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A Auxiliary results

In this section, we present a few supporting results. The first result is a path independence lemma for
perturbations of eigenvectors. It first appeared in [7]; the eigengap condition in the statement of the
Lemma is justified in [1, Lemma 5].

Lemma A.1 (Path independence). Let A ∈ Rd×d be a fixed symmetric matrix and let Â := A+ E,
where E is a symmetric perturbation. Suppose that we can write

Â−A = E0 + E1 = F0 + F1,

where E0, E1, F0, F1 are symmetric matrices, and define the intermediate matrices

Â1 := A+ E0, Â2 = Â1 + E1, Ã1 := A+ F0, Ã2 = Ã1 + F1.

Fix any V ∈ O(d, r) whose columns span the principal r-dimensional invariant subspace of A and
construct the leading eigenvector matrices V̂1, V̂2 ∈ O(d, r) of Â1 and Â2 such that

min
U∈Or

∥∥V̂1U − V
∥∥
F
=
∥∥V̂1 − V

∥∥
F
, min

U∈Or

∥∥V̂2U − V̂1

∥∥
F
=
∥∥V̂2 − V̂1

∥∥
F
.
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Further, let Ṽ1 and Ṽ2 be the leading eigenvector matrices of Ã1 and Ã2, constructed in a similar
fashion. Then, V̂2 and Ṽ2 both span principal invariant subspaces of Â = A+ E. Moreover, they
satisfy

V̂2 = Ṽ2 + T, ∥T∥2 ≲
ε2

δ2
, ε := max {∥E0∥2 , ∥E1∥2 , ∥F0∥2 , ∥F1∥2} ,

as long as A satisfies δr(A) ≥ 4ε.
Lemma A.2. Suppose that U ∈ Od,r satisfies dist(U, V ) ≤ ε < 1/2, where V is the principal
eigenvector matrix of a symmetric matrix A with eigengap δr(A) := λr(A)− λr+1(A) > 0. Then
there exists a symmetric matrix B such that the following hold:

1. ∥A−B∥2 ≤ 8 ∥A∥2 ε and δr(B) = δr(A).

2. U is the principal eigenvector matrix of B.

Proof. We prove Item 1 first. To that end, we can write A = A1 + A2, where A1 := V Σ1V
T and

A2 := V⊥Σ2V
T
⊥ . We consider the following matrix B:

B = UΣ1U
T + U⊥Σ2U

T
⊥, (1)

where UT
⊥U = 0 and U⊥ ∈ Od,d−r. From (1) and the condition Σ1 ≻ Σ2, it follows that U is a

principal eigenvector matrix for B. Moreover, the gap condition on A immediately translates to the
claimed gap condition for B.

It remains to bound the distance between A and B. We write

∥A−B∥2 ≤
∥∥UΣ1U

T −A1

∥∥
2
+
∥∥U⊥Σ2U

T
⊥ −A2

∥∥
2
.

To upper bound the first term on the right-hand side above, we use the spectral projectors PU := UUT

and PU⊥ = I − PU to decompose it into∥∥UΣ1U
T −A1

∥∥
2
≤
∥∥UΣ1U

T − PUA1

∥∥
2
+ ∥PU⊥A1∥2

≤
∥∥UΣ1U

T − PUA1PU

∥∥
2
+ ∥PUA1PU⊥∥2 + ∥PU⊥A1∥2

≤
∥∥Σ1 − UTV Σ1V

TU
∥∥
2
+ 2 ∥Σ1∥2 ∥PU⊥V ∥2

≤
∥∥Σ1(I − V TU)

∥∥
2
+
∥∥(I − V TU)Σ1V

TU
∥∥
2
+ 2 ∥Σ1∥2 ∥PU⊥V ∥2

≤ 2 ∥Σ1∥2 ε+ 4 ∥Σ1∥2 ε
2,

where the last inequality follows from the inequality ∥PU⊥V ∥2 = dist(U, V ) = ε and Lemma A.3.
A similar argument shows that ∥U⊥Σ2U

T
⊥ −A2∥2 ≤ 2 ∥Σ2∥2 ε+ 4 ∥Σ2∥2 ε2. Taking into account

the bound ε < 1/2 completes the proof.

Lemma A.3 (Modified sin θ distance). Let U, V ∈ O(d, r) satisfy dist(U, V ) = α < 1. Then the
following holds: ∥∥I − UTV

∥∥
2
≤ 2α2.

