
A Tightness of the ELBO and IWAE Improvement

In this section we want to verify the tightness of the ELBO as a lower bound of the log likelihood.
Consider the likelihood for a single data point x′, we have

log pθ(x
′) ≥ ⟨log pθ(x′|z)⟩qϕ(z|x′) −KL(qϕ(z|x′)||p(z)) ≡ ELBO(x, θ, ϕ). (27)

To evaluate log pθ(x
′), we can use an importance weighted estimation (IWAE [7]), which can be

rewritten as

log pθ(x
′) = log

〈pθ(x′|z)p(z)
qϕ(z|x)

〉
qϕ(z|x)

≈ log
1

K

K∑
k=1

pθ(x
′|zk)p(zk)

qϕ(zk|x′)
≡ IWAEk(x, θ, ϕ), (28)

where zk ∼ qϕ(z|x′). The accuracy of the importance sampling heavily depends on the proposal
distribution qϕ(z|x′) and will be poor if qϕ(z|x′) underestimates the high density region of pθ(z|x) [7].
For the ELBO with optimal inference, we can assume the approximate posterior is close to the true
posterior, so if the lower bound is tight, we will observe that the ELBO is approximately equal to the
IWAE. In Figure 9 we compare the ELBO and IWAE using classic amortized inference and optimal
inference respectively (we use k = 10 in all cases). We find that the IWAE can improve the ELBO for
the traditional amortized inference and is approximately equivalent to the ELBO using the optimal
inference strategy. Therefore, we can conclude that the ELBO with the optimal inference strategy is
tight to log pθ(x).

We also estimate the IWAE using the proposal posterior learned by the proposed reverse half-asleep
inference and find that our method can also improve the IWAE result, see Figure 9 for details. This is
intuitive since our method can provide a better proposal distribution for importance sampling.

(a) Tightness (b) IWAE Improvement (c) All Comparisons

Figure 9: IWAE comparisons on Binary MNIST. The x-axis indicates the training epoch and the
y-axis is the Bits-per-dimension, which corresponds to the negative ELBO or IWAE with log 2 base
and normalized by data dimension, lower is better. In Figure a, we see that IWAE improves the
ELBO when using classic amortized inference but is approximately equal to the ELBO when using
optimal inference, which indicates the bound is tight. In Figure b, we compare the IWAE with classic
amortized inference, optimal inference and the the proposed reverse half-asleep (RHS) inference.
Here we find the proposed method can also improve the classic IWAE estimation without training on
the test data. In Figure 3, we plot the ELBO and IWAE for all three amortized inference methods.

B Amortized Posterior for Down-stream Classification Task

In Section 4, we discussed that the proposed reverse half-asleep method can improve the pos-
terior prediction for the test data. One direct application is to use the learned amortized poste-
rior qϕ(z|x) for down-stream tasks, e.g. image classification, where the samples z′ ∼ qϕ(z|x′)
can be treated as the ‘stochastic representation’ [48, 4] of the given data point x′. Given a la-
beled dataset {(x1, y1), · · · , (xN , yN)} and a trained amortized posterior (encoder) qϕ(z|x), we
can then train a classifier pη(y|z) that maps from the latent space z to the label y. After train-
ing the classifier, for a given test set of unlabelled data {x′

1, · · · , x′
M}, the predictive distribu-

tion can be written as p(y|x) =
∫
pη(y|z)qϕ(z|x)dz and can be approximated by Monte-Carlo:

p(y|x) ≈ 1
K

∑K
k=1 p(y|z′k), where z′k ∼ qϕ(z|x). We train a classifier with 2 layer feed-forward neu-

ral network with hidden size 200, RelU activation and dropout with rate 0.1 on two datasets: binary
MNIST and grey MNIST. The models are trained for 10 epochs with Adam optimizer and learning

15

rate 3×10−4. During training, we randomly sample one z′ for each data point x and we use k = 100
in the testing stage to estimate the predictive distribution. Figure 10 shows the comparisons between
the posterior trained by the classic amortized inference and the proposed reverse half-asleep method
respectively. We can see our method consistently improves the classification accuracy performance.

(a) Binary MNIST (b) Grey MNIST

Figure 10: Representation Learning for Down-Stream Classification. We train the VAE for 1000
epochs and evaluate the classification accuracy (y-axis, higher is better) on the down-stream classifi-
cation task every 100 epochs (x-axis). The results are averaged over 3 random seeds and we also plot
the standard deviation.

