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1 OVERVIEW
In this supplementary material, we provide more explanation, dis-
cussion, visualization, and experimental results. They are organized
as follows:
• We present additional information and visualization of the
DIME dataset in Sec. 2.
• Implementation details of the capture system, metrics, and
evaluated models are covered in Sec. 3.
• More ablation studies and qualitative results are covered in
Sec. 4.

2 DATASET VISUALIZATION
We present the luminance curves of the video pairs in our DIME
dataset to visualize the exposure difference in the inter-frame and
inter-video dimensions, as shown in Fig. 1.

3 IMPLEMENTATION DETAILS
3.1 Quantitative Metrics
The reference-based PSNR and SSIM measure the difference be-
tween the enhanced results and the ground truth. NIQE estimates
image quality by measuring the deviations from the statistical regu-
larities of natural images. A smaller NIQE indicates a more natural-
istic and perceptually favored quality. Note that Average Luminance
Variance (ALV) measures the difference in the average luminance of
the same object between adjacent frames. A smaller ALV suggests
better temporal consistency in the enhanced video. ALV scores are
calculated by: 𝐴𝐿𝑉 = 1

𝑁

∑𝑁
𝑖=1 (𝐿𝑖 − 𝐿𝑎𝑣𝑔)2, where 𝑁 is the number

of frames of a video, 𝐿𝑖 represents the average luminance value of
the 𝑖-th frame, and 𝐿𝑎𝑣𝑔 denotes the average luminance value of all
frames in the video.

3.2 Alignment Metrics
We evaluate alignment performance and motion activity on two
evaluation metrics, LOE and optical flow, employed for the assess-
ment of our DIME datasets. We provide comprehensive details
regarding the implementation and enhancements of these metrics,
as shown in Algorithm 1 and 2. To mitigate potential interference
from video resolution and noise in the LOE metric, we standardize
the sizes of videos across all datasets and perform LOE calculations
on their grayscale images. Algorithm 2 presents the pseudocode of
optical flow calculation. Similarly, we standardize video sizes across
all datasets and compute optical flow on their grayscale images.
The evaluation of scene motion is conducted through an analysis
of the average magnitude of the optical flow vectors.

3.3 Capture System
For dynamic Low-Quality-Ground-Truth (LQ-GT) video capture, we
need to utilize two DSLR cameras with different settings, as shown
in Fig. 2. Specifically, we configure both cameras in automatic mode

Algorithm 1 Calculate LOE (𝐻,𝑊 ,𝑤𝑖𝑛)

Input: Under-/Over-exposed video I𝑜/𝑢 and normal exposed
video I𝑔𝑡

Output: LOE scores
Params: 𝐻,𝑊 (resized height/width),𝑤𝑖𝑛 (window size)
1: 𝐿𝑂𝐸 ← []
2: for each frame (I𝑜/𝑢𝑡 ,I𝑔𝑡𝑡 ) of (I𝑜/𝑢 ,I𝑔𝑡 ) do
3: I𝑜/𝑢𝑡 ←RGB2GRAY(Resize(I𝑜/𝑢𝑡 , (𝐻,𝑊 )))
4: I𝑔𝑡𝑡 ← RGB2GRAY(Resize(I𝑔𝑡𝑡 , (𝐻,𝑊 )))
5: 𝐿𝑂𝐸𝑡 ← []
6: for 𝑥 ← 0 to𝑤 − 1 step𝑤𝑖𝑛 do
7: for 𝑦 ← 0 to ℎ − 1 step𝑤𝑖𝑛 do
8: 𝑅𝐷 ← 0
9: for𝑤𝑖𝑛𝑥 ← 0 to𝑤𝑖𝑛 − 1 do
10: for𝑤𝑖𝑛𝑦 ← 0 to𝑤𝑖𝑛 − 1 do
11: 𝐸 ← (𝐹𝑙 [𝑥 +𝑤𝑖𝑛𝑥 , 𝑦 +𝑤𝑖𝑛𝑦] > 𝐹𝑙 [𝑥 : 𝑥 +𝑤𝑖𝑛,𝑦 :

