (z(t+1)) ≤ F (x) +

(
1

α1
− 2

κ

)〈
z(t+1) − y(t),x− y(t)

〉
−

(
1

2α1
− 1

κ

)
∥z(t+1) − y(t)∥22.

(100)

Let x = x(t) and x∗, we have

F (z(t+1)) ≤ F (x(t)) +

(
1

α1
− 2

κ

)〈
z(t+1) − y(t),x(t) − y(t)

〉
−

(
1

2α1
− 1

κ

)
∥z(t+1) − y(t)∥22

(101)

F (z(t+1)) ≤ F (x∗) +

(
1

α1
− 2

κ

)〈
z(t+1) − y(t),x∗ − y(t)

〉
−

(
1

2α1
− 1

κ

)
∥z(t+1) − y(t)∥22,

(102)

Define 1
α′ =

(
1
α1

− 2
κ

)
. Then, multiplying equation (101) by rt − 1 and adding equation (102) we

have

rtF (z
(t+1))− (rt − 1)F (x(t))− F (x∗)

≤ 1

α′

〈
z(t+1) − y(t), (rt − 1)(x(t) − y(t)) + x∗ − y(t)

〉
− rt

2α′ ∥z
(t+1) − y(t)∥22. (103)

So we have

rt

(
F (z(t+1))− F (x∗)

)
− (rt − 1)

(
F (x(t))− F (x∗)

)
≤ 1

α′

〈
z(t+1) − y(t), (rt − 1)(x(t) − y(t)) + x∗ − y(t)

〉
− rt

2α′ ∥z
(t+1) − y(t)∥22. (104)

Multiplying both sides by rt and using (rt)
2 − rt = (rt−1)

2 from APGM we have

(rt)
2
(
F (z(t+1))− F (x∗)

)
− (rt−1)

2
(
F (x(t))− F (x∗)

)
≤ 1

α′

〈
rt

(
z(t+1) − y(t)

)
, (rt − 1)

(
x(t) − y(t)

)
+ x∗ − y(t)

〉
− 1

2α′ ∥rt(z
(t+1) − y(t))∥22

=
1

α′

〈
rt

(
z(t+1) − y(t)

)
, (rt − 1)x(t) − rty

(t) + x∗
〉
− 1

2α′ ∥rt(z
(t+1) − y(t))∥22

=
1

2α′

(
∥(rt − 1)x(t) − rty

(t) + x∗∥22 − ∥(rt − 1)x(t) − rtz
(t+1) + x∗∥22

)
. (105)

Define

U (t+1) = rtz
(t+1) − (rt − 1)x(t) − x∗. (106)

Let

U (t) = rt−1z
(t) − (rt−1 − 1)x(t−1) − x∗ = rty

(t) − (rt − 1)x(t) − x∗. (107)

We have

y(t) =
rt−1z

(t) − (rt−1 − 1)x(t−1) + (rt − 1)x(t)

rt

= x(t) +
rt−1

rt
(z(t) − x(t)) +

rt−1 − 1

rt
(x(t) − x(t−1)), (108)
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which is the same in Step 1 of APGM. So we have

(rt)
2
(
F (z(t+1))− F (x∗)

)
− (rt−1)

2
(
F (x(t))− F (x∗)

)
≤ 1

2α′

(
∥U (t)∥22 − ∥U (t+1)∥22

)
.

(109)

If F (z(t+1)) ≤ F (v(t+1)), then x(t+1) = z(t+1)

(rt)
2
(
F (z(t+1))− F (x∗)

)
− (rt−1)

2
(
F (x(t))− F (x∗)

)
=(rt)

2
(
F (x(t+1))− F (x∗)

)
− (rt−1)

2
(
F (x(t))− F (x∗)

)
≤ 1

2α′

(
∥U (t)∥22 − ∥U (t+1)∥22

)
. (110)

If F (z(t+1)) > F (v(t+1)), then x(t+1) = v(t+1). So,

(rt)
2
(
F (x(t+1))− F (x∗)

)
− (rt−1)

2
(
F (x(t))− F (x∗)

)
≤(rt)

2
(
F (z(t+1))− F (x∗)

)
− (rt−1)

2
(
F (x(t))− F (x∗)

)
≤ 1

2α′

(
∥U (t)∥22 − ∥U (t+1)∥22

)
. (111)

Summing equation (111) over t = 1, . . . , T we have

(rT+1)
2(F (x(T+1))− F (x∗))