Proof. Let PΣQT be the singular value decomposition of UTV . Recall that [2, Eq. (2.5)]:

Σ = diag (σ1, . . . , σr) ; σi = cos(θi),

where θi ∈ [0, π/2] and ∥sinΘ∥2 = α, following [2, Lemma 2.5]. From our assumptions, it follows
that ∥∥I − UTV

∥∥
2
=
∥∥P (I − Σ)QT

∥∥
2

= ∥I − Σ∥2
= max

i∈[r]
{1− cos(θi)}

= max
i∈[r]

{2 sin2(θi/2)}

≤ 2 max
i∈[r]

sin2(θi)

= 2 ∥sinΘ∥22 ,
with the last inequality following from 0 ≤ sin(θ/2) ≤ sin(θ) for any θ ∈ [0, π/2].
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B Additional proofs

This section includes proofs that were omitted from the main text.

B.1 Proof of Proposition 1

Proof. Define C := {i ∈ [m] | dist(Yi, V ) ≤ ε} with |C| > m
2 . Now, we consider any pair (i, j)

with i, j ∈ C. By the triangle inequality,

dist(Yi, Yj) ≤ dist(Yi, V ) + dist(Yj , V ) ≤ 2ε, for all i, j ∈ C. (2)

Now, fix i⋆ to be any index for which dist(Yi, Yj) ≤ 2ε for at least m/2 other indices j ̸= i⋆ (such an
index always exists because |C| ≥ m

2 + 1). For any such i⋆, there must be another index j satisfying
dist(Yj , V ) ≤ ε and dist(Yj , Yi⋆) ≤ 2ε. Therefore,

dist(Yi⋆ , V ) ≤ dist(Yi⋆ , Yj) + dist(Yj , V ) ≤ 3ε.

B.2 Proof of Lemma 1

Proof. Recall that V is an eigenvector matrix of A that satisfies

min
Z∈Or

∥V − VrefZ∥F = ∥V − Vref∥F .

From Lemma A.2, it follows that the columns of Vref span the principal eigenspace of a matrix B
with nontrivial eigengap that satisfies ∥A−B∥2 ≲ ∥A∥2 ε. We now relate V ideal

i to V corr
i using the

aforementioned path independence result.

To that end, note that V ideal
i is the leading eigenvector matrix of

Ai := A+ (Ai −A) + 0,

that has been maximally aligned with V (in the sense of Frobenius distance). On the other hand, the
Procrustes estimates V corr

i are given by the leading eigenvector matrices of

Ai := A+ (B −A) + (Ai −B),

since Vref is the leading eigenvector of B nearest to V and V corr
i is formed as the leading eigenvector

of Ai nearest to Vref . Applying Lemma A.1 with E0 := Ai − A, E1 = 0, F0 := B − A and
F1 := Ai −B, we obtain

V corr
i = V ideal

i +O
( 1

δ2
max

{
∥Ai −A∥22 , ∥B −A∥22 , ∥Ai −B∥22

})
.

Finally, we note the following upper bound

∥Ai −B∥22 ≲ ∥Ai −A∥22 + ∥A−B∥22 ≲ max
(
∥Ai −A∥22 , ∥A∥22 ε

2
)
,

which concludes the proof.

B.3 Proof of Proposition 3

Proof. Let jcrit be the smallest index for which 2j ≥ max {λlb, ∥ΣG0
∥2}. For a fixed corruption

fraction α and failure probability p, define the events

Ej :=

{∥∥∥θ2j − 1

|G0|
∑
i∈G0

Xi

∥∥∥
2
≤ f(2j ; p, α)

}
, E :=

jhi⋂
j=jcrit

Ej .

From Theorem 3 in the main text and a union bound, it follows that

P (E) ≥ 1−
∑

j∈{jcrit,...,jhi}

P

(∥∥∥θ2j − 1

|G0|
∑
i∈G0

Xi

∥∥∥
2
≥ f(2j ; p, α)

)
≥ 1− (jhi − jcrit) · p

3



≥ 1− 2 log2

(λub

λlb

)
p.

Let us write θ∗ := 1
|G0|

∑
i∈G0

Xi. Conditioned on the event E , for any j, j′ ≥ jcrit we have

∥θ2j − θ2j′∥2 ≤ ∥θ2j − θ∗∥2 + ∥θ2j′ − θ∗∥2 ≤ f(2j ; p, α) + f(2j
′
; p, α).

Consequently, it follows that 2jcrit satisfies the condition of the estimator, and therefore

λ̂ ≤ 2jcrit ≤ 2max {λlb, ∥ΣG0∥2} .