𝑦 +𝑤𝑖𝑛] ⊕ (𝐹ℎ [𝑥 +𝑤𝑖𝑛𝑥 , 𝑦 +𝑤𝑖𝑛𝑦] > 𝐹ℎ [𝑥 : 𝑥 +
𝑤𝑖𝑛,𝑦 : 𝑦 +𝑤𝑖𝑛])

12: 𝑅𝐷 ← 𝑅𝐷 + 𝑠𝑢𝑚(𝐸)
13: end for
14: end for
15: 𝐿𝑂𝐸𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑅𝐷/(𝑤𝑖𝑛 ×𝑤𝑖𝑛))
16: end for
17: end for
18: 𝐿𝑂𝐸.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚𝑒𝑎𝑛(𝐿𝑂𝐸𝑡 ))
19: end for
20: return 𝑚𝑒𝑎𝑛(𝐿𝑂𝐸)

Algorithm 2 Calculate Optical Flow (𝐻,𝑊 , 𝑓 )
Input: Random video I
Output: Optical Flow scores
Params: 𝐻,𝑊 (resized height and width), Farneback flow param-

eters
1: Mean normalized flow 𝑓𝑚𝑛 ← 0
2: 𝑐𝑜𝑢𝑛𝑡 ← 0
3: for Adjacent frames (I𝑡 , I𝑡+1) of I do
4: I𝑡 ← RGB2GRAY(Resize(I𝑡 , (𝐻,𝑊 )))
5: I𝑡+1 ← RGB2GRAY(Resize(I𝑡+1, (𝐻,𝑊 )))
6: Flow 𝑓 ← CalcOpticalFlowFarneback(I𝑡 ,I𝑡+1)
7: 𝑓𝑛 ← 𝑛𝑜𝑟𝑚(𝑓 , 𝑎𝑥𝑖𝑠 = −1)
8: 𝑓𝑚𝑛 ← 𝑓𝑚𝑛 +𝑚𝑒𝑎𝑛(𝑓𝑛)
9: 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1
10: end for
11: 𝑓𝑚𝑛 ← 𝑓𝑚𝑛 /𝑐𝑜𝑢𝑛𝑡
12: return 𝑓𝑚𝑛

to ensure adaptive exposure. The ISO range is set between 100
and 12800, while the lens focal length is fixed at 45mm. Shutter
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(a) Underexposure-GT Part1 (b) Underexposure-GT Part2 (c) Overexposure-GT Part1 (d) Overexposure-GT Part2

Figure 1: Lux curves of the under-/over-exposed (dotted line) and normal exposed (solid line) video pairs in the DIME dataset.
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3D Model Box

Figure 2: Visualization of the physical picture of the capture system.

Table 1: Ablation study for investigating the components of
the specific modules.

Alignment
DCN Align × ✓ ×
Fourier Align × × ✓

PSNR/SSIM 19.12/0.8810 19.35/0.8948 20.11/0.9016

Illumination
Under-stream ✓ × ✓

Over-stream × ✓ ✓

PSNR/SSIM 19.47/0.8915 19.59/0.8942 20.11/0.9016

Synthesis
Stage-1 ✓ × ✓

Stage-2 × ✓ ✓

PSNR/SSIM 19.86/0.8972 19.79/0.8906 20.11/0.9016

mode is set to metering plus servo autofocus. The default aperture
range spans from f/4 to f/22. We solve parallax problems by using
a large beam splitter to cover the lens of DSLR cameras. To this
end, we utilize a large and cheap beam splitter with reflectance
coating and antireflection coating, instead of a small and expensive
beam splitter cube. In this way, the two cameras can receive natural
light from the same viewpoint. The size of the beam splitter is
150 × 150 × 0.7(𝑚𝑚3). We adjust the camera to video mode and set
the resolution to 4K.

Upon concluding the video capture process, professional pho-
tographers carefully engage in color grading and rendering for the
creation of the GT videos from LOG format to sRGB format. Then

we apply a two-stage frame alignment strategy to obtain aligned
pairs, and manually remove parts of the videos with large alignment
errors.

3.4 Training Details
The training set contains 47 underexposed videos and 43 overex-
posed videos. In the data preprocessing stage, we first convert the
video into frame-by-frame images, and then resize the resolution to
960 × 512. All frames of each video are organized within the same
folder, and accessed in numpy format.