=(rT+1)
2(F (x(T+1))− F (x∗))− (r0)

2(F (x(1))− F (x∗))

≤ 1

2α′

(
∥U (1)∥22 − ∥U (T+1)∥22

)
≤ 1

2α′ ∥U
(1)∥22 =

1

2α′ ∥x
(0) − x∗∥22. (112)

From APGM we can easily have that rt ≥ t+1
2 . So we have

F (x(T+1))− F (x∗) ≤ 2

α′(T + 1)2
∥x(0) − x∗∥22, (113)

where 1
α′ =

(
1
α1

− 2
κ

)
, and α1 <

κ
Lκ+4 , with 1

κ = max{ 1
κf
, 1
κg

} for kf < 1
L .

REMARKS ON STABILITY OF APGM

The APGM stability and reliability come from the pivotal factors: 1) APGM employs two prox-
imal steps that have a unique solution (as rigorously demonstrated in the section above), aiding
convergence and stability. 2) As shown in the section above, the sequence x(t+1), constructed by
APGM algorithm, always converge to global optima irrespective of the initial state x(0), conferring
a steadfast assurance of reliable attainment of optimal solutions. 3) The remarkable effectiveness
demonstrated across an array of real-world applications (Beck & Teboulle, 2009; Ochs et al., 2014;
Boţ et al., 2016) reaffirms APGM’s reliability.

K ADDITIONAL IMPLEMENTATION DETAILS AND RESULTS

In this section we present additional numerical results and details to complement the three experi-
ments in Section 5. For Experiments 1, and 2 the constants c, α of the adaptive invex loss in equa-
tion (7) are implemented as

c = softplus(cvar) + cmin (114)
α = (αmax − αmin)sigmoid(αvar) + αmin (115)

where cvar, and αvar are parameters to be learned simultaneously with the network weights using
the same Adam optimizer instance. In addition, we fix αmax = 1.99, αmin = 0.0, and cmin =
10−8.
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K.1 EXPERIMENT 1

To train FISTA-Net1 for the CT experiment using convex, invex and quasi-invex regularizers, we
use a batch size of 64, optimized using Adam, and with seven hidden layers. Datasets used for train-
ing, validation and testing were normalized to the interval of [0, 1]. In addition to the experiments
reported in Table 3 for Experiment 1, we show the performance of invex regularizers reported in
(Pinilla et al., 2022) under FISTA-Net. These results are summarized in Table 6.

Table 6: Performance Comparison: Lower the better. We highlight the best, and the worst results
for each metric. (Green: Best, and Red: Worst).

Experiment 1 (Combination of functions used to train FISTA-Net)
Regularizer Metrics equation (4) equation (5) equation (6) equation (7) equation (8) ℓ2-norm

AbsError 0.2380 0.2106 0.2212 0.1867 0.1973 0.2556
equation 7 in PSNR 38.36 39.09 38.65 39.13 39.08 38.08
(Pinilla et al., 2022) RMSE 0.0150 0.0124 0.0123 0.0105 0.0095 0.0174

SSIM 0.9550 0.9574 0.9566 0.9590 0.9582 0.9558
AbsError 0.2768 0.2501 0.2352 0.2240 0.2586 0.2941

equation 8 PSNR 38.05 38.33 38.72 38.87 38.78 37.79
(Pinilla et al., 2022) RMSE 0.0179 0.0104 0.0145 0.0137 0.0117 0.0217

SSIM 0.9537 0.9554 0.9563 0.9580 0.9571 0.9545
AbsError 0.2088 0.1819 0.1700 0.1601 0.1933 0.2259

equation 10 PSNR 38.68 39.40 39.32 39.54 38.99 38.38
(Pinilla et al., 2022) RMSE 0.0129 0.0087 0.0111 0.0108 0.0095 0.0146

SSIM 0.9563 0.9585 0.9578 0.9600 0.9593 0.9571

K.2 EXPERIMENT 2

To train MST++2 using the invex loss functions we use a batch size of 20, optimized using Adam
with parameters β1 = 0.9, and β2 = 0.999, and the cosine Annealing scheme is adopted for 300
epochs. Datasets used for training, validation and testing were normalized to the interval of [0, 1].
To complement results in Table 3 we present Figure 2 which reports some restored spectral images
using MST++ trained with losses equation (4)-equation (8). To evaluate the performance we employ
the absolute error.