Finally, the desired claim follows since

∥θλ̂ − θ∗∥2 ≤ ∥θλ̂ − θ2jcrit∥2 + ∥θ2jcrit − θ∗∥2
≤ f(λ̂; p, α) + 2f(2jcrit ; p, α)

≤ 3f(2jcrit ; p, α)

≤ 171
√
∥ΣG0

∥2

(
α+

4 log(1/p)

m

)1/2

.

The next Lemma provides an upper bound on the operator norm of the empirical covariance ΣIgood
.

Lemma B.1. Suppose that V̂ref satisfies δr(A) ≥ 8 dist(V̂ref , V ). Then we have

∥ΣIgood
∥
2
≤
∥∥∥∥ 1

|Igood|
∑

i∈Igood

ViV
T
i − V V T

∥∥∥∥
2

+ 2

∥∥∥∥ 1

|Igood|
∑

i∈Igood

Ṽi − V

∥∥∥∥
2

. (3)

Proof. Let µ denote the empirical mean over Igood. We have

µ =
1

|Igood|
∑

i∈Igood

Ṽi,

ΣIgood
=

1

|Igood|
∑

i∈Igood

(Ṽi − µ)(Ṽi − µ)T

=
1

|Igood|
∑

i∈Igood

ṼiṼ
T
i − µµT

=
1

|Igood|
∑

i∈Igood

ṼiṼ
T
i − V V T + V V T − µµT

=
1

|Igood|
∑

i∈Igood

ṼiṼ
T
i − V V T + (V − µ)(V + µ)T,

where V ∈ Od,r spans the principal eigenspace of A and satisfies

min
Z∈Or

∥∥V Z − V̂ref

∥∥
F
=
∥∥V − V̂ref

∥∥
F
.

We now bound the spectral norm of ΣIgood
. Indeed, we have

∥ΣIgood
∥
2
≤
∥∥∥∥ 1

|Igood|
∑

i∈Igood

ṼiṼ
T
i − V V T

∥∥∥∥
2

+ ∥V + µ∥2

∥∥∥∥ 1

|Igood|
∑

i∈Igood

Ṽi − V

∥∥∥∥
2

≤
∥∥∥∥ 1

|Igood|
∑

i∈Igood

ViV
T
i − V V T

∥∥∥∥
2

+ 2

∥∥∥∥ 1

|Igood|
∑

i∈Igood

Ṽi − V

∥∥∥∥
2

,

using the fact that ṼiṼ
T
i = ViV

T
i for all i ∈ Igood.
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B.4 Proof of Theorem 3

In this section, we modify the proof of [6, Theorem 4] to derive guarantees for robust mean estimation
with matrix-valued inputs. We recall some notation used therein: given the set of “good” samples G0

and the initial sample S0 = {1, . . . ,m}, we denote

Sk = {points remaining after k recursive calls to Filter} ,
Gk = Sk ∩G0,

Bk = Sk \G0,

α =
m− |G0|

m
.

(4)

Moreover, given any set S ⊂ [m], we write

ΣS :=
1

|S|
∑
i∈S

(Xi − µS)(Xi − µS)
T, where µS :=

1

|S|
∑
i∈S

Xi. (5)

In our proofs, we frequently employ the total variation distance dTV. For discrete distributions P1,
P2 on a common sample space Ω, dTV is given by

dTV(P1, P2) =
1

2
∥P1 − P2∥1 =

1

2

∑
x∈Ω

|P1(x)− P2(x)| . (6)

Finally, we define the events Ek, where k ∈ N, as below:

Ek :=

{∑
i∈Gk

τi ≥
1

γ

∑
j∈Sk

τj

}
, k = 0, 1, . . . (7)

Our proof essentially traces the proof of [6, Theorem 4] but for the case of matrix-valued inputs to
the Filter algorithm. The first result has already been shown in [6], as its proof is independent of
the shape of the inputs.
Lemma B.2 (See [6, Lemma 6]). Let T := inf {k ∈ N | Ek is true}. Then we have:

P (T ≥ 3(m− |G0|) + 18 log(1/p)) ≤ p. (8)

The remainder of the proof is devoted to showing that, as soon as some Ek is true, Filter will
terminate with a good estimate. Throughout, we condition on the event

E := {T ≤ Tp} , where Tp := 3(m− |G0|) + 18 log(1/p), (9)

which holds with probability at least 1− p.
Theorem B.1. Suppose that α, p and N satisfy

3α+
18 log(1/p)

m
≤ 1

4
. (10)

Then the following hold simultaneously with probability at least 1− p:

1. Filter(S0, ∥ΣG0
∥2) terminates after at most Tp iterations;

2. The output of Filter(S0, ∥ΣG0
∥2), θ∥ΣG0

∥
2
, satisfies

∥∥∥θ∥ΣG0
∥
2
− 1

|G0|
∑
i∈G0

Xi

∥∥∥
2
≤ 18

√
5 ∥ΣG0∥2

(
α+

4 log(1/p)

m

)1/2

. (11)

