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A BROADER IMPACT

Considering that this research exclusively involves the repurposing of existing open-source databases,
the associated risks are limited. However, it is important to acknowledge that all datasets utilized
in this study may be influenced by biases inherent in the original data collection processes, such as
those related to gender, age, or race. Unfortunately, identifying the sources of potential biases is
challenging because the data have been appropriately pseudonymized. Moreover, records such as
electrocardiograms and echocardiograms cannot be easily linked to specific demographic attributes
such as age, ethnicity, or gender by non-medical experts. Nonetheless, our work discloses certain
metadata of the datasets, including geographical origin, gender distribution, and age distribution. This
exposure may aid in identifying underlying geographical biases, which are anticipated in real-world
federated learning scenarios.

While prioritizing simplicity and utility, the current benchmark does not include privacy metrics.
Nevertheless, privacy remains critically important in the cardiovascular disease domain, and we
strongly encourage the research community to address these considerations. Thanks to the modularity
of FedCVD, we can add privacy components easily. Therefore, we anticipate that FedCVD will
address privacy concerns related to federated learning within the cardiovascular disease domain in
the future.

B DATASETS REPOSITORY AND MAINTENANCE PLANE

B.1 DATASET REPOSITORY.

The code is now available at https://anonymous.4open.science/r/ZYNTMBB-8848.
Considering licenses, users need to download the data manually through the original dataset link.

B.2 MAINTENANCE PLAN

We shall adhere to a maintenance plan to uphold the integrity of the codebase and ensure the confor-
mity of supplied datasets to requisite standards. In particular, this maintenance plan encompasses:

• Fixing bugs affecting the correctness of our code, whether identified by the community or
ourselves;

• Introducing additional variants of federated learning techniques, including alternative meth-
ods within the scope of cross-silo federated learning and federated semi-supervised learning
methodologies;

• Adding new functional modules, such as privacy protection components.

• Regarding datasets, reviewing potential updates of the datasets referenced in the FedCVD,
including but not limited to introducing new tasks or modalities;

C FED-ECG

C.1 DESCRIPTION

Fed-ECG consists of four datasets: SPH, PTB-XL, SXPH, and G12EC. The order of leads of each
dataset is I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6. The overview of Fed-ECG is shown in
Table 5. Table 6 shows demographics information for four datasets in Fed-ECG.

SPH. The original Shandong Provincial Hospital (SPH) database contains 25,770 12-lead ECG
records from 24,666 patients, which were acquired from Shandong Provincial Hospital between
2019/08 and 2020/08. The record length is between 10 and 60 seconds. The sampling frequency
is 500 Hz. All ECG records are in full compliance with the AHA standard, which aims for the
standardization and interpretation of the electrocardiogram and consists of 44 primary statements
and 15 modifiers as per the standard. 46.04% records in this dataset contain ECG abnormalities.
Moreover, 14.45% records have multiple diagnostic statements.
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Table 5: Overview of the datasets, tasks, metrics and baseline models in FedCVD.
Dataset Fed-ECG Fed-ECHO
Task Type Multi-label Classification 2D Segmentation
Input 12-lead ECG Signal Echocardiogram
Prediction (y) Diagnostic Statement Cardiac Structure Mask
Data source SPH PTB-XL SXPH G12EC CAMUS ECHONET-DYNAMIC HMC-QU
Original Patient Size 24,666 18,885 45,152 UNKNOWN 500 10,030 109
Original Sample Size 25,770 21,837 45,152 10,344 1000 20,060 2,349
Preprocessing Label Alignment Resizing and Label Alignment
Patient Size 21,530 16,699 36,272 UNKNOWN 500 10,024 109
Sample Size 22,425 19,019 36,272 6,205 1000 20,048 2,349
Model ResNet U-net
Metrics Micro F1 / mAP DICE / Hausdorff distance
Input Dimension 12 × 5000 112 × 112

PTB-XL. The original PTB-XL database contains 21,837 12-lead ECG records from 18,885
patients of 10 seconds length at the Physikalisch Technische Bundesanstalt (PTB) between October
1989 and June 1996. The original records are resampled to both 100 Hz and 500 Hz. For consistency,
we only use the records whose frequency is 500 Hz. Each data is annotated by up to two cardiologists
with the SCP-ECG standard.