Figure 2: Reconstructed spectral images with MST++ trained with losses ℓ2-norm, and the invex
functions equation (4)-equation (8). To evaluate the performance we employ the absolute error.

1code of can be found at https://github.com/jinxixiang/FISTA-Net
2Implementation can be found in https://github.com/caiyuanhao1998/MST-plus-plus
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Figure 3: Restored images using the ADMM iterative process in equation (116) to solve pro-
gram (11) using total-variation-like invex/quasi-invex regularizers g of ℓp-quasinorm, and equa-
tion (3) equation (10). To evaluate the performance we employ the structural similarity index mea-
sure (SSIM) by reporting the SSIM map for each image and its averaged value. Recall that SSIM is
reported in the range [0,1] where 1 is the best achievable quality and 0 the worst. In the SSIM map
small values of SSIM appear as dark pixels.

K.3 EXPERIMENT 3
In order to implement the ADMM iterative process in equation (13) to solve the total variation
filtering optimization problem in (11), we use a linear approximation to update x(t+1) based on
(Ouyang et al., 2015). The reason of this approximation comes from the fact that updating x(t+1) for
the total variation filtering optimization problem in (11) requires the computation of (ρDTD+I)−1

which is a computationally expensive step. Therefore, we implement the following ADMM iteration
process to solve program (11) for the total-variation-like invex/quasi-invex regularizers g of ℓp-
quasinorm, and equation (3) equation (10)

x
(t+1)
2 = (1− α)x(t) + αx

(t)
1

x
(t+1)
1 = x

(t)
1 − 1

2β

(
ρDT (Dx

(t+1)
2 − z(t) + v(t)) + x

(t+1)
2 − u

)
x(t+1) = (1− α)x(t) + αx

(t+1)
1 (116)

z(t+1) = Proxλ/ρg(Dx(t+1) + v(t)/ρ)

v(t+1) = v(t) + ρ(Dx(t+1) − z(t+1)),

where D is the discrete spatial derivative (see Section B for more details), the first three equal-
ity is the linear approximation to estimate x(t+1) following (Ouyang et al., 2015), u is the noisy
image, and α, ρ, β are positive constants chosen to be the best for each analyzed function deter-
mined by cross-validation. This iterative procedure is initialized as x(0) = u, z(0) = Dx(0), and
x
(0)
1 = x

(0)
2 = v(0) = 0. Further, the proximal of regularizers g to compute z(t+1) are given in

Table 4. To complement results in Table 3 we present Figure 3 which reports some restored images
obtained by total-variation-like invex/quasi-invex regularizers g of ℓp-quasinorm, and equation (3)
equation (10). To numerically evaluate their performance we employ the structural similarity index
measure (SSIM) by reporting the SSIM map for each denoised image and its averaged value. Recall
that SSIM is reported in the range [0,1] where 1 is the best achievable quality and 0 the worst. In the
SSIM map small values of SSIM appear as dark pixels.

K.4 EXPERIMENTS WITH APGM AND VALIDITY OF THEOREM 7

In this section we assess the performance of APGM (Li & Lin, 2015) solving compressive sensing
problems. Specifically, this section provides two experiments summarized in Tables 7, and 8. The
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aim of the first experiment is to numerically validate Theorem 7 and the second it is to show the
performance of APGM in a realistic setting when invex/quasi-invex are employed.

For the first experiment, we generate noisy measurements y = Ax+ η where A ∈ Rm×n follows
a Gaussian random matrix with ℓ2-normalized columns, x ∈ Rn is a k-sparse vector, and η ∈ Rm

models the noise. Specifically, the size n and the sparsity k of the unknown underlying signal x
are fixed as n = 1024, and k = 0.03n. Therefore, appealing to the theoretical result in (Foucart
& Rauhut, 2013, Theorem 9.13), we determined from the fixed values of n and k the number of
measurements m as m = 0.45n in order to satisfy equation (54) for τ = 0.3 and ρ = 0.4. In
consequence, the constant C and D of equation (59) are given by C = 4.6, and D = 2 g(x)

∥x∥1
.