C Effects of the Latent Space Dimensionality

We study the effect of the latent dimension size on the generalization of the amortized inference. We
use the VAE described in Section 4 with different latent size [16, 64, 128] on Binary MNIST, see
Figure 11 for the result. We find the overfitting of amortized inference happens in all cases regardless
of the latent size. We also apply the proposed reverse half-asleep training method to the saved model
every 100 epoch and found our method can consistently improve the generalization performance.

(a) Dim(z) = 16 (b) Dim(z) = 64 (c) Dim(z) = 128

Figure 11: Effects of different latent dimension. The y-axis is the BPD and x-axis is the training
epochs. We find the amortized inference generalization gap exits in all cases.

D Reverse Half-asleep From the Beginning

In section 4 we applied the reverse half-asleep training in a post-hoc fashion, which allow us to
isolate the degree to which both the generative model and amortized inference generalization gap
are contributing to overfitting. It has also been observed that a poor variational posterior in the early
stage of the training will cause the M-step of the generative model pθ(x|z) to get trapped into a local
minimum (see “Two problems with variational expectation maximization for time-series models”
section in [3]). Therefore, we can also apply the proposed method from the beginning of training, see
Figure 12 for the results. For a simple dataset like Binary MNIST, we find that using the proposed
reverse half-asleep from the beginning can lead to a better test ELBO compared to the classic VAE
training, or our proposed post-hoc training. However, for a more complex dataset like grey-scale
MNIST, the result of using the reverse half-asleep from the beginning is worse than the classic VAE
training. We hypothesize that for a complex dataset, the decoder in the beginning cannot generate

16

valid images, which will lead to biased gradients. Therefore, we also report the result of using the
reverse half-asleep training starting from 200 epochs onwards and find it is better than the classic
VAE training but is worse than the post-hoc reverse half-asleep method. We leave the study of how to
improve the generalization from the beginning of the training to future work.

(a) Binary MNIST (b) Grey MNIST

Figure 12: We compare different ways of using the proposed training objective (from the beginning or
post hoc). We also plot the standard VAE training and the ELBO with optimal inference for reference.

E Introduction of Bits Back Coding with VAE

In this section, we briefly introduce the background of the model-based lossless compression and the
Bits Back coding scheme of VAE models.

E.1 Model-based Lossless Compression

The goal of the lossless compression is to create an invertible mapping from real-world data (e.g.
image, audio, video) to binary strings with the lengths of the strings as short as possible.

Let X be a discrete random variable that taking values from a finite countable set X and has a
probability mass function (PMF) p : X → R such that ∀x ∈ X , p(x) > 0 and

∑
x p(x) = 1.

Definition 1 The Shannon information content of a sample x ∼ p(x) is defined as

hp(x) ≡ − log2 p(x). (29)

Definition 2 The Shannon Entropy of a distribution p is defined as

H(p) ≡ −
∑
x

p(x) log2 p(x). (30)

We then give the informal statement of the Shannon Source Coding Theorem [33], the detailed
statement and the proof can be found in Chapter 4 of [27].

Theorem 1 (Shannon’s Source Coding Theorem (informal)) N i.i.d samples form the data gen-
eration distribution with PMF pd(x) can be losslessly compressed into more than NH(pd) bits when
N →∞. Conversely, they cannot be losslessly compressed into fewer than NH(pd) bits.

To obtain a ‘near-optimal’ lossless compression scheme in practice, one strategy is to compress each
data x ∼ pd(x) into a binary string with length equal to hpd

(x) + ϵ, where h(x) is the Shannon
information content and ϵ represents a small coding overhead. Therefore, given N i.i.d samples
{x1, · · · , xN} ∼ pd(x), the averaged compression length is

− 1

N

N∑
n=1

log2 pd(xn) + ϵ
N→+∞−−−−−→ −

∑
x

pd(x) log2 pd(x) + ϵ = H(pd) + ϵ, (31)

which is close to optimal when ϵ is small.

17

Different coders are proposed to make the overhead ϵ for different types of data. For multi-dimensional
data, there exits two methods that can provide us ‘near-optimal’ lossless compression: Arithmetic
Coding (AC) [44] and Asymmetric Numeral System (ANS) [14], we recommend Chapter 6 of [27]
and [37] for detailed introductions of the two methods respectively. We use the ANS coder in this
paper since it has a faster speed comparing to AC. For simplicity, we abstract an ANS coder as an
invertible function encp(·) that maps a given data x′ ∈ X to a binary string message m′ with length
len(m′) = − log2 p(x

′) + ϵ, where ϵ is a negligible coding overhead. We also denote the decoding
function as decp(·) = enc−1

p (·) and have decp(m
′)→ x′.