Remark 1. While we prove the Theorem for the case λub = ∥ΣG0
∥2, a straightforward modification

of the proof shows that when λub ≥ ∥ΣG0
∥2, we have∥∥∥θλub

− 1

|G0|
∑
i∈G0

Xi

∥∥∥
2
≤ 18

√
5λub

(
α+

4 log(1/p)

m

)1/2

.
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Proof of Theorem B.1. We condition on the event E from (9), which holds with probability at least
1− p. This implies that there is some index k ≤ Tp such that∑

i∈Gk

τi ≥
1

γ

∑
j∈Sk

τj .

From Lemma B.7, we obtain that the empirical covariance satisfies ∥ΣSk
∥2 ≤ 18 ∥ΣG0

∥2 , and thus
the algorithm terminates after at most k steps. We have the following cases:

1. The termination condition was first triggered at the kth step. In that case, Lemma B.7 directly
implies the desired inequality.

2. The algorithm terminated at some index ℓ < k. Then it follows from Lemma B.8 that

η := dTV(Unif(Sℓ),Unif(G0)) ≤ 5α+
20 log(1/p)

N
. (12)

At the same time, Lemma B.3 implies that∥∥∥θ∥ΣG0
∥
2
− 1

|G0|
∑
i∈G0

Xi

∥∥∥
2
≤

√
η

1−√
η
·
(
∥ΣSℓ

∥1/22 + ∥ΣG0
∥1/22

)
. (13)

From the termination condition, we obtain that

∥ΣSℓ
∥2 ≤ 18 ∥ΣG0∥2 . (14)

Combining Eqs. (12) to (14) yields the desired bound.

The next few Lemmas are supporting statements used in the proof of Theorem B.1.
Lemma B.3. Let S = {X1, . . . , Xm} where Xi ∈ Rd×r and suppose that P1, P2 are discrete
distributions supported over [m] with dTV(P1, P2) = η. Then the following holds:

∥EP1
[Xi]− EP2

[Xi]∥2 ≤
√
η

1−√
η
·
(
∥ΣP1

∥1/22 + ∥ΣP2
∥1/22

)
, (15)

where the matrices ΣPi
are defined as:

ΣPi
= EX∼Pi

[
(X − EPi

[X])(X − EPi
[X])T

]
.

Proof. Following the proof of [5, Lemma 2.1], we consider a coupling between P1 and P2 such that
P (X = X ′) ≥ 1− η. Denoting ∥X∥L2 :=

√
E [X2], we have

∥EP1 [X]− EP2 [X
′]∥2 = sup

u,v∈B
⟨u, (EP1

[X]− EP2
[X ′])v⟩

= sup
u,v∈B

E [⟨u, (X −X ′)v⟩1 {X ̸= X ′}]

≤ E
[
1 {X ̸= X ′}2

]1/2
· sup
u,v∈B

E
[
⟨u, (X −X ′)v⟩2

]1/2
≤ √

η · sup
u,v∈B

∥⟨u, (X −X ′)v⟩∥L2 . (16)

Let µ1 := EP1
[X] and µ2 = EP2

[X]. Since ∥·∥L2 is a norm, the triangle inequality implies that

sup
u,v∈B

∥⟨u, (X −X ′)v⟩∥L2 = sup
u,v∈B

∥⟨u, (X − µ1 + µ1 − µ2 + µ2 −X ′)v⟩∥L2

≤ sup
u,v∈B

∥⟨u, (X − µ1)v⟩∥L2 + sup
u,v∈B

∥⟨u, (X ′ − µ2)v⟩∥L2

+ sup
u,v∈B

∥⟨u, (µ1 − µ2)v⟩∥L2 .

(17)
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We now upper bound the remaining terms. For the first one, we have

sup
u,v∈B

∥⟨u, (X − µ1)v⟩∥L2 = sup
u,v∈B

E
[
⟨u, (X − µ1)v⟩2

]1/2
= sup

u,v∈B
E[Tr(uT(X − µ1) vv

T︸︷︷︸
⪯Id

(X − µ1)
Tu)]

1/2

≤ sup
u∈B

E
[
Tr
(
uT(X − µ1)(X − µ1)

Tu
)]1/2

=

(
sup
u∈B

〈
u,E

[
(X − µ1)(X − µ1)