SXPH. This database contains 12-lead ECGs of 45,152 patients with a 500 Hz sampling rate
under the auspices of Chapman University, Shaoxing People’s Hospital (Shaoxing Hospital Zhejiang
University School of Medicine), and Ningbo First Hospital. The record length is 10 seconds. All
records are labeled by professional experts with the SNOMED-CT standard.

G12EC. This Georgia 12-lead ECG Challenge (G12EC) database is provided by the Phys-
ioNet/Computing in Cardiology Challenge 2020. Only 10,344 training data from this database
are open to the public. The record length is not longer than 10 seconds with a sample frequency of
500 Hz. All records are labeled with the SNOMED-CT standard as well.

Table 6: Demographics information for Fed-ECG.
Client Sex Dataset size Age Age Range

Client1 Female 9,502 48.73 ± 15.67 18 - 92
Male 12,923 50.35 ± 15.49 18 - 95

Client2 Female 8,930 59.80 ± 18.42 3 - 89
Male 10,089 58.40 ± 15.66 2 - 89

Client3 Female 14,830 58.36 ± 20.11 4 - 89
Male 21,442 60.28 ± 19.10 4 - 89

Client4 Female 2,668 61.37 ± 16.51 20 - 89
Male 3,537 61.35 ± 15.04 14 - 89

C.2 LICENSE AND ETHICS

All four databases are open-access. The SPH database is open access at Figshare, while the rest
databases are open access at PhysioNet under a Creative Commons Attribution 4.0 International
Public License.

The PTB-XL database was supported by the Bundesministerium für Bildung und Forschung (BMBF)
through the Berlin Big Data Center under Grant 01IS14013A and the Berlin Center for Machine
Learning under Grant 01IS18037I and by the EMPIR project 18HLT07 MedalCare. The EMPIR
initiative is cofunded by the European Union’s Horizon 2020 research and innovation program and
the EMPIR Participating States.

The institutional review board of Shaoxing People’s Hospital and Ningbo First Hospital of Zhejiang
University approved the study of the SXPH database, granted the waiver application to obtain
informed consent, and allowed the data to be shared publicly after de-identification. The requirement
for patient consent was waived.
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Table 7: Label relationship between original label and ours.
Original Labelours SPH PTB-XL SXPH G12EC

NORM (Normal) Normal Normal - -
STACH (Sinus tachycardia) Sinus tachycardia Sinus tachycardia Sinus tachycardia 427084000
SBRAD (Sinus bradycardia) Sinus bradycardia Sinus bradycardia Sinus bradycardia 426177001
SARRH (Sinus arrhythmia) Sinus arrhythmia Sinus arrhythmia - 427393009

PAC (Atrial premature complex(es)) Atrial premature complex(es) Atrial premature complex - -
AFIB (Atrial fibrillation) Atrial fibrillation Atrial fibrillation Atrial fibrillation 164889003

AFLT (Atrial flutter) Atrial flutter Atrial flutter Atrial flutter 164890007
SVTAC (Supraventricular tachycardia) - Supraventricular tachycardia Supraventricular tachycardia 426761007
PVC (Ventricular premature complex) Ventricular premature complex(es) Ventricular premature complex - 164884008

1AVB (First degree AV block) - First degree AV block 1 degree atrioventricular block 270492004
Second-degree AV block, Mobitz type I (Wenckebach) 2 degree atrioventricular block(Type one) 54016002
Second-degree AV block, Mobitz type II 2 degree atrioventricular block(Type two) 28189009
2:1 AV block 164903001
AV block, varying conduction 195042002