Under this setting, we are ready to validate inequality in equation (59) numerically (i.e. validity
of Theorem 7) where the regularizer g(x) in program (1) takes the form of equations (3), (9),(10),
and the data fidelity term f(x) takes the form of equations (5),(7),(8) (these were chosen due their
performance in Table 3). Further, in order to solve program (1) and estimate the distance ∥x−x∗∥1
in equation (59), we use APGM (see Appendix J) where x∗ is the solution returned by APGM. We
consider additive white Gaussian noise in the measurements data vector with three different levels
of SNR (Signal-to-Noise Ratio) = 20, 30. The number of iterations T of the APGM is fixed to
T = 1000. The positive constants α1, α2 of APGM, and c, α, p of equations (7),(10) are chosen to
be the best for each analyzed combination of functions by cross-validation.

We summarize the results in Table 7. From these numerical results, we observe that invex/quasi-
invex mappings for both regularizer and fidelity term perform better than using the combination
of ℓ1-norm and ℓ2-norm because the upper bound in equation (59) is smaller. Additionally, the
results in Table 7 suggest this better lower upper bound is due to the regularizer. This is an expected
behavior since this is a compressive sensing test, and the regularizer is the mapping that determines
the reconstruction quality (Candès & Wakin, 2008).

Table 7: Performance Results: Best: green, and the worst: red. Column named ”dist” reports
∥x − x∗∥1 where x∗ is the solution returned by APGM for each combination of g(x), and f(x)
mappings. Additionally, column named ”bound” reports Cβk,g(x) +D

√
ϵυf,η(x) in equation (59)

for each combination of g(x), and f(x) mappings.

Tested f(x) functions for APGM
(5) (7) (8) ℓ2-norm

g(x) SNR dist bound dist bound dist bound dist bound

(3)
20dB 0.401 1.330 0.420 1.330 0.442 1.330 0.467 1.330
30dB 0.218 0.453 0.188 0.453 0.217 0.453 0.260 0.453

(9)
20dB 0.588 5.255 0.671 5.255 0.783 5.255 0.941 5.255
30dB 0.374 1.632 0.332 1.632 0.370 1.632 0.426 1.632

(10)
20dB 0.477 1.330 0.516 1.330 0.565 1.330 0.624 1.330
30dB 0.275 0.453 0.240 0.453 0.273 0.453 0.323 0.453

ℓ1-norm
20dB 0.768 5.431 0.959 5.431 1.278 5.431 1.916 5.431
30dB 0.585 1.857 0.541 1.857 0.573 1.857 0.627 1.857

For the second experiment, we use 24 images of size 256 × 256 (i.e. n = 65536) from the Ko-
dak dataset (kod), and we convert them to grayscale. In order to have noisy measurements y in
a compressive sensing setup, we compute the Hadamard transform over these images x (which is
sparse), after we add Cauchy distributed noise with a dispersion σ = 1, and we randomly select
m = 32000 noisy transformed coefficients. Therefore, assuming A is a submatrix of size m× n of
the Hadamard transform, then y = Ax + η where η is the Cauchy distributed noise. Thus, these
experiments are intended to recover x from the noisy measurements y using APGM, where the data
fidelity functions f(x) are the ℓ2-norm, and equation (4)-equation (8), and the regularizers g(x) are
the ℓ1-norm and equation (3), equation (9), equation (10). We point out that the combination of
ℓ2-norm as data fidelity term and ℓ1-norm as regularizer is taken as the convex state-of-the-art. The
number of iterations T of the APGM is fixed to T = 1000. The positive constants α1, α2 of APGM,
and c, α, p of equations (7),(10) are chosen to be the best for each analyzed combination of functions
by cross-validation. The performance for each combination of functions is measured by averaging
the peak-signal-to-noise-ratio (PSNR) in dB over the image set. These results are summarized in
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Table 8. These results suggest that the best result is obtained employing regularizer in equation (3)
and fidelity term in equation (7). The intuition behind the superiority combining these two mapping
comes from the possibility of adjusting the value of p for equation (3) and c, α for equation (7) in
data-dependent manner (Wu & Chen, 2013; Barron, 2019).

Table 8: Performance Results: Best: green, and the worst: red.

Tested f(x) functions for APGM
Regularizer Metric equation (4) equation (5) equation (6) equation (7) equation (8) ℓ2-norm
equation (3) PSNR 20.53 17.48 16.27 22.50 18.88 15.25
equation (9) PSNR 18.03 15.64 14.67 19.52 16.76 13.83
equation (10) PSNR 19.20 16.51 15.43 20.90 17.75 14.50

ℓ1-norm PSNR 17.00 14.87 13.99 18.32 15.87 13.22
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