T
]
u
〉)1/2

= ∥ΣP1
∥1/22 , (18)

where the penultimate equality uses linearity of the trace operator and the last equality is the definition
of the spectral norm for symmetric positive semidefinite matrices. Similar arguments also yield

sup
u,v∈B

∥⟨u, (X ′ − µ2)v⟩∥L2 ≤ ∥ΣP2
∥1/22 , (19)

sup
u,v∈B

∥⟨u, (µ1 − µ2)v⟩∥L2 ≤ ∥EP1
[X]− EP2

[X ′]∥2 . (20)

Plugging Eqs. (17) to (20) back into Eq. (16) and rearranging yields the expected result:

∥EP1
[X]− EP2

[X ′]∥2 ≤
√
η

1−√
η

(
∥ΣP1

∥1/22 + ∥ΣP2
∥1/22

)
.

Lemma B.4. Let G ⊂ S ⊂ [m]. Moreover, let µS and µG be their respective empirical means, and
let v be the leading eigenvector of ΣS so that the outlier scores satisfy

τi =
〈
v, (Xi − µS)(Xi − µS)

Tv
〉
, ∀i ∈ S.

Moreover, define η := 1− |G|/|S| and fix a γ ∈ (0, 1/η). Then, we have the implication

∥ΣS∥2 ≥ (1− η)2
(

γ

1− γη

)
∥ΣG∥2 =⇒

∑
j∈G

τj ≤
1

γ

∑
i∈S

τi. (21)

Proof. Recall that the (normalized) sum of outlier scores over the set G is given by

1

|G|

〈
v,
∑
i∈G

(Xi − µS)(Xi − µS)
Tv

〉
=

1

|G|

〈
v,
∑
i∈G

(Xi − µG)(Xi − µG)
Tv

〉
+
〈
v, (µS − µG)(µS − µG)

Tv
〉

= ⟨v,ΣGv⟩+
〈
v, (µS − µG)(µS − µG)

Tv
〉
. (22)

We now simplify the second term. Indeed, we have

µS − µG =
1

|S|
∑
i∈G

Xi +
1

|S|
∑

i∈S\G

Xi −
1

|G|
∑
i∈G

Xi

=

(
1− |G|

|S|

)
(µS\G − µG) (23)

For brevity, denote η := |S\G|
|S| . Plugging (23) back into (22), we obtain

1

|G|
∑
j∈G

τj = ⟨v,ΣGv⟩+ η2
〈
v, (µS\G − µG)(µS\G − µG)

Tv
〉

(24)

We now bound the second term in (24). From [3, Lemma 2.4], it follows that

⟨v,ΣSv⟩ = (1− η) ⟨v,ΣGv⟩+ η ⟨v,ΣS\Gv⟩+ η(1− η)
〈
v, (µS\G − µG)(µS\G − µG)

Tv
〉

7



Rearranging and multiplying by η/(1− η) gives

η2
〈
v, (µS\G − µG)(µS\G − µG)

Tv
〉
=

η

1− η
⟨v,ΣSv⟩ − η ⟨v,ΣGv⟩ −

η2

(1− η)
⟨v,ΣS\Gv⟩

≤ η

1− η
⟨v,ΣSv⟩ − η ⟨v,ΣGv⟩ .

Plugging back into Eq. (24) and using the fact that |G| = |S| (1− η), we obtain∑
j∈G

τj ≤ |G| (1− η) ⟨v,ΣGv⟩+
|G| η
1− η

⟨v,ΣSv⟩

≤ |G| (1− η) ∥ΣG∥2 + (|S| − |G|) |S| ∥ΣS∥2 (25)
Finally, replacing |G| = |S| (1− η) in (25) and rearranging, we obtain

∥ΣG∥2 ≤ (γ−1 − η)
∥ΣS∥2
(1− η)2

=⇒
∑
j∈G

τj ≤
1

γ

∑
i∈S

τi.

Lemma B.5. Suppose that (10) is true. Then the following holds for any k ≤ Tp:
|Sk \Gk|

|Sk|
≤ 4α

3
.

Proof. Recall that Bk = Sk \Gk and notice that
|Bk|
|Sk|

=
|Bk|
|S0|

|S0|
|Sk|

≤ |B0|
|S0|

|S0|
|S0| − Tp

= α · 1

1− (3α+ 18 log(1/p)
m )

≤ 4α

3
,

where the first inequality follows from the fact that |Bk| ≤ |B0|.