2AVB (Second degree AV block)

AV block, advanced (high-grade)

Second degree AV block
2 degree atrioventricular block

284941000119107
3AVB (Third degree AV block) AV block, complete (third-degree) Third degree AV block 3 degree atrioventricular block 27885002

Left anterior fascicular block Left anterior fascicular block 445118002
Left posterior fascicular block Left posterior fascicular block 445211001LBBB (Left bundle branch block)
Left bundle-branch block Complete left bundle branch block

Left bundle branch block
164909002

Incomplete right bundle-branch block Incomplete right bundle branch block 713426002
59118001RBBB (Right bundle branch block) Right bundle-branch block Complete right bundle branch block Right bundle branch block
164907000

LAO/LAE (Left atrial overload/enlargement) Left atrial enlargement Left atrial overload/enlargement - 67741000119109
LVH (Left ventricular hypertrophy) Left ventricular hypertrophy Left ventricular hypertrophy - 164873001

RVH (Right ventricular hypertrophy) Right ventricular hypertrophy Right ventricular hypertrophy - -
AMI (Anterior myocardial infarction) Anterior MI Anterior myocardial infarction - -
IMI (Inferior myocardial infarction) Inferior MI Inferior myocardial infarction - -

ASMI (Anteroseptal myocardial infarction) Anteroseptal MI Anteroseptal myocardial infarction - -

C.3 DOWNLOAD AND PREPROCESSING

C.3.1 DOWNLOAD

The four datasets can be downloaded using the URLs below:

1. SPH: https://springernature.figshare.com/collections/A_
large-scale_multi-label_12-lead_electrocardiogram_database_
with_standardized_diagnostic_statements/5779802/1

2. PTB-XL: https://physionet.org/content/ptb-xl/1.0.3/
3. SXPH: https://physionet.org/content/ecg-arrhythmia/1.0.0/
4. G12EC: https://physionet.org/content/challenge-2020/1.0.2/

C.3.2 PREPROCESSING

Raw 12-lead ECG signals have varying sequence lengths and raw 12-lead ECG signals have varying
sequence lengths and annotated standards which must be standardized before FL training. Therefore,
we first set a signal length to 10 seconds. We pad the signal with edge value at the edge for those
whose length is shorter than 10 seconds and cut off the signal at 10 seconds for those whose length is
longer than 10 seconds. Next, we only save the records whose label occurs in at least two databases.
Finally, we align the labels of records in different databases. The relationship between the original
label and our label is shown in Table7.

C.4 BASELINE, LOSS FUNCTION AND EVALUATION

Baseline Model. We implement a ResNet1d model with 34 layers. The final layer output is passed
through a sigmoid function to encode the probability that each label corresponds to one 12-lead ECG
signal.

Loss function. The model was directly trained for the Binary CrossEntropy Loss (BCELoss),
defined as:

BCE(y, ŷ) = −[

n∑
i=1

yi log(ŷi) +

n∑
i=1

(1− yi) log(1− ŷi)] (1)

Evaluation Metrics. In multi-label classification for Fed-ECG, the micro F1 score is used as the
main metric to evaluate the performance of the model. Given N labels, the micro-precision (Pmicro)
and micro-recall (Rmicro) are calculated as Pmicro =

∑N
i=1 TPi∑N

i=1(TPi+FPi)
and Rmicro =

∑N
i=1 TPi∑N

i=1(TPi+FNi)
,
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where TPi is the number of true positives for label i,FPi is the number of false positives for label
i,FNi is the number of false negatives for label i. The micro F1 score (F1micro) is then calculated as:

F1micro =
2 · Pmicro ·Rmicro

Pmicro +Rmicro
(2)

For Fed-ECG’s Multi-Label Classification task, the Mean Average Precision (mAP) is adopted to
measure the classification performance across all labels (including long-tailed labels), calculated by
averaging the average precision (AP) for each label, defined as:

mAP =
1

L

L∑
i=1

n∑
k=1

Pi(k)∆ri(k) (3)

where L is the total number of labels, and APi is the average precision for the i-th label, Pi(k) is the
precision for label i at the k-th threshold, and ∆ri(k) is the change in its recall at the k-th threshold.