We have introduced how to optimally compress the data when we know the true data generation
distribution pd(x). However, the distribution pd(x) is usually unknown in practice, we would like to
learn a model pθ(x) to approximate the underlying data distribution p(x) and then use the learned
model pθ(x) to conduct lossless compression. In this case, the averaged data compression length for
{x1, · · · , xN} ∼ pd(x) is (ignoring the coding overhead ϵ):

− 1

N

N∑
n=1

log2 pθ(xn)
N→+∞−−−−−→ −

∑
x

p(x) log2 pθ(xn). (32)

The difference between the model compression length and the optimal compression length is

− 1

N

N∑
n=1

(
log2 pθ(xn)− log2 pd(xn)

)
N→+∞−−−−−→ KL(pd(x)||pθ(x)). (33)

E.2 Bits Back Compression with VAEs

Given a discrete Latent VAE model specified by the PMFs {pθ(x|z), qϕ(z|x), p(z)} and a target data
x′ to compress. A naive strategy is to first generate a sample z′ ∼ qϕ(z|x′) and then encode x′ with
pθ(x|z′). We also encode z′ with distribution log p(z), so the total code length is then We also encode
z′ with distribution log p(z), so the total code length is then

− log2 pθ(x
′|z′)− log2 p(z

′), (34)

which is larger than the optimal code length − log2 p(x
′) by − log2 pθ(z

′|x′) bits. To achieve the
optimal code length, a key observation is that the sampling process z′ ∼ qϕ(z|x′) can be done by
decoding random bits using the distribution qϕ(z|x′). Specifically, we assume that we can access a
message that already contains random bits, which we visualize as the following figure5.

Initial random bits

In the encoding stage, we first sample z′ form qϕ(z|x′) by decoding random bits with distribution
qϕ(z

′|x′), so the message length decreased by length − log2 qϕ(z
′|x′).

− log2 qϕ(z
′|x′)

decqϕ(z|x′)(·)
−−−−−−−−→ z′

We then encode x′ with distribution pθ(x
′|z′), so the message is increased by length − log2 pθ(x

′|z′).
− log2 pθ(x

′|z′)

encpθ(x|z′)(·)←−−−−−−−− x′

Finally, we encode z′ with distribution p(z) and the message length is increased by − log p(z′).

− log2 p(z
′)

encp(z)(·)←−−−−−− z′

In the decoding stage, we first decode z′ using p(z).

5The visualization is taken from [38].

18

− log2 p(z
′)

decp(z)(·)−−−−−−→ z′

We then decode x′ with distribution pθ(x|z′).

− log2 pθ(x
′|z′)

decpθ(x|z′)(·)−−−−−−−−→ x′

Finally, we encode the random bits ‘back’ to the stack to recover the initial message.

− log2 qϕ(z
′|x′)

encqϕ(z|x′)(·)
←−−−−−−−− z′

Therefore, the ‘net’ message length to compress data x′ with a VAE is equivalent to

− log2 pθ(x|z′)− log2 p(z
′) + log qϕ(z

′|x′), (35)

which is a one-sample estimation of the ELBO and is optimal (equal to − log2 pθ(x
′)) when the

amortized variational posterior is equal to the true posterior qϕ(z|x′) = pθ(z|x′).

This scheme and also be extended to continuous latent z with negligible cost by quantizing the
PDF p(z) and qϕ(z) into PMF to conduct the compression. See [38] for details. This ‘Bits Back’
coding method was first introduced as a thought experiment in [42, 19] and was later implemented
by [15] with an AC coder. Recently, [38] proposed to implement the Bits Back with ANS [39] and a
VAE model, which allows great improvement of both the compression rate and the computational
efficiency. We refer the reader to [38] for other practical considerations and implementation details.

19

	Tightness of the ELBO and IWAE Improvement
	Amortized Posterior for Down-stream Classification Task
	Effects of the Latent Space Dimensionality
	Reverse Half-asleep From the Beginning
	Introduction of Bits Back Coding with VAE
	Model-based Lossless Compression
	Bits Back Compression with VAEs