Lemma B.6. For any integer k, the sets Gk and G0 satisfy

∥ΣGk
∥2 ≤ |G0|

|Gk|
∥ΣG0

∥2 (26)

Proof. We expand the definition of ΣG0
and rewrite:

ΣG0
=

1

|G0|
∑
i∈G0

(Xi − µG0
)(Xi − µG0

)T

=
1

|G0|
∑
i∈Gk

(Xi − µG0
)(Xi − µG0

)T︸ ︷︷ ︸
T1

+
1

|G0|
∑

i∈G0\Gk

(Xi − µG0
)(Xi − µG0

)T

︸ ︷︷ ︸
T2

We now rewrite the first term in the above sum using

T1 =
1

|G0|
∑
i∈Gk

(Xi − µGk
+ µGk

− µG0
)(Xi − µGk

+ µGk
− µG0

)T

=
|Gk|
|G0|

ΣGk
+

|Gk|
|G0|

(
1

|Gk|
∑
i∈Gk

(Xi − µGk
)

)
(µGk

− µG0)
T

+
|Gk|
|G0|

(µGk
− µG0

)

(
1

|Gk|
∑
i∈Gk

Xi − µGk

)T

+
|Gk|
|G0|

(µGk
− µG0

)(µGk
− µG0

)T

=
|Gk|
|G0|

(
ΣGk

+ (µGk
− µG0

)(µGk
− µG0

)T
)

Letting v ∈ Sd−1 and using the fact that T2 is positive semidefinite, we arrive at

⟨v,ΣG0
v⟩ = |Gk|

|G0|

(
⟨v,ΣGk

v⟩+
∥∥(µGk

− µG0
)Tv
∥∥2)+ ⟨v, T2v⟩ ≥

|Gk|
|G0|

⟨v,ΣGk
v⟩ (27)

Finally, taking suprema over both sides yields the desired inequality.
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Lemma B.7. Suppose that (10) is true and that the following inequality holds for some index k ≤ Tp:∑
i∈Gk

τi ≥
1

γ

∑
j∈Sk

τj . (28)

Then the empirical means satisfy

∥EUnif(G0) [X]− EUnif(Sk) [X]∥
2
≤ 18

(
5α+

20 log(1/p)

m

)1/2

∥ΣG0∥
1/2
2 .

Proof. Let P1 := Unif(G0) and P2 := Unif(Sk). From Lemma B.3, it follows that

∥EP1
[X]− EP2

[X]∥2 ≤
√
dTV(P1, P2)

1−
√
dTV(P1, P2)

·
(
∥ΣG0

∥1/22 + ∥ΣGk
∥1/22

)
. (29)

Since (28) is the reverse of (21), we obtain

∥ΣSk
∥2 ≤ (1− η)2

γ

1− γη
∥ΣGk

∥2

≤ 3

1− 6α
∥ΣGk

∥2

≤ 6 · |G0|
|Gk|

∥ΣG0
∥2 ,

where the first inequality follows from the contrapositive of Lemma B.4, the second inequality from
γ = 3 and Lemma B.5, and the last inequality follows by our assumption on α. Now, let K ≤ Tp be
the number of samples in G0 that were removed by the algorithm. We have

|G0|
|Gk|

=
m− |B0|

m− |B0| −K
≤ m− |B0|

m− |B0| − Tp
≤ m− |B0|

m− 18 log(1/p)− 4 |B0|
=

1− α

1− 4α− 18 log(1/p)
m

From (10), we additionally have that

1− (4α+
18 log(1/p)

m
) ≥ 1− 4

3

(
3α+

18 log(1/p)

m

)
≥ 1

3
=⇒ ∥ΣSk

∥2 ≤ 18 ∥ΣG0
∥2 .

Substituting the above into (29) and using Lemma B.8 yields the desired bound:

∥EP1
[X]− EP2

[X]∥2 ≤

(
5α+ 20 log(1/p)

m

)1/2
1−

(
5α+ 20 log(1/p)

m

)1/2 (∥ΣG0
∥1/22 +

√
18 ∥ΣG0

∥1/22

)

≤ 18

(
5α+

20 log(1/p)

m

)1/2

∥ΣG0∥
1/2
2 .