C.5 TRAINING DETAIL

Optimization parameters. We optimize the ResNet1d using SGD optimizer, with a batch size of
32. We train our model for 50 epochs on one NVIDIA A100-PCIE-40GB.

Hyperparameter Search For centralized and local model training, we first conduct a search for
optimal learning rates from the set {1e-5, 1e-4, 1e-3, 1e-2, 1e-1} during centralized model training.
The learning rate that yields the best micro-F1 score is then used for local model training. For the
federated learning strategies, we employ the following hyperparameter grid:

• For clients’ learning rates (all strategies): {1e-5, 1e-4, 1e-3, 1e-2, 1e-1}.
• For server size learning rate (Scaffold strategy only): {1e-2, 1e-1, 1.0}.
• For FedProx and Ditto strategies, the parameter µ is selected from {1e-2, 1e-1, 1.0}.
• For FedInit, the parameter β is chosen from {1e-1, 1e-2, 1e-3}.
• For FedSM, the parameters γ and λ are set to values from {0, 0.1, 0.7, 0.9} and {0.1, 0.3,

0.5, 0.7, 0.9}, respectively.
• For FedALA, the parameters layer index, η, threshold, and num per loss are fixed at 1, 1.0,

0.1, and 10, respectively, while rand percent is selected from {5, 50, 80}.

Table 8: Hyperparameters used for the Fed-ECG.
Fed-ECG

Methods learning rate optimizer learning rate server mu beta lambda gamma rand percent
Central. 0.1 torch.optim.SGD - - - - - -
FedAvg 0.1 torch.optim.SGD - - - - - -
FedProx 0.1 torch.optim.SGD - 0.01 - - - -
Scaffold 0.1 torch.optim.SGD 1.0 - - - - -
FedInit 0.1 torch.optim.SGD 1.0 - 0.01 - - -
Ditto 0.1 torch.optim.SGD - 0.01 - - - -

FedSM 0.1 torch.optim.SGD 1.0 - - 0.1 0 -
FedALA 0.1 torch.optim.SGD 1.0 - - - - 80

Non-IID partition. For the non-IID partition, we first pool the training data from the four clients.
Then, we cluster the samples into 10 categories based on the cosine similarity and order them
according to the number of samples contained in each category. Next, the sorted samples are divided
into 32 shards. finally, 8 random shards are distributed to one client. The label distribution of each
client with the non-IID partition is shown in Figure 5.

C.6 SUPPLEMENTARY EXPERIMENT RESULTS

We provide additional evaluation metrics here. Table 9 presents an extensive array of evaluation
metrics for various federated learning approaches applied to Fed-ECG. The Micro F1-Score (Mi-F1)
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Figure 5: Label non-IID of the Fed-ECG dataset with the artificially non-IID partition, shown as the
variation in the number of each label (right axis) across different clients (left axis).

Table 9: The performance of different FL methods on Fed-ECG, with Mi-F1, mAP, and HL represent-
ing Micro F1-Score, mean Average Precision score, and Hamming Loss, respectively. All metrics are
present in percentage (%). The best results for each configuration are highlighted in bold, while the
second-best results are underlined.