4 EXPERIMENTAL RESULTS
4.1 Ablation Study
We provide a series of detailed ablation studies to evaluate the
effectiveness of each component in the proposed method, as shown
in Table 1 and Table 2. We evaluate the key modules in our network
by replacing them with other straightforward solutions.

(1) Alignment. We assess the efficiency of the Multi-frame
Fourier Alignment module by replacing it with a standard DCN
alignment. It becomes evident that Fourier alignment surpasses
DCN alignment in performance. The superiority lies in the pre-
cision of offsets calculated by disentangled amplitude alignment
compared to those derived from pixel-level alignment. Additionally,
we present the outcome when removing alignment module, which
exhibits inferior performance compared to our method.
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Table 2: Ablation study on loss terms.

Method L𝑝𝑖𝑥 L𝑡𝑣 L𝑎𝑚𝑝 PSNR SSIM
(a) ✓ 18.95 0.8862
(b) ✓ ✓ 19.47 0.8973
(c) ✓ ✓ ✓ 20.11 0.9016

Table 3: Model efficiency and performance on LLVE tasks.
The results are obtained considering a single frame resolu-
tion of 960 × 512.

Method SDSD [9] DID [3] Efficiency
SDSDNet [9] 24.92/0.73 21.88/0.83 214.4GMacs/97.4ms
VECNet (Ours) 25.39/0.84 24.76/0.90 74.84GMacs/62.9ms

(2) Dual-stream Illumination. When one of the illumination
learning branches is removed from our complete model, the results
correspondingly decline. It confirms the utility of the dual-stream
unit in leveraging complementary illumination information.

(3) Two-stage Synthesis.We further illustrate the results ob-
tained by training each synthesis stage independently. Upon re-
moving any single stage, the performance deteriorates to differing
extents. This serves as evidence that the two-stage synthesis strat-
egy confers beneficial improvements to the model.

(4) Individual losses.We conduct ablation studies to validate
the effectiveness of loss functions, which are proven to be effective,
demonstrating the reasonableness of the supervision manner.

4.2 More Qualitative Results
As shown in Figs. 5, 8, 11, we give more visual comparisons of
methods (MSEC [1], DRBN-ENC [4], ECLNet [6], FECNet [5], and
LACT [2], SMOID [7], SDSD [9], RVRT [8], and DIDNet [3].) from
our DIME dataset, mobile phones, and the Internet. Our method
achieves excellent visual performance in both global illumination
and image details compared to other methods, indicating that our
proposed approaches not only have better performance but also
have excellent generalization ability. We present the enhanced

videos in the zip file, including the results of our proposed method
and the previous methods.

4.3 Model efficiency and performance on
low-light video enhancement tasks

We first conduct experiments on two representative low-light video
enhancement datasets, including SDSD and DID. Then we pro-
vide comparisons about computation costs and running time with
SDSDNet [9] to illustrate the model efficiency. The performance
presented on Table. 3 monitors both the effectiveness and efficiency
of our method.
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(i) RVRT (j) DIDNet (k) VECNet (Ours) (l) GT
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Figure 3: Visual comparisons of overexposure examples.

(g) SMOID (h) SDSD

(i) RVRT (j) DIDNet (k) VECNet (Ours) (l) GT

(a) Input (b) MSEC (c) DRBN-ENC (d) ECLNet

(e) FECNet (f) LACT

Figure 4: Visual comparisons of underexposure examples.

Figure 5: Visual comparison with state-of-the-art methods on DIME dataset.
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Figure 6: Visual comparisons of underexposure examples.

(g) SMOID (h) SDSD

(i) RVRT (j) DIDNet (k) VECNet (Ours)

(a) Input (b) MSEC (c) DRBN-ENC (d) ECLNet

(e) FECNet (f) LACT

Figure 7: Visual comparisons of overexposure examples.

Figure 8: Visual comparison with state-of-the-art methods captured on mobile phones in real-world scenes.
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Figure 9: Visual comparisons of overexposure examples.

(g) SMOID (h) SDSD

(i) RVRT (j) DIDNet (k) VECNet (Ours)

(a) Input (b) MSEC (c) DRBN-ENC (d) ECLNet

(e) FECNet (f) LACT

Figure 10: Visual comparisons of underexposure examples.

Figure 11: Visual comparison with state-of-the-art methods collected from the Internet.
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