Lemma B.8. Suppose k ≤ Tp and (10) holds. Then we have that

dTV(Unif(Sk),Unif(G0)) ≤ 5α+
20 log(1/p)

m
. (30)

Proof. We let P1 := Unif(Sk), P2 := Unif(G0) and P3 := Unif(Gk), and write K ≤ k ≤ Tp for
the number of samples originally in G0 that were removed by the Filter algorithm by the kth step.
From the triangle inequality, it follows that

dTV(P1, P2) ≤ dTV(P1, P3) + dTV(P2, P3)

=
|Sk| − |Gk|

|Sk|
+

|G0| − |Gk|
|G0|

=
m− k − (m− |B0| −K)

m− k
+

K

m− |B0|

9



=
|B0|+ (K − k)

m− k
+

K

m− |B0|

≤ |B0|
m− k

+
Tp

m− |B0|

≤ |B0|
m− Tp

+
Tp

m− |B0|
,

where the second line follows from Lemma B.9 and the last two inequalities follow from K ≤ m and
m ≤ Tp. Finally, using Lemma B.2 and Eq. (10), we obtain

|B0|
m− Tp

+
Tp

m− |B0|
=

α

1− Tp

m

+
Tp

m

1− α

≤ α

1− 18 log(1/p)
m − 3α

+
18 log(1/p)

m + 3α

1− α

≤ 4α

3
+

18 log(1/p)
m + 3α

1− α

≤ 4α

3
+

18 log(1/p)
m + 3α

1− 1
12

≤ 5α+
20 log(1/p)

m
.

Lemma B.9. Consider a pair of discrete sets S, S′ such that S′ ⊂ S. We have:

dTV(Unif(S),Unif(S′)) =
|S| − |S′|

|S|
. (31)

Proof. Using the fact that dTV(p, q) =
1
2 ∥p− q∥1, we have:

dTV(Unif(S),Unif(S′)) =
1

2

( ∑
x∈S∩S′

∣∣∣∣ 1|S| − 1

|S′|

∣∣∣∣+ ∑
x∈S\S′

1

|S|

)

=
1

2

(
1− |S′|

|S|
+

|S| − |S′|
|S|

)
= 1− |S′|

|S|
.

B.5 Proof of Theorem 4

We now present the proof of the main theorem on distributed PCA. We first recall that

Ai =
1

n

n∑
j=1

X
(i)
j (X

(i)
j )T; i ∈ Igood,

where X
(i)
j

iid∼ P , and that the responses Vi ∈ Od,r span the leading r-dimensional eigenspace of
Ai. Under this model, the local errors Ei := Ai − A as well as the error of the empirical average
over the inliers are bounded with high probability. We will condition on the following events for the
remainder of this section:

E1 =

{
max
i∈Igood

∥Ai −A∥2 ≤ min

{
δ

8
, C1 ∥A∥2

√
r⋆ + log(m/p)

n

}}
,

E2 =

{∥∥∥∥ 1

|Igood|
∑

i∈Igood

Ai −A

∥∥∥∥
2

≤ C2 ∥A∥2

√
r⋆ + log(n)

|Igood|n

}
.

(32)
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Lemma B.10. Suppose that n ≳ κ2 · (r⋆ + log(mn/p)). Then the following hold:

P (E1) ≤ p, P (E2) ≤
2

n
. (33)

Proof. The bound on P (E2) in Eq. (33) follows from an application of [8, Exercise 9.2.5] and the
assumed lower bound on n. On the other hand, the same result yields

P
(
∥Ai −A∥2 ≥ C1 ∥A∥2

(√
r⋆ + log(m/p)

n
+

r⋆ + log(m/p)

n

))
≤ p

m
,

for any fixed i ∈ Igood. From the lower bound on n, it follows that

r⋆ + log(m/p)

n
≤
√

r⋆ + log(m/p)

n
and C1 ∥A∥2

√
r⋆ + log(m/p)

n
<

δ

8
.

Finally, taking a union bound over Igood recovers the bound on P (E1).

An immediate corollary is a bound on the error of RobustReferenceEstimator.
Corollary B.1. There is a universal constant Cref such that the output of Alg. 2 satisfies

dist(V̂ref , V ) ≤ Crefκ ·
√

r⋆ + log(m/p)

n
.

Proof. From the bound α < 1
2 and the conditioning on E1, we deduce the existence of an index set

S′ such that |S′| > m
2 , and

dist(V̂i, V ) ≤
∥Ai −A∥2

δ − δ
4

≤
2C1 ∥A∥2

δ

√
r⋆ + log(m/p)

n
, for all i ∈ S′,

where the first bound on dist(V̂i, V ) follows from the Davis-Kahan theorem [2, Theorem 2.7] and
the fact that ∥Ai −A∥2 ≤ δ

8 for any i /∈ Ibad. From Proposition 1 in the main text, it follows that

dist(V̂ref , V ) ≤ 6C1︸︷︷︸
Cref

∥A∥2
δ

√
r⋆ + log(m/p)

n
.