LOCAL GLOBAL
Methods Client1 Client2 Client3 Client4

Mi-F1↑ mAP↑ HL↓ Mi-F1↑ mAP↑ HL↓ Mi-F1↑ mAP↑ HL↓ Mi-F1↑ mAP↑ HL↓ Mi-F1↑ mAP↑ HL↓

Client1 85.8
±1.9

58.1
±2.6

1.5
± 0.2

52.7
±3.4

37.8
±2.2

5.8
± 0.4

61.5
±1.2

19.8
±1.2

4.4
± 0.1

49.8
±4.2

26.7
±3.0

6.4
± 0.6

64.3
±2.1

32.3
±2.0

4.1
± 0.2

Client2 69.9
±50.0

38.9
±30.0

3.2
± 0.1

76.8
±90.0

55.7
±50.0

3.1
± 0.1

26.3
±80.0

22.7
±30.0

9.0
± 0.2

42.2
±80.0

31.6
±60.0

8.1
± 0.1

50.4
±30.0

35.9
±70.0

6.1
± 0.1

Client3 22.7
±0.2

29.8
±0.7

8.2
± 0.0

17.0
±0.4

27.2
±0.3

10.3
± 0.1

88.1
±0.2

37.7
±0.4

1.3
± 0.0

56.9
±0.4

29.4
±0.6

5.4
± 0.1

51.5
±0.2

32.7
±0.2

5.5
± 0.0

Client4 23.7
±2.0

31.7
±2.7

8.4
± 0.9

24.7
±3.3

30.5
±1.5

10.1
± 1.2

61.6
±5.5

25.3
±2.1

5.0
± 1.2

72.3
±10.2

38.5
±2.8

4.1
± 1.8

44.7
±4.3

29.3
±2.5

7.0
± 1.1

FedAvg 69.0
±10.1

58.5
±1.2

3.4
± 1.1

50.3
±5.3

54.4
±0.5

6.2
± 0.7

77.6
±0.7

37.2
±0.3

2.5
± 0.1

66.3
±0.9

39.5
±0.5

4.2
± 0.1

67.9
±3.8

50.8
±0.4

3.7
± 0.5

FedProx 74.0
±7.5

60.3
±2.9

2.9
± 1.0

55.6
±2.7

56.4
±0.6

5.5
± 0.5

73.2
±1.0

36.0
±0.8

3.0
± 0.1

70.2
±2.3

43.8
±1.8

3.8
± 0.3

68.8
±2.6

52.3
±0.9

3.6
± 0.4

Scaffold 77.5
±2.6

58.0
±1.2

2.3
± 0.2

56.9
±1.7

55.9
±0.7

5.2
± 0.2

73.3
±1.0

36.2
±0.6

3.0
± 0.1

70.7
±2.9

42.7
±1.1

3.7
± 0.3

70.1
±0.8

52.1
±0.7

3.4
± 0.1

FedInit 73.0
± 6.6

58.2
± 0.7

3.1
± 1.0

54.1
± 5.2

55.6
± 1.3

5.9
± 0.9

73.5
± 0.5

36.6
± 0.1

3.0
± 0.1

67.8
± 2.0

41.5
± 1.0

4.1
± 0.3

68.1
± 3.0

51.5
± 0.9

3.8
± 0.5

Ditto 82.8
±4.4

63.1
±4.2

1.8
± 0.4

74.8
±1.4

58.3
±0.6

3.5
± 0.2

86.5
±1.5

38.1
±0.6

1.5
± 0.2

73.4
±6.7

42.2
±4.0

3.6
± 0.9

68.1
±2.9

48.7
±1.4

3.6
± 0.3

FedSM 77.2
± 7.2

58.8
± 1.3

2.3
± 0.6

59.1
± 4.5

56.4
± 1.4

5.1
± 0.5

69.8
± 0.8

35.0
± 0.5

3.5
± 0.1

67.7
± 3.6

42.9
± 2.4

4.1
± 0.4

68.9
± 2.5

51.2
± 0.7

3.6
± 0.3

FedALA 84.4
± 4.0

62.0
± 7.0

1.6
± 0.4

71.7
± 5.7

57.1
± 2.2

3.8
± 0.6

88.2
± 0.1

37.4
± 0.2

1.3
± 0.0

66.7
± 5.9

41.2
± 2.3

4.4
± 0.7

67.8
± 1.9

50.8
± 1.3

3.7
± 0.3

Central. 84.9
±0.5

54.8
±0.5

1.6
± 0.1

71.4
±5.0

55.2
±2.9

3.8
± 0.6

84.1
±1.6

36.5
±1.1

1.7
± 0.2

72.2
±3.7

41.5
±1.3

3.6
± 0.3

80.0
±2.1

63.2
±2.8

2.3
± 0.2

and Hamming Loss (HL) serve as indicators of the overall performance, given their insensitivity to
long-tail distributions. In contrast, the mean Average Precision score (mAP) provides insight into the
average performance across individual labels. In addition, Figure 6 presents the evaluation metrics
for each label, encompassing F1 score, precision, and recall, which more clearly demonstrates the
impact of the long-tail distribution on each label.

D FED-ECHO

D.1 DESCRIPTION

Fed-ECHO consists of three datasets: CAMUS, ECHONET-DYNAMIC, and HMC-QU. The
overview of Fed-ECHO is shown in Table 5.
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(b) Precision-Score for each label
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(c) Recall-Score for each label

Figure 6: Evaluation metrics for each label on Fed-ECG among different FL methods.
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CAMUS. This database consists of clinical exams from 500 patients, acquired at the University
Hospital of St Etienne (France). All images are labeled with three areas: endocardium of the left
ventricle (LVEndo), epicardium of the left ventricle (LVEpi), and left atrium wall (LA). The image
size varies from 584× 354 to 1945× 1181.

ECHONET-DYNAMIC. This database contains 10,0230 echocardiogram videos where two frames
are annotated with only LVEndo area. All frames are resized to 112× 112.

HMC-QU. This database contains 109 echocardiogram videos collected at the Hamad Medical
Corporation Hospital in Qatar. The frames of one cardiac cycle in each video are annotated with
LVEpi area. The video frame size varies from 422× 636 to 768× 1024 while all labels are resized
to 224× 224.

D.2 LICENSE AND ETHICS

Both CAMUS and HMC-QU datasets are open-access. HMC-QU database requires the user to have a
Kaggle account, while the ECHONET-DYNAMIC database requires the user to have a Stanford AIMI
account and to accept its agreement. It is licensed under the Stanford University Dataset Research
Use Agreement.

D.3 DOWNLOAD AND PREPROCESSING

D.3.1 DOWNLOAD

The three datasets can be downloaded using the URLs below:

1. CAMUS: https://humanheart-project.creatis.insa-lyon.fr/
database/#collection/6373703d73e9f0047faa1bc8

2. ECHONET-DYNAMIC: https://echonet.github.io/dynamic/index.
html#access

3. HMC-QU: https://www.kaggle.com/datasets/aysendegerli/
hmcqu-dataset/data

D.3.2 PREPROCESSING

Raw echocardiograms have varying frame sizes, modalities, and mask labels, which must be stan-
dardized before training. Therefore, as a first step, we extract frames that are annotated and store
them as images. We then resize them to a common (112× 112) shape. Finally, we align the labels of
records in different databases. We use 1, 2, 3 representing LVEndo, LVEpi and LA respectively. The
samples of Fed-ECHO are shown in Figure7.

(a) Sample from Institution 1. (b) Sample from Institution 2. (c) ample from Institution 3.

Figure 7: Echocardiogram of each institution in Fed-ECHO. LVEndo, LVEpi and LA are shown in
red, green and blue respectively.
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D.4 BASELINE, LOSS FUNCTION AND EVALUATION

Baseline Model. A U-net architecture is employed in this study, utilizing echocardiographic images
as input to forecast masks delineating four distinct cardiac regions. The U-net model represents a
conventional convolutional neural network design frequently deployed in the realm of biomedical
image segmentation endeavors. Its application is tailored towards semantic segmentation, a process
wherein individual pixels within an image are categorized based on semantic content.