The next Proposition instantiates the bounds of Lemma B.1 for for the case of distributed PCA.
Proposition B.1. In the setting of Lemma B.1, the matrix ΣIgood

satisfies

∥ΣIgood
∥
2
≲ κ

√
r(r⋆ + log(n))

(1− α)mn
+ κ2 ·

√
r(r⋆ + log(n))

n
+ κ4 · r⋆ + log(m/p)

n
. (34)

Proof. From Lemma B.1, it follows that

∥ΣIgood
∥
2
≤
∥∥∥∥ 1

|Igood|
∑

i∈Igood

ViV
T
i − V V T

∥∥∥∥
2

+ 2 ·
∥∥∥∥ 1

|Igood|
∑

i∈Igood

Ṽi − V

∥∥∥∥
2

From Proposition 2 in the main text and conditioning E1 and E2, we have∥∥∥∥ 1

|Igood|
∑

i∈Igood

Ṽi − V

∥∥∥∥
2

≲
1

δ

∥∥∥∥ 1

|Igood|
∑

i∈Igood

Ai −A

∥∥∥∥
2

+

(
∥A∥2
δ

)2

max

(
C2

1 , C
2
ref

(
∥A∥2
δ

)2)
· r⋆ + log(m/p)

n

≤ C2κ

√
r⋆ + log(n)

(1− α)mn
+ κ2 max (C2

1 , C
2
refκ

2) · r⋆ + log(m/p)

n
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≲ κ

√
r⋆ + log(n)

(1− α)mn
+ κ4 · r⋆ + log(m/p)

n
. (35)

On the other hand, using [4, Theorem 2], we have that∥∥∥∥ 1

Igood

∑
i∈Igood

ViV
T
i − V V T

∥∥∥∥
2

≲ κ

√
r(r⋆ + log(n))

(1− α)mn
+ κ2

√
r(r⋆ + log(n))

n
.

Putting all the bounds together yields (34).

We now invoke Proposition 3 and recall that ϱ is defined as

ϱ := κ

√
r(r⋆ + log(n))

(1− α)mn
+ κ2 ·

√
r(r⋆ + log(n))

n
+ κ4 · r⋆ + log(m/p)

n
(36)

From that and Proposition B.1, it follows that Alg. 5 from the main text invoked with λlb = ω :=√
1/mn and λub = 6 outputs an estimate satisfying∥∥∥V̄ − 1

|Igood|
∑

i∈Igood

Ṽi

∥∥∥
2
≲
√
max {ϱ, ω} ·

(
α+

log(1/p)

m

)1/2

(37)

=
√
ϱ ·
(
α+

log(1/p)

m

)1/2

(38)

with failure probability at most 2 log2(6/ω)p. Finally, from Eqs. (35) and (38) it follows that

∥V̄ − V ∥2 ≤
∥∥∥V̄ − 1

|Igood|
∑

i∈Igood

Ṽi

∥∥∥
2
+
∥∥∥ 1

|Igood|
∑

i∈Igood

Ṽi − V
∥∥∥
2

≲
√
ϱ

(
α+

log(1/p)

m

)1/2

+ κ

√
r(r⋆ + log(n))

(1− α)mn
+ κ4

√
r(r⋆ + log(m/p))

n
.

In particular, the success probability is at least (given that ω is set as
√

1/mn):

1− p− 2

n
− 2 log2

( 6
ω

)
p ≥ 1− 2

n
− 2 log2(6mn)p.

Letting p := p′

2 log2(6mn) and relabeling p′ → p yields the result.

C Experiment details

The numerical experiments in the main text were coded in Julia and run on a machine with Intel(R)
Core(TM) i7-7700 CPU, 16GB of RAM and a GNU/Linux environment. The code is attached as
part of the supplementary material and consists of a library called RobustDistributedPCA.jl and
a subfolder scripts/ that contains the scripts reproducing the experiments in the manuscript. We
refer the reader to the included README.md file for installation and usage instructions.

Notes on implementation. Our implementations of the Filter and AdaptiveFilter algorithms
deviate from the theory in the following ways:

1. In Filter, we remove the point with the largest outlier score by default:

Z := argmax
j∈S

τj .

The randomized selection can be enabled by passing randomized = true to the appropri-
ate function. Please see the attached README.md file for details.
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2. The error proxy f(λ; p, α) we use in AdaptiveFilter has been simplified to

f(λ; p, α) ≡ f(λ;α) =
√
λα.

The reason is twofold: on one hand, we suspect that many of the constants involved in the
original definition of f are artifacts of our proof and are much lower in practice; on the other
hand, since the default behavior of Filter is not randomized, the term owing to failure
probability in f can be removed.

3. Finally, we change the stopping condition of AdaptiveFilter to λ ≤ λub in order to
simplify constants. As the value of λub is determined adaptively, this does not affect the
output of the algorithm.
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