Loss function. We use a CrossEntropy Loss (CELoss) for training. Note that, for centralized
supervised learning and client training in FedAvg, FedProx, Scaffold, and Ditto strategies, we ignore
label with value 0 when calculating CELoss for data from client 2 or 3, since region with label 0 may
not be true ground truth in these clients.

Evaluation Metrics. We use the Dice similarity index and 2D Hausdorff distance (dH ) to measure
the accuracy of the segmentation output. Dice index is calculated as:

DICE(y, ŷ) =
2
∑n

i=1 yiŷi∑n
i=1 yi +

∑n
i=1 ŷi

(4)

The Hausdorff distance is calculated as:

dH(y, ŷ) = max{d(y, ŷ), d(ŷ,y)}, (5)
where d(y, ŷ) represents the minimum distance among points at the edge of y and points at the edge
of ŷ.

Note that, to better measure the model segmentation performance, for clients 2, and 3, we select only
200 labeled frames for testing.

D.5 TRAINING DETAIL

Optimization parameters. We optimize our model using the SGD optimizer, with a batch size of
32. We train our model for 50 epochs on one NVIDIA A100-PCIE-40GB.

Hyperparameter Search For centralized and local model training, we first explore learning rates
from the set {1e-4, 1e-3, 1e-2, 1e-1.5, 1e-1} during centralized model training. The learning rate
that achieves the best Dice index is then utilized for local model training. For the federated learning
strategies, we employ the following hyperparameter grid:

• For clients’ learning rates (all strategies except Fed-Consist): {1e-4, 1e-3, 1e-2, 1e-1.5,
1e-1}.

• For server size learning rate (Scaffold strategy only): {1e-2, 1e-1, 1.0}.
• For FedProx and Ditto strategies, the parameter µ is selected from {1e-2, 1e-1, 1.0}.
• For FedInit, the parameter β is chosen from {1e-1, 1e-2, 1e-3}.
• For FedSM, the parameters γ and λ are set to {0, 0.1, 0.7, 0.9} and {0.1, 0.3, 0.5, 0.7, 0.9},

respectively.
• For FedALA, the parameters layer index, η, threshold, and num per loss are fixed at 1, 1.0,

0.1, and 10, respectively, while rand percent is chosen from {5, 50, 80}.

For Fed-Consist, we introduce Gaussian noise with a variance of 0.1 as augmentation. The learning
rates for labeled clients are searched from {1e-2, 1e-3, 1e-4}, while those for unlabeled clients are
explored within {1e-3, 1e-4, 1e-5, 5e-6, 1e-6}. The parameter τ is varied from {0.5, 0.7, 0.9}.

Additionally, for FedPSL, we further search the parameters α and β from {1e-0.5, 1e-1, 1e-1.5,
1e-2, 1e-3} and {1e-1, 1e-1.5, 1e-2, 1e-3, 1e-4, 1e-5}, respectively. The optimal values found are
α = 1e− 1.5 and β = 1e− 5.
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Table 10: Hyperparameters used for the Fed-ECHO.
Fed-ECHO

Methods learning rate optimizer learning rate server mu beta lambda gamma rand percent τ
Central.(sup) 0.1 torch.optim.SGD - - - - - - -
Central.(ssup) 0.1 torch.optim.SGD - - - - - - -

FedAvg 0.1 torch.optim.SGD - - - - - - -
FedProx 0.1 torch.optim.SGD - 0.1 - - - - -
Scaffold 0.1 torch.optim.SGD 1.0 - - - - - -
FedInit 0.1 torch.optim.SGD 1.0 - 1e-2 - - - -
Ditto 0.1 torch.optim.SGD - 0.1 - - - - -

FedSM 0.1 torch.optim.SGD 1.0 - - 0.1 0 - -
FedALA 0.1 torch.optim.SGD 1.0 - - - - 5 -
FedPSL 0.1 torch.optim.SGD 1.0 - 1e-5 - - - -

Fed-Consist 0.0001(labeled client)
1e-6(unlabeled client) torch.optim.SGD - - - - - - 0.9
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